
Customer: BRIKN
Date: February 14, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
BRIKN

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token

Platform EVM

Language Solidity

Methodology Link

Website https://brikn.io/

Changelog
27.01.2023 – Initial Review
09.02.2023 – Second Review
14.02.2023 – Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://brikn.io/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12
Critical 12
High 12
Medium 12

M01. Duplicated State Variable 12
M02. Requirement Violation 12
M03. Undocumented Behavior 12
M04. Requirement Violation 13

Low 13
L01. Floating Pragma 13
L02. Redundant Use of SafeMath 13
L03. Unchecked Return Value 13
L04. Documentation Mismatch 14
L05. Redundant Statements 14
L06. Documentation Mismatch 14
L07. Missing Event for State Updation 14

Disclaimers 15

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by BRIKN (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope

Repository https://github.com/Decubate-com/smart-contracts

Commit a41846f188f10e1678afb57909cbe5712f684037

Whitepaper Link

Technical
description

Link

Contracts File: ./contracts/BRIKToken.sol
SHA3: ed4ab404169cd629e6bc082a73d5c7b11dc8e3c15d49a207b4362f3e27de0ee2

File: ./contracts/Whitelisted.sol
SHA3: 219f1f59b9d3cc61faec6bd354978db1f4012e8f0606dc1342f4ddf777a4e8ff

Second review scope

Repository https://github.com/Decubate-com/smart-contracts

Commit 7619853430883901586a96b303ae68f44b193737

Whitepaper Link

Functional
requirements

Link

Technical
description

Link

Contracts File: ./contracts/BRIKToken.sol
SHA3: c1ba0bc0a7fed615d70cfcaa40b06d16fceaea07c7f6a132d6bfa75d578fe9b8

File: ./contracts/Whitelisted.sol
SHA3: 01ce3d7172782a3f6d8ec0c28697707202cb9d0dc71e3788c20e3547e1cb7ddd

Third review scope

Repository https://github.com/Decubate-com/smart-contracts

Commit 01827e9e0d3746235776745019e8035d4b20e0bb

Whitepaper Link

www.hacken.io
4

https://github.com/Decubate-com/smart-contracts
https://res.cloudinary.com/brikn/image/upload/v1673099101/dn828sv1ko2gqjjaoiy3.pdf
https://github.com/Decubate-com/smart-contracts/blob/a41846f188f10e1678afb57909cbe5712f684037/README.md
https://github.com/Decubate-com/smart-contracts
https://res.cloudinary.com/brikn/image/upload/v1673099101/dn828sv1ko2gqjjaoiy3.pdf
https://github.com/Decubate-com/smart-contracts/blob/7619853430883901586a96b303ae68f44b193737/docs/BRIKToken.pdf
https://github.com/Decubate-com/smart-contracts/blob/7619853430883901586a96b303ae68f44b193737/README.md
https://github.com/Decubate-com/smart-contracts
https://res.cloudinary.com/brikn/image/upload/v1673099101/dn828sv1ko2gqjjaoiy3.pdf

Functional
requirements

Link

Technical
description

Link

Contracts File: ./contracts/BRIKToken.sol
SHA3: 0b6d87af096451412eb183b13f86d64b1ce59c5c5e2715a2f4ca79a89acac752

File: ./contracts/Whitelisted.sol
SHA3: 5eaf98dc78ee080fd53a389b349c9ae34a5b6465dbc9a450814ecba2852e9c62

www.hacken.io
5

https://github.com/Decubate-com/smart-contracts/blob/01827e9e0d3746235776745019e8035d4b20e0bb/docs/BRIKToken.pdf
https://github.com/Decubate-com/smart-contracts/blob/01827e9e0d3746235776745019e8035d4b20e0bb/README.md

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements are partially outdated.
● Technical description does not correspond to the dev environment.

Code quality
The total Code Quality score is 9 out of 10.

● The development environment is configured.
● Some project dependencies (truffle) are considered to be installed

globally and are not mentioned in the package.json file.
● Contract misses an event for state variable updation.

Test coverage
Code coverage of the project is 100% (branch coverage).

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

26 January 2023 3 3 0 0

9 February 2023 2 1 0 0

14 February 2023 2 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Not Relevant

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Failed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

System Overview

BRIKN is a mixed-purpose smart contract system which includes the audit
scope contracts:

● Whitelisted — access control contract.
Roles supported:

○ Owner
○ Whitelisted accounts
○ Blacklisted accounts

● BRIKToken — burnable ERC20 token (inherit Whitelisted).
Features:

○ is not mintable
○ transfers are blocked for blacklisted accounts
○ transfers are blocked till specified moment (except of

transfers from/to whitelisted accounts)
○ swaps in set pairs are blocked till specified moment

Privileged roles
Owner:

● able to set whitelisted accounts
● able to lock owned assets, transferring them to the 0xdEaD address

Whitelisted accounts:
● able to setup blacklisted accounts
● able to setup date till which tokens selling would not be possible
● able to setup date till which tokens transfers would not be possible

Risks
● In case the user account is blacklisted, user funds are locked.
● Whitelisted users may pause transactions on the contract for any

period of time.
● Whitelisted users may pause swaps at any exchange service (in the

pairs include the BRIKToken asset) for any period of time.

www.hacken.io
11

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

M01. Duplicated State Variable

The pair variable in the BRIKToken contract stores the same value,
which pairAddress in the Whitelisted contract does.

According to the current implementation, pair variable is considered
redundant as it could be replaced with pairAddress.

Path: ./contracts/BRIKToken.sol : pair

Recommendation: remove the redundant state variable and change all
references to the duplicated one.

Status: Fixed (second scope)

M02. Requirement Violation

According to the documentation, users should be able to burn their
tokens. However, the functionality is missed.

The burn function is implemented under onlyOwner modifier.

Path: ./contracts/BRIKToken.sol : burn()

Recommendation: accept anyone to burn funds or fix the documentation.

Status: Fixed (second scope)

M03. Undocumented Behavior

The token blacklist, timelock and saleblock functionalities are not
described in the documentation.

Note: saleblock functionality may be bypassed by using other DEXes or
by combining several swap pairs on the direct DEX.

Path: ./contracts/Whitelisted.sol : isSaleBlocked()

Recommendation: disclose information about implemented restrictions
to the users, get rid of unfinalized functionality, or accept the
bypass possibility.

Status: Fixed (second scope)

www.hacken.io
12

M04. Requirement Violation

According to the documentation, the contract may be locked from
trading on multiple pair addresses.

However, only one pair address may be blocked as the pairs list
management function is internal and inaccessible by the owner.

Paths:
./contracts/BRIKToken.sol
./contracts/Whitelisted.sol : setPairAddress(), isPair

Recommendation: provide ability for the owner to manage the trading
pairs or update documentation to be consistent with implementation.

Status: Fixed (third scope)

Low

L01. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

The project uses floating pragmas ^0.8.10.

Paths:
./contracts/BRIKToken.sol
./contracts/Whitelisted.sol

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (second scope)

L02. Redundant Use of SafeMath

Since Solidity v0.8.0, the overflow/underflow check is implemented
via ABIEncoderV2 on the language level - it adds the validation to
the bytecode during compilation.

There is no need to use the SafeMath library.

Path: ./contracts/BRIKToken.sol

Recommendation: remove usage of the SafeMath library.

Status: Fixed (second scope)

L03. Unchecked Return Value

The function returns the status of an executed action, but the status
is ignored.

During further development, the returned status may become not only
true and the system may reach an unexpected state.

www.hacken.io
13

Paths:
./contracts/BRIKToken.sol : constructor()
./contracts/Whitelisted.sol : setPairAddress()

Recommendation: require the return value to be true or remove the
redundant return.

Status: Fixed (second scope)

L04. Documentation Mismatch

SafeMath lib is mentioned in the documentation. However, it was
removed from the implementation.

Path: ./contracts/BRIKToken.sol : constructor()

Recommendation: keep documentation up-to-date with implementation.

Status: Fixed (third scope)

L05. Redundant Statements

It is unnecessary to inherit the Whitelisted contract with Context as
the Ownable contract inherits Context and Whitelisted the Ownable
contract.

The import Context.sol statement is redundant as Context may be
loaded from the Ownable.sol file.

Path: ./contracts/Whitelisted.sol

Recommendation: remove redundant statements.

Status: Fixed (third scope)

L06. Documentation Mismatch

Amount of constructor parameters mismatch implementation.

Path: ./contracts/BRIKToken.sol : constructor()

Recommendation: keep documentation up-to-date with implementation.

Status: Reported

L07. Missing Event for State Updation

Critical state changes should emit events for tracking things
off-chain.

The function does not emit an event on change of a state variable.

This may lead to inability for users to subscribe events and check
what is going on with the project.

Path: ./contracts/Whitelisted.sol : setPairAddress()

Recommendation: emit events on critical state changes.

Status: New
www.hacken.io

14

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
15

