
1

 KOÇ UNIVERSITY
 College of Engineering

DEPARTMENT OF COMPUTER ENGINEERING

COMP 291 SUMMER PRACTICES I

Mertcan AKARDERE

Internship Company and Department:

MBIS Danışmanlık

03.08.2015 – 28.08.2015

Supervisor: Selim Öndünç

2

TABLE OF CONTENTS

Table of Contents

COMP 291 SUMMER PRACTICES I .. 1

1. Introduction .. 3

2. Company Description .. 5

3. ABAP Programming in SAP ... 6

3.1. Problem Statement .. 6

3.2. Tools and Techniques Used .. 7

3.3. Detailed Explanation ... 8

3.4. Results ... 24

4. Conclusions .. 25

Appendix .. 26

References .. 26

3

1. Introduction

I did my internship at MBIS Danışmanlık. MBIS is a company that implements

SAP’s enterprise software for Turkish companies to speed their workflow up and make them

more systematic by digitalizing everything. At the time of my internship, main focused SAP

software was SAP R/3. That was not the latest SAP software, but many middle sized Turkish

companies preferred this due to monetary limitation.

 SAP R/3 is an enterprise software that incorporates database, tools to create

scripts that edit and view the database, and various tools to produce neatly designed outputs

to display data for the end-users. This means companies can use SAP R/3 all throughout their

workflow to speed every step of the process up, and decrease response times since every data

is presented in a single program.

 SAP heavily encourages customization by allowing users to create new scripts

that view, pull, edit or add data from the database in many ways and add an interface for

these scripts so they can be easily used by every employee of the company. It even allows

adding new buttons with custom codes and images to create new look for certain windows in

the database. It also allows creating new variable types to minimize the risk of faulty inputs

to the database. And it also has a support for multi-language programs by allowing creating

strings for multiple languages.

 My task in this internship was learning how to customize a SAP program to

satisfy the demands of a customer company by doing previous tasks that were given to MBIS

Danışmanlık. These tasks included creating different employee types and an interface to add

new employee data, showing an invoice in SmartForms and creating an outline for shipping

information.

4

SAP can be customized by using the ABAP language which SAP R/3 natively

supports. Therefore I made use of ABAP language to accomplish these tasks. ABAP is a

programming language that both support interacting with the database and the forms and the

interface within SAP. The codes that interact with the database are similar to programming

with SQL and the codes that interact with the interface are similar to programming with C# in

Microsoft Visual Studio. Thus I mainly made use of ABAP language to do my queries in the

database and create scripts that interact with the forms and buttons I created. I also had to

learn how to create an easy to learn and use interface within SAP R/3 to make forms that

could be used by every employee of a customer company. This process was similar to web

design with PHP. I also had to learn creating SmartForms. SmartForms is a way of displaying

data neatly on SAP which is also printable so it is crucial for adapting to uses in the office

environment, and it is also heavily customizable with scripts that can adapt the formation

therefore making it simple to create an outline for every situation. Designing the outline of

SmartForms was similar to Microsoft Visual Studio and creating scripings within

SmartForms was like making pseudo-code.

 I decided to work with MBIS due to my desire to work with a SAP product.

SAP products are based on abstract structures yet it has modules to specialize on every need

of companies and all the modules can be customized for all business fields. This structure

makes the software very malleable to fit the needs of every company. Thus it can be

incorporated by almost any company. This can be observable by the stats; 87% of the Forbes

Global 2000 companies use SAP (1). I consider working for SAP as one of my career goals;

therefore it was a great opportunity to have a SAP experience in a work environment.

5

2. Company Description

MBIS Danışmanlık is a company that focuses on implementing and keeps supporting

the ERP software, databases and servers for mainly Turkish companies. Their main focus is

implementing SAP products as they were found by SAP consultants and they are gold

partners with SAP.

MBIS Danışmanlık expanded their services by developing new software products that

would help companies in their workflow. These products include; generating online invoices

to reduce the cost of delivering physical invoices, a system to keep track of projects that is

cloud based, a mobile confirmation system for SAP which makes confirming transactions by

manager faster by not requiring them to log in to the SAP server, system to keep track of

imports, weighing scale that directly connects to SAP server and many other software

products that increase the utilities of SAP products.

MBIS developers are divided to modular developers and ABAP programmers. ABAP

programmers write the main components of functions while modular developers fit these

functions and prepare the database for customers. I worked on ABAP programming to

perform previous customer requests of the company to learn the ropes with a very realistic

experience.

MBIS currently has about 150 employees. In 17 years they managed to conclude 500

projects whilst serving 350 different customers and get recognition in Turkey and

internationally.

6

3. ABAP Programming in SAP

3.1. Problem Statement

I had several tasks that were given to me to complete during my internship in MBIS

Danışmanlık. Some of these tasks were given as a demand to MBIS Danışmanlık by their

customer companies, as one of their responsibilities is keeping the support of the SAP

products that they had implemented. I had to provide solutions and outputs that would satisfy

the customers to practice my knowledge on SAP in an as close to the real work experience

environment as possible. During my internship, I tried to develop interfaces that would not

confuse the end-user but still the focus was more on the accuracy of the data than the visual

appeal.

My main tasks included doing queries to pull data from the database, displaying them

on an ALV format, creating interface for end-users to interact with the database, creating

structures, tables, and data types and displaying information in SmartForms. All my tasks

were completed by myself with the exception of little guidance from my supervisor.

My projects were considered done only when I had successfully displayed desired

outputs accurately and with an efficient code.

7

3.2. Tools and Techniques Used

Natively ABAP programming language is used within the SAP R/3 system. ABAP is

a relational database management system like SQL, but it was designed specifically to

perform report creation. Relational database is very beneficial for the task of outputting

reports as all the data stored is usually connected. Although there are some abstractions, it

still feels outdated to current programming languages by forcing the defining the type while

defining.

 SAP R/3 was used as the main software. All of the programming, database

interactions and testing were accessible via the SAP R/3. This software is a complete pack

both for developer and the end-user. This limits the errors that can happen during transitions.

This was a quite an old SAP software, thus the interface was old and not end-user friendly; it

required prior knowledge about the program to be used effectively.

 I used a laptop provided by the place I worked as an intern. The software was

installed as it was the only requirement to run the program. I also connected and used the

practice server within the company.

 SAP R/3 is natively incorporates a relational database design. Thus I used

ABAP language to interact with this database via the use of relational database and query

based language. This allowed displaying tables of data gathered by database with ease as it

provides functions to pull data from the database into tables with set conditions. It also

provides outputting formats like ALV and SmartForms to display the data in a neat fashion.

8

3.3. Detailed Explanation

My first project was a practice to learn variable types in ABAP, do simple queries in

the database and then displaying them. I used DATA to declare variable and I used BEGIN

and END to define multiple variable in a single DATA. I could define variable types by

specifying them like coding it as “TYPE i” which would make the variable integer. But when

dealing with table from the database I used LIKE and the field name. This would ensure the

variable type is exactly the same without needing to check, and it would also ensure longevity

of the program as it would adapt to the changes of the field’s data type, and also it creates an

abstraction barrier in declaring the type which is always a good programming practice.

After practicing with variable, I did some queries to pull data from the practice

database (Figure 1). I used the same keywords in the SQL, as I was able to pull all the fields

in the spfli table by using SELECT * FROM spfli INTO TABLE it_spfli. it_spfli was an

internal table I previously declared as the type spfli by using the keyword TYPE TABLE OF

to easily have a matching type fields.

Figure 1 – Displaying an example table from the practice database in an ALV format.

9

 My second project was creating an interactive program that took an input from

the user and did a query based on that input. First I had to create input textboxes so that user

could enter their parameters. For that I used SELECTION-SCREEN to define a layout then

give it a name with WITH FRAME TITLE. Then I had to define what boxes would there be

available for an input. For that I had to use PARAMETERS and then write the names of the

variables and define their types (Figure 2). Again for their types I used LIKE for the same

reasons.

Figure 2 – Creating a simple form that takes 4 inputs from the user. Title is text_t01, as setting it as a separate string

allows easier translation in multi-language programs.

 Then I used the variables I set for the SELECTION-SCREEN as conditions

for the database query by using the WHERE keyword (Figure 3). INNER JOIN combines the

two tables in the database whenever the matching fields of the both tables selected with ON

keyword have the same value.

 Figure 3 – Code for doing a query on two tables from the database based on the inputs filled with a form by the user, then

displaying the results.

10

 SAP conveniently creates input textboxes that are best suited for the desired

input since it knows the variable type from the declaration of the SELECTION-SCREEN. So

dates are automatically converted to date format regardless of the notation of the user, and it

can change the order of the day and month similar to language settings to be customized to fit

every user in a company. After declaring these 4 inputs, SAP created a form and even length

of the textboxes were at a reasonable size (Figure 4). Since my first input was for date, user

could also select the date from a simple calendar interface thanks to SAP.

After I gave inputs that would get me a decent amount of results, I saw that I was

successfully able to do a query based on the inputs I had given (Figure 5). The program I had

created could be seen as a simple search program as the user had no way of doing any

changes in the database but only view the data in the given tables.

Figure 4 – The default selection-screen that SAP had created after it was given to create one with the given variable

types. Default titles matched the variable names, the length and certain features of the textboxes were set by the SAP.

Figure 5 – The example output for the project after a cerain inputs were given to the program. The titles I manually

had written can be seen on top the variables.

11

 Before moving on to the next project, I wanted to learn how to make the

interface more end-user friendly. So I named every input textboxes with a more descriptive

title to lead the users to entering the correct data on the form (Figure 6). I did this using the

dictionary functionality of SAP, which meant the displayed titles of the textboxes could show

different titles for users with different languages.

Figure 6 – Every input textbox of the selection-screen is set a title using the dictionary functionality to support

developing a multi-language interface.

 Lastly I had set title for every field in the output table in ALV format by hand.

This method was tedious, bad at adapting to changes, and not scalable. Therefore I learnt how

to show every field with its title at the top. After these visual changes, program looked more

tidy and professional (Figure 7).

12

 My third project was creating a raffle game where the user would pick from 4

different raffle games from radio buttons, and then a selection of columns to be played would

be displayed to be picked by the user in a dropdown list. After selection the game and the

amount, user can start the game and the randomly selected numbers for each game would be

displayed as the winning numbers.

 Thus I started by creating the interactive components of the program. I added

4 radio buttons by using the RADIOBUTTON GROUP keyword in a PARAMETERS

declaration (Figure 8).

 Ideally I would create a single dropdown list and since each game allowed

different amounts of columns to be played, and it should have changed the available options

for the dropdown list. But initially I did not know how to do this, so I created 4 dropdown

lists, one for each game, and I made the one visible that matched the selected game and made

the other lists invisible.

Figure 7 – The sample output for the program after the visual changes. The titles are given at the of every field and every field’s length

matches the data length of the field.

Figure 8 – The code for creating 4 radio buttons where the first one is selected by default and 4 lists with

type of character at 20 length.

13

 Then I handled generating random numbers to determine winning numbers for

the raffle games. The SAP had a function for generating random numbers so I made use of

that function (Figure 9). I called this function with CALL FUNCTION keyword and repeated

generating new numbers with the DO keyword. I kept a manual count on the number of

generated random numbers since I would need to generate new numbers as long as the given

number was already among the winning numbers of that column.

Initially I called this function 4 times, for each game, due to the differences in the

game rules like the highest possible number in the game, but later I changed it by creating

variables for the different game rules and change them whenever user selected a new game.

Figure 9 – Code for generating selected amount of columns game results for the game 1 where the

maximum possible number is 49, and there are 6 winning numbers for each column. This code also

make sure there are no repeating numbers in the winning numbers. Also winning numbers are in

ascending order for visual appeal.

14

 After my code was working accurately, I made it visually appealing for the

end-users by adding name to every radio button and short summary of the game rules in the

parenthesis (Figure 10). I also added a title for every winning number sequence in the output,

and draw a line between each winning number to make it easier to read (Figure 11). The

numbers were also in ascending order to make it easier for checking the winning numbers.

 Figure 10 – First interface for the raffle game. Radio buttons have descriptive names but

dropdown list doesn’t have a default value.

Figure 11 – First output format for the raffle game. Numbers are in ascending order and

have a line between them to make it easier to read the winning numbers.

15

 My initial code for this project was very inefficient due to my limited

knowledge on ABAP language. But my supervisor showed me how to update the values of a

dropdown list, and gave me task to program this in a more efficient way.

 Therefore I implemented a dropdown list that would update its contents based

on the selected radio button. It would also choose the default value for the dropdown list

based on the game.

 To make the program more efficient, I also declared variable for the game

rules, like the highest possible number and the amount of winning numbers (Figure 12). Thus

I was able to use a single random number generator function by updating the game rules after

a game was selected.

Figure 12 – The game rules change based on the selected radio buttons.

16

 My next project was creating 3 different employee types in the database with

some similar and some different fields and even one field that had a custom designed variable

type. As continuation of the project I had to create a form to create new employees and a

view with extra features.

 So I started by creating tables for each employee type and adding the desired

fields for each of them (Figure 13). I also had to declare variable types for each of the fields.

Most of these could be found within already defined variable types. But I was asked to create

a specific type that could only take B or M as input, which stood for white collar or blue

collar respectively, so I created a new variable type that allowed 1 char and its value range

had B and M as fixed values. I also set their descriptions for future reference and instruction

for the end-user in the later applications.

Figure 13 – A personal table with 5 fields with their data types and short descriptions.
Figure 15 – A personal table with 5 fields with their data types and short descriptions.

Figure 13 - A personal table with 5 fields with their data types and short descriptions.

Figure 14 – Employee Type data type has B and M as its fixed

value within its value range.

17

 After I was done declaring the tables for all employee types, I created some

example employee data in the database to test if everything was in order. Then I started

working on a form that would allow creating any type of employee.

 First I declared selection-screen with all available fields in the employee

tables, but I made only the NOT NULL and KEY fields obligatory to fill in the form by using

the OBLIGATORY keyword.

 Since I had declared the data types for the selection-screen, SAP also had a

feature to allow personal type to be selected with a pop-up since it had fixed values.

Figure 16 – The code fore creating a form to add new employee data to the database. Every value is checked to

fit the field’s data type and not null fields need to be filled. Otherwise user is informed of their misuse.

Figure 17 – Interface for creating a new employee data for the database is to the left. A pop-up that appears when

user clicks on the button next to the personal type is to the right. The available choices and their description are

presented which makes selecting the correct data for the database for the end-user is easier.

18

 My next project was creating a view in an ALV with extra features. These

features included creating a BOX field on the left of the table for making selection easier for

the end-user when using the view, adding new buttons to the interface while using this

particular ALV, creating hyperlinks within a field, and also adding a transition for double

clicking on a certain field.

 After writing the code for simple queries I started adding the codes for

transactions. I checked these conditions by using the WHEN keyword then writing their

conditions. For double clicking I used WHEN ‘&IC1’ which works whenever user double

clicks, then I checked the index of the field that was double clicked on, find its field name,

then see if it matches VBELN, and if it matches perform the transition. Transition to another

segment of SAP is done by the TRANSITION keyword and SKIP FIRST SCREEN basically

performs pressing of the Return key after the page loads.

 Then I created a custom button called MALZEMEHK. This button would

make a transition to MM03 with the material that was selected when it was pressed to learn

more about the material. WHEN ‘MALZEMEHK’ worked when the custom button was

clicked.

Figure 18 – The code for transactions. These transactions occur when user double clicks on a vbeln field, malzemehk

button. Both of these transitions take the value of the user’s selected row’s particular field to fill the textboxes that

appear after the transition. There’s also a button for creating a smartforms.

19

 I created a field called BOX by adding a box fieldname in the formatting of

the ALV. I also programmed the hotspot VBELN which means users can transition to details

of document just by clicking on its number.

 I also had a button for creating SmartForms. I created a SmartForm for this

table where the only important fields would be displayed total sum of values would be

printed at the top (Figure 19).

 After buttons, the box, the ability to form SmartForms and the transitions were

added, this procuded a pretty advanced output (Figure 20).

Figure 20 – Output ALV format with all of the features. Belge field is underlined because of the hotspot. The box is the leftmost field

with no titles.

Figure 19 – The SmartForm generated by the

program that lists prodcuts, amount, cost and

material. The details about the invoice and the

total cost is also noted at the top of the form.

20

 My last project was reaching the invoice table within the SAP database, and

generating shipping information in SmartForms. This was a task given to MBIS Danışmanlık

as a request in the past, so I was asked to satisfy these old demands.

 First I created a new structure in the database, so I could easily pull all the

relative fields from the invoice but not the others. Then I had to find the location of the

invoice within the database. It was the LBBIL_INVOICE table that could get the invoice data

and transfer it to SmartForms. After these steps, it only took simple queries to retrieve data.

 I had to carefully organize everything to design the desired output since it

required much different information to be displayed at different locations (Figure 21)

Figure 21 – Design windows of SmartForms. Most of the windows are

there to position different texts since their location were given by the

customer company.

21

 One of the required information that needed to be displayed was barcodes. But

to display barcodes I had to change writing type. But directly changing would make all the

writing on the page in barcodes, therefore I had to create a new style that used barcodes as the

writing type. Apparently there were many algorithms that formed barcodes, so I asked and

learnt which one I should use for this project. It was one of the common barcode algorithms

in Turkey. After I had 2 styles for this SmartForms, I only had to choose the second style for

the windows that included barcode.

 After displaying my query result in the corresponding windows and in the

appropriate styles, I had made an output similar to the desired output by the customer

company (Figure 22). I only had to make few more adjustments to make it look tidier.

Figure 22 – Sample shipping information based on the data pulled by the SAP’s

invoice table. The formatting is done as requested by the customer company.

Barcodes are also shown.

22

 Finally I was also tasked with using the logic functionality within SmartForms

to test my knowledge further. This logic functionality would make the form adapt to organize

differently depending on the input therefore broadening its possible usages. First I did queries

within SmartForms to define and fill some internal tables (Figure 23). Then I set few

conditions and resulting text based on certain field’s values (Figure 24).

Figure 24 – Condition in SmartForm. It’s condition that only return true whenever the field KSCHL field is equal to

Z002. Whenever the condition holds true, the objects under the condition are visible.

Figure 23 – Queries within SmartForms. The input and ouput parameters are set on the top. Output parameters can

be referenced any other place in the SmartForms. Therefore I will be able to access data by sending an internal table

as an output

23

 I was also tasked with displaying sum of the costs of the materials within the

invoice. I computed the sum within logic part of the SmartForms as it also allowed adding

codes and queries within it.

 Even though my result was accurate, the result was shown as an integer.

Therefore I had to show these numbers in the currency format. I converted these numbers to

currency by using the SAP function SPELL_AMOUNT again within the SmartForms coding

part.

 As a result I was able show the details from the query I did within SmartForms

and display the sum of the bill in the currency format (Figure 25)

Figure 25 – The output billing information. The details are given at the top, the materials are listed in the middle,

and the sum of costs are given at the bottom of the page.

24

3.4. Results

 My main criteria for success were satisfying the demands for me with accurate

information and efficient code. Although most applications had a visual aspect, it was not

the main focus. I didn’t move on to other projects without successfully completing the

one, therefore I’d claim all my completed projects as a success. Because even when I

failed to meet these conditions, like when I wrote an inefficient code for the raffle game

with four dropdown lists, I started over to fix my mistakes and accomplish the task

efficiently.

 Since the visual appeal was not the focus, there were confusing parts for the

end-user. There were many missing fields in the outputs since it was only a practice

database. But I implemented every demanded feature for every project I had taken.

25

4. Conclusions

Since I was very familiar with programming concepts ABAP language was easy to

learn for me. Especially COMP 202 course was helpful in my work since I knew concepts of

data storing.

Similar to my in-class assignments; output formatting was specifically clear. Unlike to

my in-class assignments, the way I solved assignment had no rules; I could any code or

system that was provided by software. Since my tasks were not set after I learnt how to

complete them, like in-class, I had to find information by asking for help from my colleagues

or search the resources on the internet. This sometimes resulted in inefficient approaches to

the problem, so later on we discussed other ways to solve them with my supervisor.

Unlike my classes in the university, we had to make end-user friendly executable

projects so that a person without the knowledge of the SAP software could use the program.

This taught me how to make easy to use interfaces and to include descriptive titles.

This was my first time using SQL type, query based language. I think this experience

has given me immense insight on the subject of this practice as well as database management.

Before my internship I did not look bright to do database related work as I believed

type definitions would be hard to manage. During my internship I have come to realize,

defining by “Like” makes it easy to manage.

Since I have come to conclusion how SAP was malleable to all business fields, I look

forward to using more SAP products as I love abstract designs that appeals to everything.

26

Appendix

(including relevant material such as catalogues, product specifications, papers, codes)

References

Each information, figure, table, etc. that does not belong to you (has been found online, taken

from some other document, etc.) must be referenced, or you risk being penalized due to

plagiarism.

