The Lanterns at Warren Woods

466 Chestnut Street Ashland, Massachusetts

PREPARED FOR

Pickwick Development Corp. c/o The Green Companies 46 Glen Avenue Newton, MA 02459 617.969.0020

PREPARED BY

101 Walnut Street PO Box 9151 Watertown, MA 02471 617.924.1770

JULY 2015

Table of Contents

Table of Contents	i
DEP Stormwater Checklist	
Project Summary	1
Existing Conditions	4
Hydrologic Information	5
Proposed Conditions	8
Water Quantity and Quality Control Hydrologic Information	
Hydrologic/Hydraulic Analysis	17
Hydrologic Analysis Hydraulic Analysis	
Stormwater Management Regulations	20
Stormwater Regulations and Permitting	20
Stormwater Management Standards and Guidelines	21
Federal NPDES Construction-Related General Stormwater Permits	25

List of Figures

Figure 1: Site Location Map Figure 2: Existing Drainage Areas Figure 3: Proposed Drainage Areas

List of Tables

Table 1: Existing Conditions Hydrologic Data Table 2: Existing and Proposed Ground Cover Areas Table 3: Proposed Conditions Hydrologic Data Table 4: Proposed Surface and Groundwater Elevations Table 5: Peak Discharge Rates Table 6: Stormwater Volume Analysis

Appendices

i

Appendix A: NRCS Soil Survey Information, On-Site Subsurface Investigation Appendix B: TSS Removal Worksheet, TP and TN Removal Appendix C Long Term Stormwater Operation and Maintenance Measures Appendix D: Hydraulic Analysis

Drainage Pipe Sizing Calculations Outfall Sizing Calculations Water Quality Volume Calculations Water Volume Impact Analysis Peak Rate Impact Analysis Peak Rate Impact Analysis Recharge Calculations Appendix E: Erosion and Sedimentation Control Measures Appendix F: Earth Removal/Fill Calculations Appendix G: Hydrologic Analysis HydroCAD Analysis: Existing Conditions HydroCAD Analysis: Proposed Conditions

ii

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

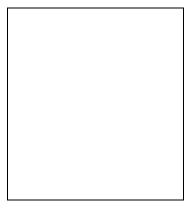
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

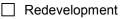

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature



Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No	disturbance	to	anv	Wetland	Resource	Areas
		alotanoanoo		<u> </u>		1.000001.00	/

- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- U Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	Simple Dynamic
--------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

	Recharge BMPs	have been	sized to infiltrate	the Required	Recharge Volume.
--	----------------------	-----------	---------------------	--------------	------------------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

	Property includes a M.G	L. c. 21E site or a solic	I waste landfill and a	a mounding analysis is included.
--	-------------------------	---------------------------	------------------------	----------------------------------

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- · Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Sta	indard 4: Water Quality (continued)
\square	The BMP is sized (and calculations provided) based on:
	The ½" or 1" Water Quality Volume or
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> <i>to</i> the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	indard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.

Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

1 Project Summary

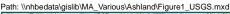
The 39 – acre Site is located at 466 Chestnut Street in Ashland, Massachusetts (see Figure 1). The Site is bounded by residential properties to the north, Eliot Street and a few residential properties and open space to the south, the Prospect Heights and Bartlett Street neighborhoods to the east, and Chestnut Street to the west. The Site is currently zoned Residential A (RA) and Office Commercial (CO). All abutting properties are also currently zoned RA. The Site is located within the SuAsCo surface watershed. Wetland resources on the Site include three bordering vegetated wetlands (labeled on the plans Wetland #1, Wetland #2 and Wetland #3). None of the three wetlands are in designated critical, Zone 1 or Zone II or Zone A, or Outstanding Water Resource areas.

The Site is presently unoccupied although it was once partially developed with a series of office buildings that were used for a pre-school, the Ashland Town Hall, and other town uses; and associated paved driveways, parking lot and sidewalks. The buildings have been demolished but the paved surfaces remain. Untreated stormwater runoff from the pavements drain partially to Wetland #3 and offsite towards Chestnut Street. Runoff flow from a portion of the parking lot and razed buildings is discharged from an 18" pipe into Wetland #1, also untreated. In addition to these previously developed areas in the northwest portion of the site, stormwater runoff flows overland from woods and an open field with a farmhouse offsite to Chestnut Street, Eliot Street, Prospect Heights, and to the three bordering vegetated wetlands on the Site.

Proposed development of the site includes the construction of 93 homes for a Senior Residential Community (SRC) including 46 guest parking spaces at various locations along the roads, and a modest amenity area with a building for indoor recreational use. The development will also include utility infrastructure of sanitary sewer, water, gas, electric, and telephone connections to Ashland's existing utilities on Chestnut Street and Eliot Street. Three main roadways (A, B and C) are proposed to provide vehicular access to 14 neighborhood clusters on which a majority of the 93 proposed homes will be built. Sidewalks will be provided on one side of these roads.

Under proposed conditions, stormwater runoff will be collected in a variety of Best Management Practices (BMPs) including infiltration trenches, deep sump catch basins, detention basins, and gravel wetlands for water quality and quantity control

1


measures to protect the surrounding natural resources from potential stormwater runoff impacts. The proposed stormwater management system is designed to mitigate the increase in impervious area on site. Low impact development stormwater management techniques have been incorporated into the site and are described herein.

A HydroCAD model, using TR-20 methodology, was developed to evaluate the existing and proposed drainage conditions within the Site; and the results of the analyses indicate that the development will not increase peak discharge rates for the 2-year, 10-year, 25-year, and 100-year 24 hour rain events. The existing and proposed conditions peak discharge values are presented in Table 3 at the end of this report.

The Stormwater Management Plan (the Plan), including BMPs for maintaining stormwater runoff quality, was prepared in accordance with the applicable local, state, and federal regulations. Details of the Plan are provided herein, including calculations and modeling reports.

Figure 1: Site Locus Map

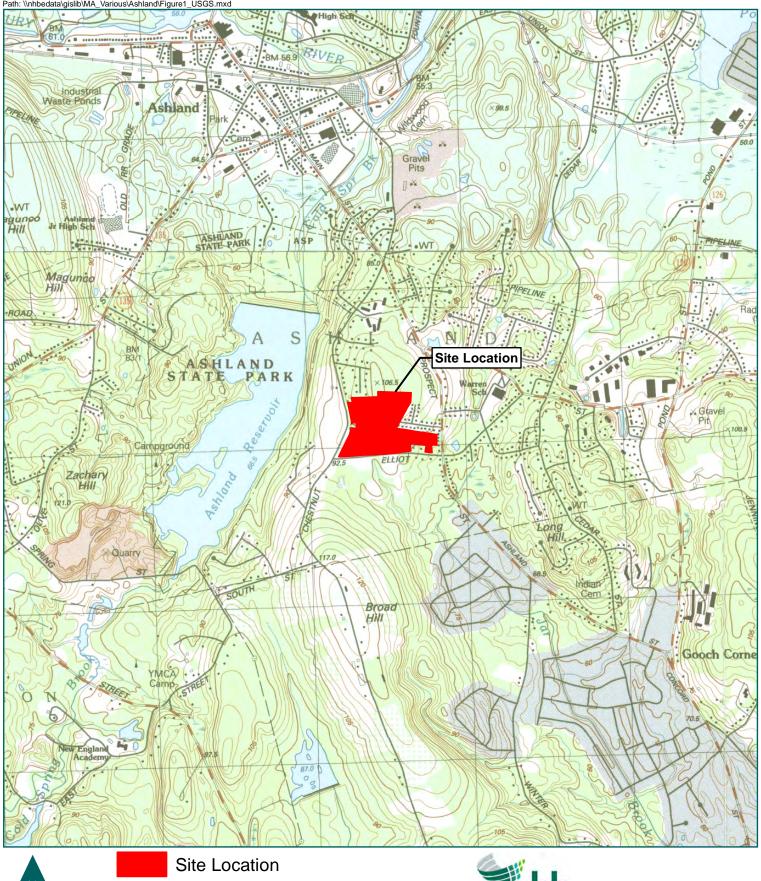


Figure 1 – USGS Locus Map The Lanterns at Warren Woods **466 Chestnut Street** Ashland, Massachusetts

2,000

4,000 Feet

2

Existing Conditions

Overview

The approximately 39 –acre Site is partially developed with the remains from three razed buildings including an unused paved parking lot, a former playground area, and a former sporting field; however, the majority of the Site is woodlands or wetlands with generally thick underbrush with the exception of a seven acre open grassed field and farmhouse in the southwestern portion of the site. The grassed field was used from time to time for sports and the farmhouse is presently used as the 4-H house.

Key natural resources in and around the property include three bordering vegetated wetlands, denoted as Wetland #1, #2 and #3 on the Plans and Figures. Wetland #1 hosts two vernal pools. The Town of Ashland enforces a 25' no disturbance buffer around designated wetlands and a 100' no disturbance buffer around vernal pools. The Site is not located in any outstanding water resource area or critical area. See Figure 2: Existing Drainage Figure for existing conditions information and the delineation of the existing sub-watersheds on the Site.

The project is not located within the 100-year flood plain as shown on the FEMA Map figure that includes a portion of the FEMA FIRM Panel 25027C0900E, dated July 4, 2011. This figure is included in Appendix A.

Overall, the site generally slopes from north to south as the northern portion rises as much as 60 feet higher than the southeast portion of the site at Wetland #2. There is a fairly prominent ridgeline that starts at a high point of elevation 348 and extends southerly to Wetland #1. This ridgeline causes stormwater runoff to flow toward Wetlands #1 and #3. The southwest corner of the site is comparably flatter than other areas on the property.

There are three main surface cover types: open grass fields, woodlands with thick underbrush, and unconnected impervious surfacing of pavement and buildings. The wetlands cover approximately 2.6 acres, the woods cover approximately 25.9 acres, grasses cover approximately 9.2 acres, and the impervious land covers approximately 1.3 acres. Wetlands #1 and #2 are wooded, while Wetland #3 is in the

open field with trees and shrubs only along the Eliot Street border. The impervious cover includes the abandoned parking lots, the existing house and sheds, and concrete walkways that lead to the demolished buildings from the parking lots.

According to the Natural Resources Conservation Service (NRCS), surface soils on the Site include Raynham silt loam, Ridgebury fine sandy loam, Rainbow silt loam, and Broadbrook very fine sandy loam. On-site soils are generally classified as Hydrologic Soil Groups (HSG) C/D and D. Detailed soils information, NRCS soils map and results of on-site subsurface investigations are included in Appendix A. This is consistent with the findings from the on-site geotechnical study, performed by Northeast Geotechnical, Inc., whose findings are included in Appendix A.

Hydrologic Information

For the existing conditions hydrologic analysis, the site was divided into fourteen drainage areas, described below, that contribute to seven design points where peak discharge rates were evaluated (see Figure 2).

Drainage Area EX-1A – 1B This 16.1 acre area largely consists of woodlands with thick underbrush, a large 1.6 acre bordering vegetated wetland (Wetland #1), grass fields, and previously developed land that contains an abandoned parking lot and trails. The runoff flows north to south to Wetland #1. This existing subwatershed area drains to Design Point 1 (DP-1).

Drainage Area EX-2A – 2C This 6.2 acre area largely consists of woodlands with thick underbrush, a 0.6 acre bordering vegetated wetland (Wetland #2), a few buildings and driveways, and grassed fields. This drainage area collects overland runoff from lands offsite, including portions of the neighboring development Prospect Heights. The runoff flows southeast to Wetland #2. This existing subwatershed area drains to Design Point 2 (DP-2).

Drainage Area EX-3A – 3B This 6.1 acre area largely consists of woodlands with thick underbrush, a 0.2 acre bordering vegetated wetland (Wetland #3), a few buildings and driveways, grassed fields, and previously developed land that contains an abandoned parking lot and trails. This drainage area collects overland runoff from lands offsite, including portions of the neighboring abutters along Chestnut Street. The runoff flows south to Wetland #3. This This existing subwatershed area drains to Design Point 3 (DP-3).

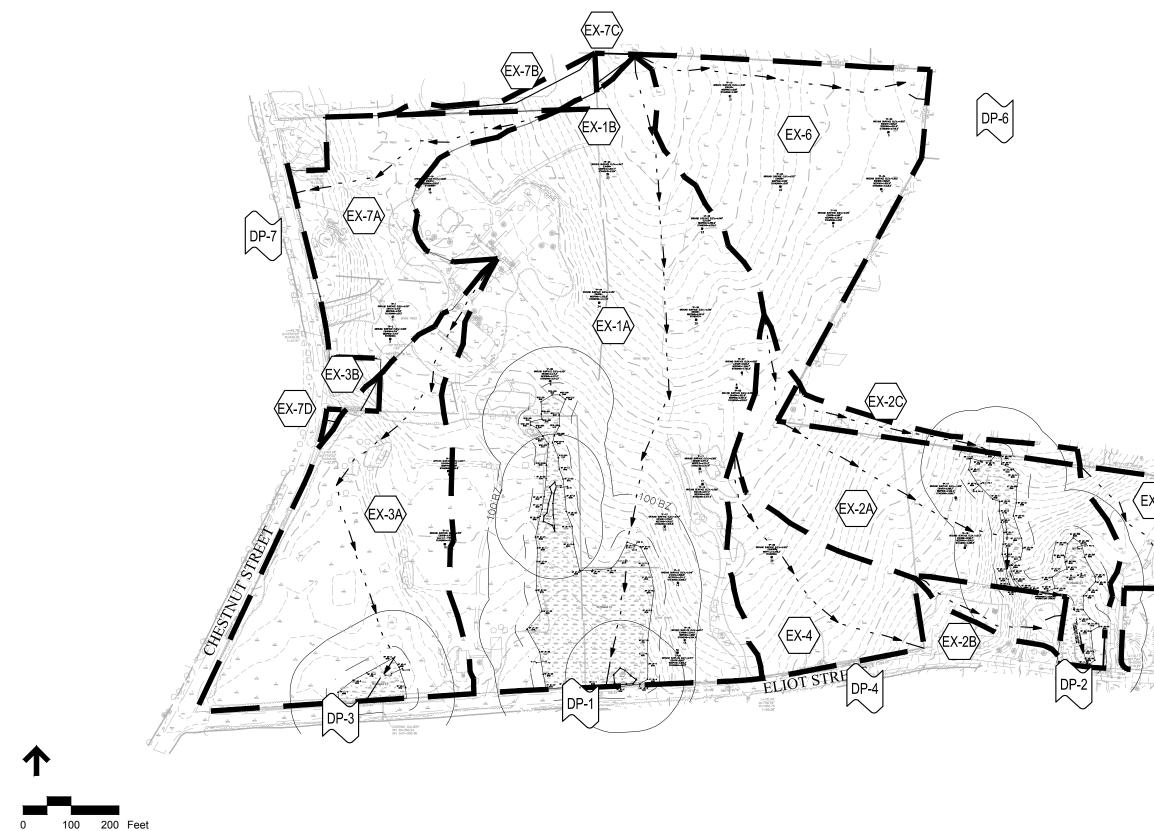
Drainage Area EX-4 This 6.1 acre area largely consists of woodlands with thick underbrush. The runoff from this area flows offsite to the existing drainage infrastructure on Eliot Street. This existing subwatershed area drains to Design Point 4 (DP-4).

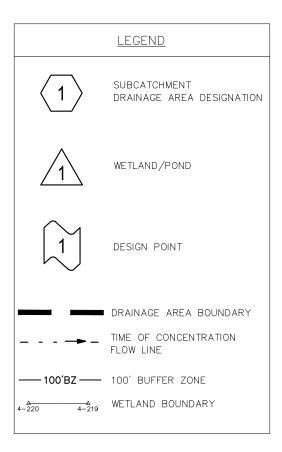
Drainage Area EX-5 This 6.1 acre area largely consists of woodlands with thick underbrush, a shed, some paved surfaces, and a dirt trail. The runoff from this area flows offsite onto abutting properties southeast of the site. This existing subwatershed area drains to Design Point 5 (DP-5).

Drainage Area EX-6 This 5.2 acre area largely consists of woodlands with thick underbrush. The runoff from this area flows east offsite to the neighboring Prospect Heights development. This existing subwatershed area drains to Design Point 6 (DP-6).

Drainage Area EX-7A – 7D This 16.1 acre area largely consists of woodlands with thick underbrush, grass fields and previously developed land that contains an abandoned parking lot and trails. The runoff flows westward offsite to Chestnut Street. This existing subwatershed area drains to Design Point 7 (DP-7).

Table 1 summarizes the key hydrologic parameters for each drainage area used in the existing conditions analysis.


Description (Drainage Area #)	Discharge Location	Design Point	Area (acres)	Curve Number	Time of Concentration (min)
EX-1A	Wetland #1	DP-1	16.1	79	46.6
EX-1B	Wetland #1	DP-1	0.03	77	15.4
EX-2A	Wetland #2	DP-2	5.0	77	37.1
EX-2B	Wetland #2	DP-2	0.6	80	20.1
EX-2C	Wetland #2	DP-2	0.5	80	7.7
EX-3A	Wetland #3	DP-3	6.0	80	28.3
EX-3B	Wetland #3	DP-3	0.06	79	10.5
EX-4	Eliot Street	DP-4	2.3	77	32.5
EX-5	Offsite (Southeast)	DP-5	1.0	78	16.1
EX-6	Offsite (Northeast)	DP-6	5.2	77	31.1
EX-7A	Chestnut Street	DP-7	3.2	79	23.8
EX-7B	Chestnut Street	DP-7	0.4	78	19.8
EX-7C	Chestnut Street	DP-7	0.1	77	18.3
EX-7D	Chestnut Street	DP-7	0.04	77	15.4


Table 1 Existing Conditions Hydrologic Data

6

Figure 2: Existing Drainage Areas

DP-5

Vanasse Hangen Brustlin, Inc.

Figure 2

July 2015

Existing Conditions Drainage Areas The Lanterns at Warren Woods 466 Chestnut Street Ashland, Massachusetts

3

Proposed Conditions

Overview

The Project, construction of 93 homes for a Senior Residential Community and supporting infrastructure, was designed to comply with the Massachusetts Stormwater Management Policy, the Town of Ashland Stormwater Management Regulations adopted on May 28, 2008, and the current Town of Ashland Subdivision of Land Regulations. Existing drainage and grading patterns were maintained to the maximum extent possible. Low impact development stormwater management techniques have been incorporated into the design. These practices are focused on reducing peak runoff rates and treating for water quality, particularly total phosphorous and total nitrogen removal. The project will disturb little more than half of the property including removal of the existing pavements and utility infrastructure remaining from prior development, while preserving the remaining as open space. Two large open space areas of a combined 13.9 acres will be created adjacent to the Ashland owned Warren Woods. A 30' buffer along the perimeter of the site denotes the existing landscape that is protected and cannot be developed per the zoning by-laws. New informal hedgerows will be planted with native shrubs, trees and field grasses next to the maintained existing fieldstone farm walls to maintain the existing New England farm aesthetic.

The proposed development has been designed to collect nearly all surface water runoff generated within the development footprint into four stormwater management basins. Three of the basins are designed for detention up to the 100 year storm and additionally contain gravel wetlands and sediment forebays for water quality treatment purposes. The forth basin is designed for storage only, and will collect runoff from several nearby roofs. Although not shown on the site plans, runoff from the roofs will be collected in roof drain collection systems connected to the closed pipe drainage system in the new streets. The roof drain system will be constructed of perforated drain pipe surrounded by crushed stone, which will function as an infiltration trench for groundwater recharge, as well as for conveyance. Roadway runoff will be collected traditionally in a multiple series of catch basins with 4 foot deep sumps and oil/debris traps.

8

The collection system has been designed to support the plan for a phased construction build-out of the homes and infrastructure.

Pursuant to Chapter 343 Section 7.6.10.3 of the Town of Ashland Stormwater Management Regulations, Table 2 provides a summary of the areas and percentages of various cover types found throughout the Site for both existing and proposed conditions.

Cover Type	Existing (Conditions	Proposed	Conditions
	Square Feet	Percentage	Square Feet	Percentage
Wetlands	112,091	6.5%	112,091	6.5%
Impervious Cover	55,260	3.2%	408,371	23.8%
Grass	401,921	24.6%	847,908	50.6%
Wooded	1,127,975	65.7%	328,877	19.1%
Total	1,697,247	100%	1,697,247	100%

Table 2 Existing and Proposed Ground Cover Areas

Details of the stormwater management system features are as follows:

Water Quantity and Quality Control

Site Layout

The proposed development on the site has been configured to avoid wetland impacts, to maximize open space, to maintain the natural woods and land cover to the greatest extent possible. The Project and associated stormwater management system has been designed in response to the groundwater conditions, soil conditions and the natural topography. Home elevations and grading with neighborhood clusters have been established such that they generally follow the natural lay of the land; they minimize limits of disturbance at the perimeters; earthwork cuts and fills are balanced; and homes and streets are sufficiently above groundwater. Stormwater will be managed in several smaller basins rather than in one large centralized basin.

Source Control

A comprehensive source control program will be implemented at the site, which includes regular pavement sweeping and catch basin cleaning. Further discussion of the site maintenance is included in the Stormwater Management Regulations Section 5. Stormwater runoff from lawns and yards drain toward the streets and will be collected into the stormwater management system. Manicured lawn areas are very small around each home minimizing the overall use of fertilizers and pesticides. Details of the ongoing Stormwater Management Practices for the developed site are included in the Stormwater Management System Long Term Operation and Maintenance Plan, attached in Appendix C.

Snow Management

Snow will be managed under a maintenance contract between the Home Owner's Association and a local service provider. Snow will typically be piled alongside the roadways and at the ends of common driveways. Snow will not be placed in, or directly adjacent to wetland resource areas or in proposed stormwater basins. The snow stored next to the roadways and on the residential properties will melt and enter the stormwater management system where it will receive proper treatment.

Catch Basins with Sumps and Oil/debris Traps

Catch basins at the site will be constructed with sumps (minimum 4-feet) and oil/debris traps to prevent the discharge of sediments and floating contaminants. Catch basins will be cleaned twice per year.

Surface Detention Basins

Detention Basin 1 is a surface detention basin with a low flow outlet to a stone dissipation pad that allows overflow to undisturbed woods and a flat, broad swale that runs roughly parallel to a fieldstone wall on the property line common with the abutting properties on Bartlett Road and Prospect Heights.

Gravel Wetlands

Gravel Wetland 1-3 are constructed gravel wetlands with a sediment forebay and two treatment cells per gravel wetland. Each gravel wetland contains an Outlet Control Structure containing a weir with two orifices that has been designed to handle overflow from the 2-year, 10-year, 25-year, and the 100-year storm to the three on-site bordering vegetated wetlands. Each gravel wetlands also has overflow stone weirs designed to handle overflow stormwater from the 2-year, 10-year, 25-

year, and the 100-year storms. The gravel wetlands allow for proper total suspended solids, total phosphorous and total nitrogen removal.

Roof Drain Infiltration Trenches

Infiltration Trenches are a network of gently sloped perforated pipes surrounded by stone that will collect stormwater runoff from the rooftops. The perforated pipes will connect directly to the surface detention basin or to the closed drainage network. Although infiltration will be somewhat limiting due to the poor soils classification and groundwater conditions, these infiltration trenches do create real opportunity to infiltrate and recharge clean water prior to discharging into the stormwater basins.

Hydrologic Information

For the proposed conditions hydrologic analysis, the site was divided into seventeen drainage areas (see Figure 3). These areas discharge to the seven design points where peak discharge rates were evaluated for both existing and proposed conditions.

Drainage Areas PR-11 - 14 – This 20.7 acre area is comprised of building rooftop, roadways and drives, landscaping, and woodlands. The runoff from PR-13 will first flow into catch basins with sumps and oil/debris traps before discharging to a gravel wetland (Gravel Wetland #1) with an overflow and outlet control structure to Wetland #1. The runoff from PR-11 and PR-14 will first flow into catch basins with sumps and oil/debris traps before discharging to a gravel wetland (Gravel Wetland #3) with an overflow and outlet control structure to Wetland #3) with an overflow and outlet control structure to Wetland #1. Drainage Area PR-12 consists of an open field with some woodlands and an existing building with drive. The runoff from PR-16 will overflow to Wetland #1 as it does under existing conditions.

Drainage Area PR-21 - 24 – This 8.1 acre area will be comprised of building rooftop, roadways and drives, landscaping, and woodland. The runoff from PR-21 will first flow into catch basins with sumps and oil/debris traps before discharging to a gravel wetland (Gravel Wetland #2) with an overflow and outlet control structure to Wetland #2. Drainage Areas PR-22 – 24 will remain vegetated and will overflow to Wetland #2, as they currently do under existing conditions.

Drainage Area PR-31 - 32 – This 5.2 acre area will remain vegetated and will overflow to Wetland #2.

Drainage Area PR-41 – This 0.8 acre area will remain mostly vegetated, with the addition of a gravel drive and a 1,000 SF of paved roadway and will overflow offsite

towards the existing drainage infrastructure on Eliot Street, as it currently does under existing conditions.

Drainage Area PR-51 – This 1.0 acre area will remain vegetated and will overflow offsite to the abutting properties.

<u>Drainage Area PR-61 – 62</u> – This 2.3 acre area will be comprised of building rooftop and landscaping and existing woodlands. The runoff from PR-62 will be collected by roof drains and area drains before discharging to a surface detention basin (Detention Basin #1) with a culvert that overflow the collected runoff offsite towards the neighboring development called Prospect Heights. The runoff from PR-61 will remain vegetated and will overflow to the abutting properties in Prospect Heights.

<u>Drainage Area PR-71 – 73</u> – This 2.5 acre area will be comprised of the entrance drive, landscaping and existing woodlands. The runoff will flow overland towards Chestnut Street, as it currently does under existing conditions.

Table 3 summarizes the key hydrologic parameters for each drainage area used in the proposed conditions analyses.

Table 3 Proposed Conditions Hydrologic Data

Description (Drainage Area #)	Discharge Location	Design Point	Area (acres)	Curve Number	Time of Concentration (min)
PR-11	Wetland #1	DP-1	10.9	88	6.7
PR-12	Wetland #1	DP-1	6.2	79	26.3
PR-13	Wetland #1	DP-1	3.5	88	14.8
PR-14	Wetland #1	DP-1	0.03	80	15.4
PR-21	Wetland #2	DP-2	3.6	90	7.4
PR-22	Wetland #2	DP-2	0.6	79	20.1
PR-23	Wetland #2	DP-2	0.5	80	7.7
PR-24	Wetland #2	DP-2	3.3	78	32.1
PR-31	Wetland #3	DP-3	5.2	80	32.6
PR-32	Wetland #3	DP-3	0.06	79	10.5
PR-41	Eliot Street	DP-4	0.8	80	8.4
PR-51	Offsite Southeast	DP-5	1.0	78	16.1
PR-61	Prospect Heights	DP-6	1.4	78	26.2
PR-62	Prospect Heights	DP-6	0.9	89	12.2
PR-71	Chestnut Street	DP-7	2.1	79	20.7
PR-72	Chestnut Street	DP-7	0.4	79	19.8
PR-73	Chestnut Street	DP-7	0.04	77	15.4

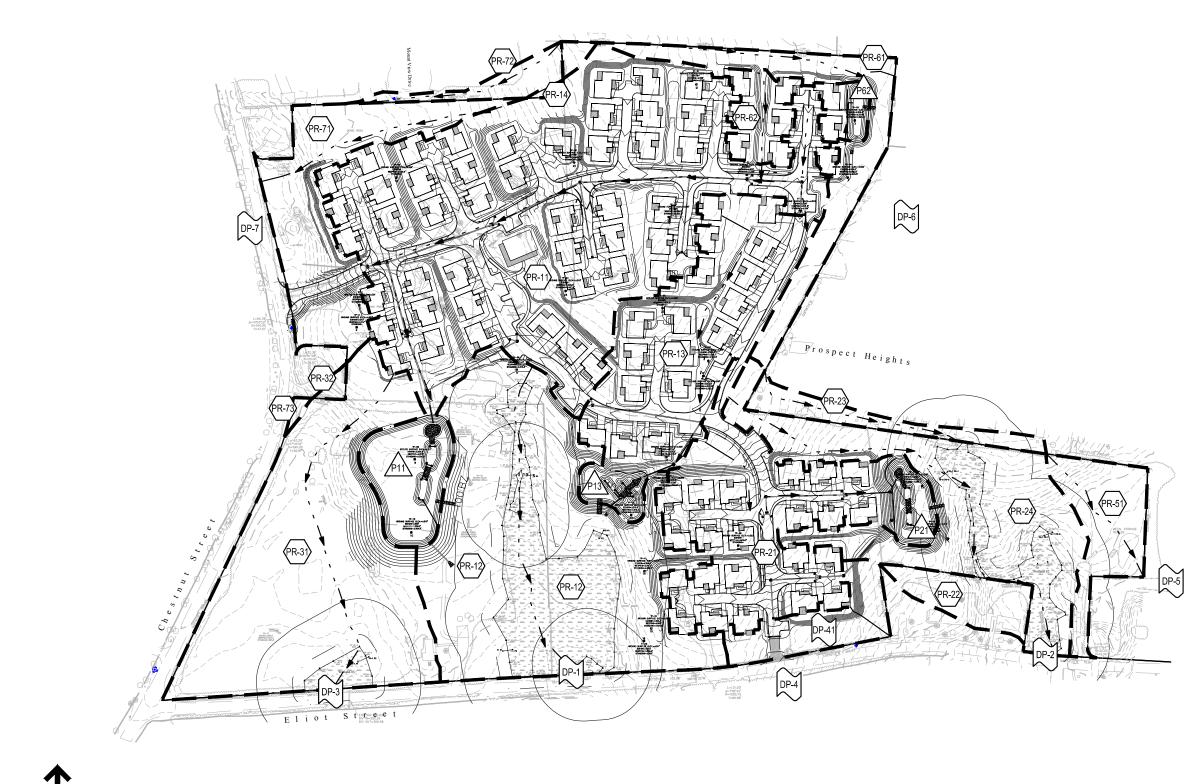
The site complies with the total suspended solids removal requirement of the Stormwater Management Policy. The proposed stormwater management system has been designed to treat the half inch Water Quality Volume, and will provide 85% Total Suspended Solids (TSS) removal. The calculated TSS removal rates for discharges from the site are included in Appendix C.

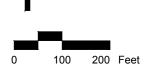
The stormwater management system also meets the 40% total phosphorous (TP) and 30% total nitrogen (TN) removal rates as required per the Town of Ashland Stormwater Management Regulations. As shown in the United States Environmental Protection Agency (US EPA) BMP Performance Curve for a Gravel Wetland for a Medium Density Residential use, the required runoff depth required to treat 40% TP removal is about 0.37 inches. The three gravel wetlands are sized to treat 0.5 inches

of runoff, therefore they are treating the necessary amount of stormwater runoff to remove 40% TP. Massachusetts Department of Environmental Protection (MassDEP) stormwater regulations make reference to the University of New Hampshire's (UNH) gravel wetland designs and sites their specifications for water quality. According to the 2012 University of New Hampshire Stormwater Center Biennial Report, a gravel wetland, if properly designed to treat the necessary water quality runoff volume, will remove 50% TN annually. Provided that the proposed gravel wetlands are constructed properly and maintained regularly, the Project will provide the required 40% TP and 30% TN removal. The EPA BMP Performance Curve and the gravel wetland portion of the UNH Biennial report are included in Appendix C.

Northeast Geotechnical, Inc. performed a test pit analysis for the Project on April 7, 2015, attached in Appendix A. Estimated seasonal high groundwater (ESHGW) is assumed to be the "stabilized" and not "weeping" water that was encountered during the test pit exploration due to the wet and weather conditions at the time of the test pit exploration. This "stabilized" groundwater elevations were used for the proposed stormwater management design, per the recommendations of Northeast Geotechnical, Inc. Pursuant to Chapter 343 Section 7.6.10.8 of the Town of Ashland Stormwater Management Regulations, the locations and distances from the proposed ground to the estimated seasonal high groundwater are listed in Table 4.

14


Table 4 Proposed Surface and Groundwater Elevations (Feet)


Test Pit	Existing Ground Elevation	ESHGW	Existing Separation to ESGHW (ft)	Proposed Ground Elevation	Proposed Separation to ESHGW (ft)
TP-1	321	313	8	322	9
TP-2	320	313	7	320	7
TP-3	333	326	7	332	6
TP-4	332	326	6	332	6
TP-5	333	326	7	334	8
TP-6	321	315	6	321	6
TP-7	329	324	5	328	4
TP-8	329	324	5	328	4
TP-9	311	305	6	312	4
TP-10	310	305	5	312	7
TP-11	325	318	7	328	10
TP-12	325	318	7	323	5
TP-13	317	313	4	317	4
TP-14	316	309	7	316	7
TP-15	312	305	7	312	7
TP-16	311	303	8	311	8
TP-17	305	299	6	303	4
TP-18	303	299	4	305	6

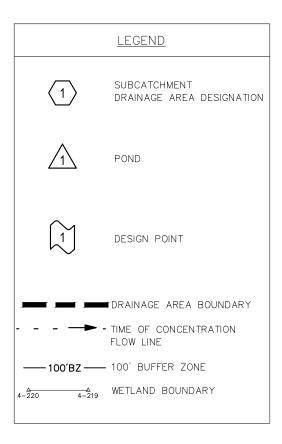

15

Figure 3: Proposed Drainage Areas

Vanasse Hangen Brustlin, Inc.

Figure 3 July 2015 Proposed Conditions Drainage Areas The Lanterns at Warren Woods 466 Chestnut Street Ashland, Massachusetts

4

Hydrologic/Hydraulic Analysis

Hydrologic Analysis

The rainfall-runoff response of the Site under existing and proposed conditions was evaluated for storm events with recurrence intervals of 2, 10, 25 and 100-years. Rainfall volumes used for this analysis were based on the Natural Resources Conservation Service (NRCS) Type III, 24-hour storm event for Middlesex County; they were 3.1, 4.5, 5.3, and 6.5 inches, respectively. Runoff coefficients for the preand post-development conditions, as previously shown in Tables 1 and 2 respectively, were determined using NRCS Technical Release 55 (TR-55) methodology as provided in HydroCAD.

Drainage areas used in the analyses were described in previous sections and shown on Figures 2 and 3. The HydroCAD model is based on the NRCS Technical Release 20 (TR-20) Model for Project Formulation Hydrology. Detailed printouts of the HydroCAD analyses are included in Appendix H. Table 5 presents a summary of the existing and proposed conditions peak discharge rates. Table 6 summarizes the existing and proposed conditions runoff volumes, as per the Chapter 343 Section 7.6.16.13.c.9 of the Town of Ashland Stormwater Management Regulations.

Table 5 Peak Discharge Rates (cfs*)

Design Point	2-year	10-year	25-year	100-year
Design Point 1: Wetland #1				
Existing	10.6	20.3	26.2	35.3
Proposed	9.7	16.0	22.2	32.2
Design Point 2: Wetland #2				
Existing	3.9	7.8	10.2	13.8
Proposed	3.9	7.5	9.5	13.7
Design Point 3: Wetland #3				
Existing	5.4	10.1	13.0	17.4
Proposed	4.3	8.2	10.5	14.0
Design Point 4: Eliot Street				
Existing	1.6	3.2	4.2	5.8
Proposed	1.1	2.0	2.6	3.5
Design Point 5: Offsite Southeast				
Existing	1.0	1.9	2.5	3.4
Proposed	1.0	1.9	2.5	3.4
Design Point 6: Prospect Heights				
Existing	3.8	7.5	9.8	13.4
Proposed	2.4	4.3	5.4	7.1
Design Point 7: Chestnut Street				
Existing	3.3	6.4	8.3	11.2
Proposed	2.4	4.6	6.0	8.1

* Expressed in cubic feet per second

The results of the analyses indicate that there will be no increase in peak discharge rates between the pre- and post-development conditions for the 2, 10, 25, and 100-year storm events.

Table 6 Stormwater Volume Analysis (ac-ft)

Design Point	2-year	10-year	25-year	100-year
Design Point 1: Wetland #1				
Existing	1.63	3.06	3.94	5.32
Proposed	2.68	4.81	6.08	8.02
Design Point 2: Wetland #2				
Existing	0.67	1.25	1.60	2.15
Proposed	0.89	1.70	2.18	2.92
Design Point 3: Wetland #3				
Existing	0.60	1.16	1.51	2.05
Proposed	0.58	1.07	1.38	1.85
Design Point 4: Eliot Street				
Existing	0.22	0.42	0.55	0.75
Proposed	0.08	0.16	0.20	0.27
Design Point 5: Offsite Southeast				
Existing	0.10	0.19	0.24	0.33
Proposed	0.10	0.19	0.24	0.33
Design Point 6: Prospect Heights				
Existing	0.49	0.95	1.24	1.69
Proposed	0.30	0.52	0.66	0.87
Design Point 7: Chestnut Street				
Existing	0.69	1.30	1.68	2.26
Proposed	0.26	0.50	0.64	0.86

The results of the water volume analysis shows that less runoff volume will be directed offsite to the surrounding streets and neighborhoods for each storm event. Therefore, there are no negative impacts to the abutting properties and offsite features in terms of stormwater runoff volume.

Hydraulic Analysis

The closed drainage system was designed for the 25 –year storm event, in accordance with the Town of Ashland Stormwater Management Regulations.

Drainage pipes were sized using Manning's Equation for full-flow capacity and the Rational Method. Pipe sizing calculations are included in Appendix D of this report.

19

5

Stormwater Management Regulations

The purpose of the Stormwater Management Plan (the Plan) is to provide long-term protection of natural resources in and around the Site. This is achieved by implementing water quality and quantity control measures designed to decrease the amount of pollutants discharged from the Site, increase the quality of stormwater recharged on the Site, and control discharge rates.

The following sections describe the regulations pertinent to stormwater management and the specific components of the Plan to be implemented.

Stormwater Regulations and Permitting

The following stormwater related regulations and guidelines apply to the proposed site development:

- Massachusetts State Stormwater Management Regulations and Performance Standards included in the Stormwater Handbook, (Department of Environmental Protection February 2008).
- Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) Stormwater Permit for Construction Activities disturbing greater than one acre (EPA, Federal Register, December 8, 1999 and amendments)
- Town of Ashland Chapter 343. Stormwater Management (Conservation Commission of the Town of Ashland, May 28, 2008)
- Town of Ashland Chapter 344 Subdivision of Land (Planning Board of the Town of Ashland, April 29, 1999 and amendments)

Compliance with these regulations is described in the following sections.

Stormwater Management Standards and Guidelines

The methods for compliance with the ten stormwater performance standards developed by the MA DEP are summarized below.

1. No new stormwater conveyances may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The Project has been designed to comply with Standard 1.

The Best Management Practices (BMPs) included in the proposed stormwater management system have been designed in accordance with the Massachusetts Stormwater Handbook. Supporting information and computations demonstrating that no new untreated discharges will result from the Project are presented through compliance with Standards 4 through 6.

All proposed Project stormwater outlets have been designed to not cause erosion or scour to wetlands or neighboring properties. Outlets from the closed drainage systems have been designed with flared end sections and stone protection to dissipate discharge velocities. Overflows from BMPs have been designed with stone material to protect down gradient areas from erosion.

Computations and supporting information for the sizing and selection of materials used to protect the downgradient surface from scouring and erosion are included in Appendix D.

2. Stormwater management systems shall be designed so that postdevelopment peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

The Project has been designed to comply with Standard 2.

The rainfall runoff from the Site under existing and proposed conditions was analyzed for the 2, 10, 25, and 100-year storm events. Rainfall volumes used for this analysis were based on the Natural Resources Conservation Service (NRCS) Type III, 24-hour storm event for Middlesex County. Runoff coefficients for the existing and proposed conditions, as previously shown in Tables 1 and 3, were determined using the NRCS Technical Release 55 (TR-55) methodology as provided in HydroCAD. The HydroCAD model is based on the NRCS Technical Release 20 (TR-20) Model for Project

Formulation Hydrology. The results of the analysis, as demonstrated in Tables 3 and 4, show that there is no increase in peak discharge rates between the existing and proposed conditions at any of the discharge points. All proposed peak discharge rates either meet or are less than existing peak discharge rates. Computations and supporting information regarding the hydrologic modeling are included in Appendix G.

3. Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

This Massachusetts Stormwater Handbook notes that this standard applies *to the maximum extent practicable* for sites comprised solely of C and D soils. The soils on the Site are glacial tills classified as HSG C/D and D and the Project has been designed to comply with Standard 3 to the maximum extent practicable. This is due largely to the proposed building program. The plan provides 50% open space by tightly clustering homes and minimizing the lawn area around each home; and reduces pavement area by reducing roadway pavement widths below those prescribed under zoning.

Additionally, the project proposes to collect roof runoff in a network of perforated pipes and infiltration trenches. The infiltration trenches provide the best opportunity to recharge the greatest volume of water because these will capture the most frequent and smaller storm events.

- 4. Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This Standard is met when:
 - Suitable practices for source control and pollution prevention are identified in a long- term pollution prevention plan, and thereafter are implemented and maintained;
 - > Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
 - > Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

The Project has been designed to comply with Standard 4.

The proposed stormwater management system contains BMPs that have been designed to provide 80% TSS removal of stormwater runoff from proposed impervious surfaces. The treatments of impervious paved surfaces is treated in following type of treatment trains.

- Stormwater runoff from the site roads and driveways is collected in catch basins with deep sumps and oil/debris traps before discharging into sediment forebays sized to treat the first 0.1 inches of runoff. Total 80% TSS removal is provided in the gravel wetlands. Runoff from the impervious paved surfaces is divided between the three gravel wetlands.
- 5. For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The Project is not considered a LUHPPL.

6. Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply and stormwater discharges near or to any other critical area require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area, if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to Zone I or Zone A are prohibited unless essential to the operation of a public

water supply.

The Project is not located in or near a critical area. No stormwater from the Project will be discharged to or near to a critical area.

7. A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The Project as a whole is not treated as a redevelopment. The Project has been designed to comply with the Stormwater Management Standards. Refer to each Standard directly for applicable computations and supporting information demonstrating compliance with each.

8. A plan to control construction related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

> Recommended erosion and sedimentation control practices are included in Appendix E and will be finalized as part of the Notice of Intent process. A maintenance checklist recommended for evaluating erosion control BMPs is also included.

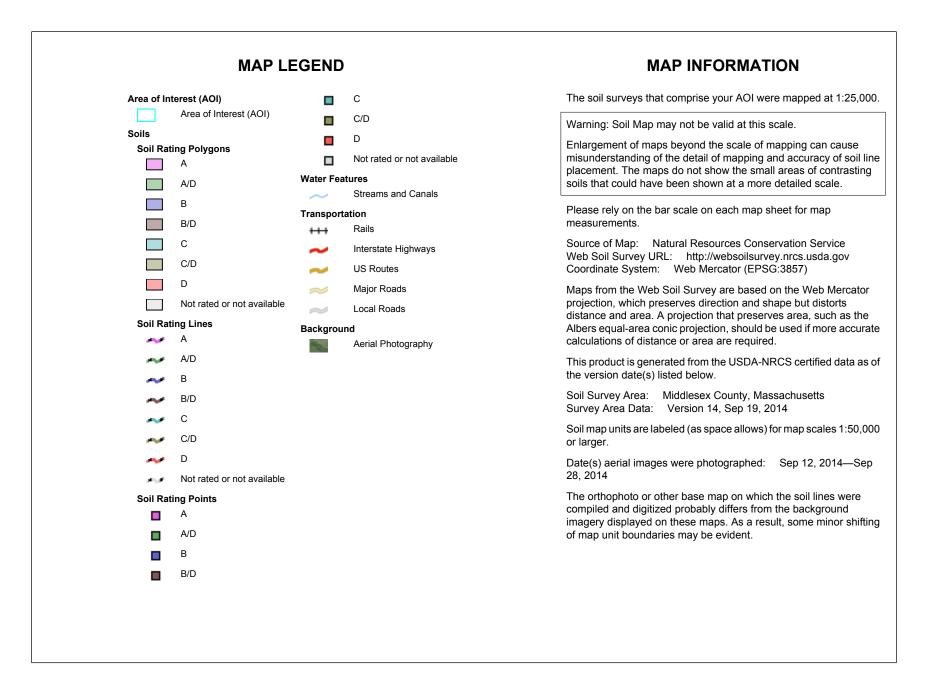
9. A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed

Recommended practices for operating and maintaining long term stormwater BMPs is included in Appendix C. A recommended checklist for maintenance inspections and follow up is also included.

10. All illicit discharges to the stormwater management system are prohibited.

Storm drainage structures remaining from previous development which are part of the redevelopment area will be removed. The design plans submitted with this report have been designed so that the components included therein are in full compliance with current standards. The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges.

Federal NPDES Construction-Related General Stormwater Permits


The proposed project will result in the disturbance of more than one acre of land and thus requires the preparation and implementation of a Stormwater Pollution Prevention Plan (SWPPP) by the **site contractor** and **owner** in accordance with the Environmental Protection Agency's (EPA's) National Pollutant Discharge Elimination System (NPDES) General Permit Program for Stormwater Discharges from Construction Sites. The SWPPP is not included in this report.

Appendix A: NRCS Soil Survey Information On-Site Subsurface Investigation FEMA Floodway Map

USDA Natural Resources Conservation Service

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — Middlesex County, Massachusetts (MA017)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
30B	Raynham silt loam, 0 to 5 percent slopes	C/D	0.2	0.4%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	1.8	4.2%
335B	Rainbow silt loam, 3 to 8 percent slopes	C/D	11.6	26.9%
340B	Broadbrook very fine sandy loam, 3 to 8 percent slopes	D	12.5	29.0%
341B	Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony	D	17.0	39.6%
Totals for Area of Interest			43.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

GEOTECHNICAL ENGINEERING STUDIES PROPOSED RESIDENTIAL DEVELOPMENT 466 CHESTNUT STREET ASHLAND, MA

Prepared For: The Green Company 46 Glen Avenue Newton, MA 02459

Prepared By: Northeast Geotechnical, Inc. 166 Raymond Hall Drive North Attleborough, MA 02760

> File No. O189.01 April 24, 2015

April 24, 2015

Project No. O189.01

Mr. Rick Maranhas Executive Vice President Construction The Green Company 46 Glen Avenue Newton, MA 02459

SUBJECT: Geotechnical Engineering Studies Proposed Residential Development 466 Chestnut Street Ashland, MA

Dear Rick:

Northeast Geotechnical, Inc. is pleased to present the results of our geotechnical engineering studies performed in support of the referenced project. The Green Company is considering developing a 92-home cluster type development project on a $40\pm$ acre site. The project will be developed over a few years.

The objective of our geotechnical engineering services has been to develop geotechnical engineering recommendations for use in design and construction of the project. VHB indicated areas of the site where additional subsurface explorations are needed to support their storm water management design of the site. Based on the results of test pits that we coordinated and observed, we are providing information for VHB's use in support of their storm water management design.

We also coordinated and observed test pits within proposed cut areas of the site to assess the condition of possible cut soils for reuse on the project. This report has been prepared in accordance with our proposal to you dated March 26, 2015.

The attached report contains a summary of our studies and presents our preliminary conclusions and recommendations for use in design and construction of the proposed project. Please feel free to contact Glenn Olson at 508-598-3510 should you have any questions.

Sincerely, Northeast Geotechnical, Inc.

Glenn A. Olson, P.E. Principal Engineer

With Ull. J.C.M.

Mark M. Zambernardi, P.E. Principal Engineer

TABLE OF CONTENTS

1.0	INTRODUCTION AND PROPOSED PROJECT DESCRIPTION	.1
2.0	SUBSURFACE EXPLORATIONS	2
3.0	SUBSURFACE CONDITIONS	.2
4.0	LABORATORY TESTING	.4
5.0	CONCLUSIONS AND RECOMMENDATIONS	.4
	5.1 Site Design	.4
	5.2 Earthwork	.4
	5.21 Building Area Earthwork	5
	5.22Pavement Area Earthwork	6
	5.3 Foundations	6
	5.4 Foundation Underdrains	.7
	5.5 Floor Slab-On-Grade Support	8
	5.6 Pavement Support	8
6.0	ADDITIONAL STUDIES AND SERVICES	8

APPENDICES

A.	Limitations	and Service Constraints	

- B. Soil Evaluator Test Pit Logs (TP-1 through TP-18)
- C. Test Pit Logs (TP-19 through TP-26)
- D. Laboratory Test Results

1.0 INTRODUCTION AND PROPOSED PROJECT DESCRIPTION

This report summarizes Northeast Geotechnical's engineering studies performed in support of a proposed residential development at 466 Chestnut Street in Ashland, MA. This report is considered a supplement to our Preliminary Geotechnical Engineering Studies report dated March 12, 2015 (the Preliminary Report).

The Preliminary Report was based on our review of a report prepared by Schofield Brothers of New England, Inc. (Schofield) dated February 18, 2015. Schofield's report contains a summary of encountered soil and groundwater conditions at the site and provides an opinion about estimated seasonal high groundwater levels based on conditions observed in the test pits which they observed.

This report is based on information provided by The Green Company as well as the results of a subsurface exploration program we observed in April, 2015 and an associated soils laboratory testing program.

The Green Company is proposing a 92-home cluster type development project on a $40\pm$ acre site. The Green Company provided a plan titled "Conceptual Road Grades", dated March 5, 2015 which was prepared by Vanasse, Hangen, Brustlin, Inc. (VHB). The plan shows proposed layout and grading of proposed roadways along with layout of proposed houses with preliminary finish floor elevations. Existing ground surface grading is also shown on the plan.

The Green Company's proposed homes are presently being designed using normal shallow spread footing foundations with a floor slab on grade. No basements are proposed at this time. We also understand that the project will be constructed over a few years and that earthwork will proceed at most times of year. The exception will be that cuts and fills may not be performed during the winter. However, there may be floor slabs-on-grade exposed to freezing temperatures as the houses are framed.

Northeast Geotechnical, Inc. utilized VHB's plan to gain insight into where the proposed cuts and fills are proposed to accomplish the proposed finish grades for the project. It appears that the majority of the cuts are concentrated in the middle to northeast portion of the site in the areas of proposed Drives 1 through 7 off of proposed Road A, and in the area of proposed Drives 8, 10 and 11 to the north of proposed Road B. Also, it appears that some cuts will be performed in the area of proposed Drives 13 and 15 to the west of proposed Road B in the southeast portion of the site.

Mass cuts and fills appear to range up to approximately $10\pm$ feet below and $15\pm$ feet above existing ground surfaces respectively to accomplish the roadway grading concept and to reach finish floor levels of the proposed houses.

VHB also provided a plan titled "Proposed Test Pit Locations", Figure 1, dated March 2015 for use in this phase of our studies. The referenced plan showed eighteen proposed test pit locations within proposed storm water management areas. VHB requested that the test pits be performed in a manner to develop an opinion regarding: seasonal high groundwater, depth to current groundwater, soil textural classifications, and the presence of bedrock (if encountered). Northeast Geotechnical, Inc. proposed eight additional test pit locations primarily within proposed cut sections of the site to assess the composition of materials to be potentially reused as structural fill on the project site.

This report is subject to the Limitations and Service Constraints attached as Appendix A to this report.

2.0 SUBSURFACE EXPLORATIONS

A subsurface exploration program was observed by Northeast Geotechnical, Inc. personnel at the site on April 6 through 9, 2015. The subsurface exploration program consisted of twenty six test pits. The test pits were excavated by Silversmith Excavating Company, Inc. using a Caterpillar model 315DL tracked excavator. It should be noted that the test pits were excavated following several days of snow melt.

Schofield survey staked the proposed test pit locations at the site prior to our arrival with the excavator. Test pits were generally excavated at the staked locations as shown on the attached Exploration Location Plan.

The soils encountered in the test pits were visually described by Northeast Geotechnical, Inc. personnel. Northeast Geotechnical, Inc. personnel used U.S.D.A. soil descriptions as indicated on the soil evaluator test pit logs for the eighteen test pits (TP-1 through TP-18) within proposed storm water management areas designated by VHB. Logs of the soil evaluator logged test pits are presented in Appendix B. The remaining test pits, performed primarily within proposed cut areas of the site (TP-19 through TP-26), were described by Northeast Geotechnical, Inc. personnel using Burmister soil descriptions and are presented in Appendix C.

3.0 SUBSURFACE CONDITIONS

The general subsurface conditions consist of a layer of root mat/topsoil overlying subsoil, in turn overlying an intermittent layer of silt and fine sand followed by dense, silty glacial till soils to the depths explored which were up to $10\pm$ feet below the existing ground surface. Groundwater was encountered at the time of the subsurface explorations at depths of approximately $5.5\pm$ to $8\pm$ feet below existing ground surface.

The root mat/topsoil, described as the O and A horizons with a soil texture ranging from silt to a silt loam, appears to be generally $6\pm$ to $18\pm$ inches thick. Subsoil, described as the B horizon with a soil texture ranging from silt, to silt loam, to loam encountered below the root mat/topsoil ranges from approximately $1\pm$ to $2\pm$ feet thick. The subsoil generally consists of silt with $10\pm$ to $30\pm$ percent fine sand, and $5\pm$ to $20\pm$ percent roots.

Granular fill was encountered in one of the test pits, TP-19, and was observed to extend to approximately $2\pm$ feet below ground surface. The granular fill generally consists of fine to coarse sand, $35\pm$ to $50\pm$ percent fine to coarse gravel, and less than $10\pm$ percent silt. The granular fill was

encountered in the formerly developed area of the site where Schofield had also encountered fill soils.

An intermittent layer of natural silt and fine sand was encountered below the subsoil layer and is described as the C_1 horizon with a soil texture of loam, silt loam, and sandy loam. The layer appears to range from approximately $1\pm$ to $2.5\pm$ feet thick. The natural silt and fine sand is primarily comprised of silt and $15\pm$ to $50\pm$ percent fine sand, and less than $5\pm$ percent fine gravel.

Natural glacial till soils were encountered below the materials described in the preceding paragraphs in each of the twenty six test pit explorations performed. The glacial till soils are described as the C as well as the C₂ horizons on the logs with a soil texture of loam, loamy sand, and sandy loam. We observed these natural glacial till soils to be comprised of fine to medium as well as fine to coarse sand, $20\pm$ to $45\pm$ percent silt, and $10\pm$ to $25\pm$ percent fine to coarse gravel, less than $10\pm$ percent cobbles (i.e. $3\pm$ to $6\pm$ inches in diameter), mixed with sporadic $6\pm$ to $18\pm$ inch boulders.

We had interpreted the information provided by Schofield that the glacial till soils may be dense to very dense and comprised of fine to medium (and perhaps coarse) sand, with $15\pm$ to $35\pm$ percent silt. Our test pit observations and laboratory test results indicate a higher silt content of the glacial till soils along with the presence of gravel, cobbles and boulders.

Bedrock was not encountered to the depths explored in the test pits performed as part of our studies, which were generally $10\pm$ feet below ground surface. This observation is consistent with the information provided by Schofield.

As mentioned, test pits excavated as part of our studies were performed following a period of snow melt. Water was observed weeping into the test pits at various depths during our subsurface exploration program. This weeping water was likely the infiltrating water resulting from the snow melt. The weeping water occurred at various depths which gives an indication that water may become temporarily perched within or on the various deposits of natural silty soils. Perched groundwater could therefore be encountered during construction and throughout the design life of the project as surface water runoff infiltrates the site.

Observations of the test pits leads us to the opinion that "stabilized" as opposed to "weeping" groundwater is typically encountered from approximately $5.5\pm$ to $8\pm$ feet below the existing ground surface. It should be noted that the test pits were performed during a typically wet time of year. Furthermore, our opinion is that the stabilized groundwater levels observed in the test pits are generally typical of seasonal high groundwater levels except where noted on the soil evaluator logs presented in Appendix B.

Groundwater levels at the site will fluctuate due to variations in temperature, precipitation and other factors. Infiltrating storm water runoff or groundwater could become perched within or on top of the natural silt and fine sand as well as within or on the glacial till soils. As a result, the observed perched groundwater conditions are indicative of conditions which may periodically occur during construction and during the design life of the project.

4.0 LABORATORY TESTING

Representative soil samples were obtained from the eighteen test pits logged by Northeast Geotechnical's soil evaluator within proposed storm water management areas for laboratory gradation testing and U.S.D.A. textural classification. In addition, representative soil samples of materials within proposed cut areas were selected for laboratory gradation, natural moisture content, and modified proctor analyses.

Soil samples were submitted to Geotesting Express of Acton, Massachusetts for testing. The test results are included with this report in Appendix D.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations presented herein are subject to the Limitations and Service Constraints presented in Appendix A.

The conclusions and recommendations presented herein are considered supplemental to the preliminary earthwork conclusions and recommendations presented in our Preliminary Geotechnical Engineering Studies report (the Preliminary Report) dated March 12, 2015.

5.1 Site Design

Mass cuts appear to range up to approximately $10\pm$ feet below existing ground surface grades within the north to northeast portion of the site. Groundwater was encountered approximately $5.5\pm$ to $8\pm$ feet below existing ground surface at the time of our subsurface exploration program. Perched water was encountered at shallower depths.

We recommend, if possible, limiting the proposed cuts to proposed finish grades as much as practical to mitigate the impacts groundwater could have on both earthwork and final design conditions.

5.2 Earthwork

The earthwork recommendations presented in the Preliminary Report for the project are still applicable based on our recent studies. However, we have observed a $1\pm$ to $2.5\pm$ foot primarily silt layer beneath the subsoil layer, and the glacial till soils appear siltier than previously anticipated. Therefore, the natural soils will at times, be more sensitive to moisture and could be more difficult to work with during wet weather and freezing temperatures than originally anticipated.

A modified Poctor test and in-situ moisture content was performed by the soils testing laboratory on two samples of soils anticipated to be encountered during mass cuts. These samples were obtained from test pits TP-21 and TP-23 located within the northerly portion of the site. The Proctor test establishes the soils' moisture-density relationships and provides an indication of the range of moisture contents at which the soils can be adequately compacted. The results of the in-situ moisture content testing indicates the soils were, at the time of the test pits, approximately 6 percent above the soils' optimum moisture contents for compaction.

Therefore, if the soils were excavated today, or in a similar wet conditions, the soils likely would not be able to be adequately compacted unless the soils were allowed to dry or be layered with clean offsite sand and gravel. Recommendations are presented in the Preliminary Report for use of off-site soils and judiciously utilizing the on-site soils. Mass cuts and fills should be performed during dry, warm times of the year as much as possible to effectively utilize the on-site soils and mitigate the amount of fill materials needed to import from off-site.

Management of surface water runoff and control of groundwater by the earthwork contractor will be important factors in maintaining the silt and fine sand and the glacial till soils in reusable conditions. In addition to the recommendations presented in the Preliminary Report, the contractor should consider temporary diversion swales to protect the work areas during mass cuts and fills. The swales should be cut and maintained to divert water from the areas to be cut and areas to be filled.

In addition, groundwater control should be incorporated into the final design as discussed in section 5.4 Foundation Underdrains below.

5.21 Building Area Earthwork

Topsoil, subsoil, and existing fill soils (i.e. unsuitables) are not considered suitable to support foundations or floor slabs on grades. These unsuitables should be removed from the footprint area of the proposed houses including foundation areas and to a minimum distance of 10 feet beyond. In addition, in areas to receive fill to reach proposed bottom of footing elevations, unsuitables should be removed from a one horizontal to one vertical line sloping down and out from the outside edge of bottom of footing to natural granular soils (i.e. the buildings' stress zones). The natural granular soils are considered the silt and fine sand as well as the glacial till soils.

Care should be taken to not overexcavate below the base of unsuitables to mitigate the potential for encountering groundwater. Removal of unsuitables should be performed in areas limited to the proposed building areas and their stress zones to limit the potential for water to infiltrate into the natural soils during inclement weather.

The contractor should consider removal of unsuitables with the use of backhoes having smooth edged buckets or low ground pressure bulldozers rather than large bulldozers. Trucks and other heavy equipment should be prohibited from traveling on the exposed natural ground surface once the unsuitables have been removed. These efforts are intended to limit the potential for disturbance of the natural soils prior to the placement and compaction of structural fill.

Excavations to remove unsuitables to firm natural ground should be immediately backfilled with properly compacted, controlled lifts of structural fill. An initial 12 inch thick layer of off-site clean sand and gravel should be placed immediately as the initial lift of structural fill throughout the proposed building areas.

Structural fill used within proposed building areas should be placed in 12 inch maximum thick lifts and each lift should be compacted by a minimum of six passes of a self-propelled vibratory drum compactor having a minimum weight at the drum of 15,000 pounds. Structural fill should be compacted to at least 95 percent of the fill materials' maximum dry density as determined by ASTM

D-1557. Besides meeting the minimum compaction requirements, each lift of fill should be assessed by the on-site geotechnical engineer to be compacted to a firm and stable condition.

5.22 Pavement Area Earthwork

Paved driveways, secondary roadways and primary roadways are proposed throughout the site. Unsuitables should be stripped from the proposed pavement areas where the surface of these materials is located within four feet (4') from proposed finish pavement grades.

Exposed soils at proposed pavement subgrade elevations should be protected from disturbance resulting from exposure to moisture and construction traffic from the time of excavation to the time of the placement of pavement base course fill. One option is to wait to extend the cut operations to the proposed pavement subgrade elevations only when the base course sand and gravel fill is scheduled to be placed over the subgrade.

Structural fill comprised of either on- or off-site materials should be placed to proposed pavement subgrade levels in controlled, compacted lifts as discussed in Section 5.21 Building Area Earthwork. However, structural fill placed to proposed pavement subgrade elevations (bottom of base course sand and gravel layer) should be compacted to a minimum of 90 percent of the fill materials' maximum dry density as determined by ASTM D1557. The pavement base course layer should be compacted to at least 95 percent of the fill material's maximum dry density.

5.3 Foundations

We understand that the final layout and grading for the project has yet to be completed. Elevations of foundations for the proposed houses will vary across the site.

Provided that the earthwork procedures recommended herein and in the Preliminary Report are performed within the proposed building areas, a shallow foundation system consisting of spread footings should be utilized to support the proposed buildings.

The spread footings are anticipated to bear on natural silt and sand, natural glacial till, or compacted structural fill. Excavations for foundations should be performed using a backhoe with a smooth edged bucket to remove loosened soil disturbed during the excavation process. Excavations for foundations may extend to or below groundwater levels.

The contractor should be prepared to dewater foundation excavations and should therefore limit the size of open excavations to that which can be handled by the contractor's chosen method of dewatering. We anticipate that the dewatering, provided the excavation size is limited, can be handled by using open sumps. The contractor should be required to draw water down so that the base of excavation is dry to allow the on-site geotechnical engineer to verify that the base is firm and stable.

Excavations for foundations should be immediately covered with a a layer of filter fabric consisting of a Mirafi 140N or equivalent followed immediately by a six inch minimum thick lift of off-site ³/₄-

inch crushed stoneThis crushed stone lift should be compacted by making a minimum of 4 passes with a vibratory plate compactor. . If the excavations terminate in an off-site sand and gravel, the recommended filter fabric may be eliminated.

Foundation excavations performed during the cold weather should be protected from becoming frozen. Foundations should not be poured on frozen ground. Insulation blankets and heat should be considered to maintain foundation subgrades in a non-frozen condition.

The soils adjacent to foundations should likewise be protected from becoming frozen even after foundations are constructed. This is to prevent frost from penetrating below constructed foundations and causing heaving to occur. For this reason, foundation forms should be stripped and foundations and then walls should be backfilled as soon as possible when cold weather is anticipated.

To protect the integrity of the foundation bearing conditions, no utility lines should be allowed to pass beneath or within the stress zone of the footings. Rather, efforts should be made to move utilities or lower footing elevations to satisfy this recommendation.

Provided that the recommendations presented herein are satisfied, the foundations for the proposed buildings may be designed utilizing a maximum allowable bearing capacity of one ton per square foot (1.0 TSF).

5.4 Foundation Underdrains

We anticipate that there will be a benefit to installing foundation underdrains around the perimeter of some of the houses. The locations of the underdrains will be dependent on the final layout and grading plans and proximity to groundwater. We recommend that Northeast Geotechnical, Inc. be afforded the opportunity to review the final layout and grading plans to develop underdrain recommendations.

In general, we anticipate recommending foundation underdrains in areas where cuts below existing grades are performed to achieve finish lower floor levels and for buildings which may have basement levels.

In a general sense, we anticipate foundation underdrains will consist of 4 inch minimum diameter perforated PVC pipe, bedded in ³/₄ inch washed crushed stone at least 6 inches all around, which is then wrapped in a geotextile filter fabric along the exterior foundation walls of the proposed buildings. The pipe bottoms should be located 6 inches above the bottom of footing elevation.

Underdrain pipes should be laid flat with the perforations down. The underdrain pipes should connect to a solid pipe that daylights to a slope at an elevation lower than the lowest proposed finish grade within the building or to a manhole with a rim elevation lower than the lowest proposed finish grade in the area of the proposed building.

Depending on the magnitude of cuts and proximity to groundwater, other underdrains may be recommended at the toe of cuts or along proposed pavement areas to mitigate negative impacts of groundwater infiltration.

5.5 Floor Slab-On-Grade Support

Slab-on-grade construction is recommended for the ground floor building slabs provided the building areas are prepared as described in the preceding sections of this report and in the Preliminary Report. The floor slabs should bear directly on a 12 inch minimum thick base course sand and gravel layer compacted to at least 95 percent of the fill material's maximum laboratory dry density as determined by ASTM D-1557. Besides meeting the minimum compaction requirements, the base course fill should be compacted to a firm and stable condition.

Base course sand and gravel should conform to the recommended gradation criteria presented in section 4.2 Off-Site Soil Selection of the Preliminary Report for sand and gravel. A moisture barrier should also be installed on top of the base course sand and gravel beneath the floor slabs.

5.6 Pavement Support

We anticipate that pavement subgrade conditions at the site will consist of compacted structural fill, natural silt and fine sand, and natural glacial till soils.

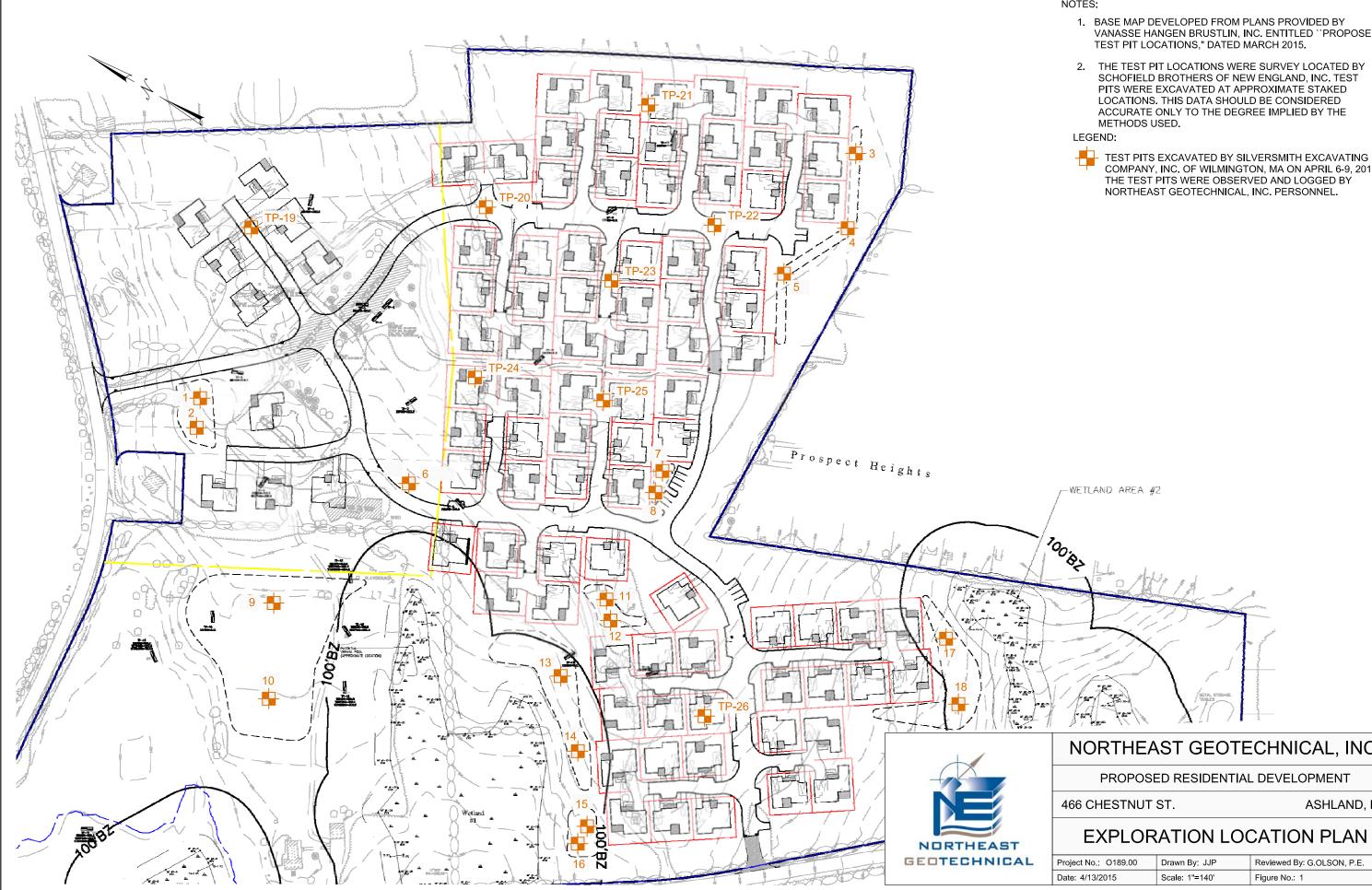
Provided the proposed pavement areas are prepared as recommended in this report and the Preliminary Report, the following minimum pavement sections are recommended:

FLEXIBLE PAVEMENT SECTIONS

(Driveways	Standard Duty and Secondary Roads)	Heavy Duty (Main Roads)
Bituminous Pavement		
Finish Course	1.5"	2.0"
Binder Course	2.0"	3.0"
Base Course Sand & Grav	el 12"	16"

Pavement base course sand and gravel should meet the recommended gradation criteria for sand and gravel listed in Section 4.2 Off-Site Soil Selection of the Preliminary Report.

Pavement base course fill should be compacted to at least 95 percent of the material's maximum dry density per ASTM D-1557. Besides meeting the minimum compaction requirements, the base course fill should be compacted to a firm and stable condition.


6.0 ADDITIONAL STUDIES AND SERVICES

Northeast Geotechnical, Inc. should be afforded the opportunity to review the design layout and grading plans to perhaps revise and refine some of our conclusions and recommendations presented

herein and in the Preliminary Report. We should also be afforded the opportunity to review the foundation and site plans, and earthwork specifications prior to bidding for construction to see that our recommendations have been properly interpreted and included.

Northeast Geotechnical, Inc. should also be retained to provide construction observation and soil testing services during the earthwork construction phases of the project. The purpose of our participation is twofold: to observe that the contractor performs earthwork in general compliance with the recommendations presented in our geotechnical engineering reports, and; to verify our design assumptions in the field. In addition, we can provide engineering input in a timely manner if subsurface conditions are found to vary from those anticipated prior to construction and warrant a design change or a change in earthwork procedures.

FIGURE

NOTES:

- 1. BASE MAP DEVELOPED FROM PLANS PROVIDED BY VANASSE HANGEN BRUSTLIN, INC. ENTITLED ``PROPOSED TEST PIT LOCATIONS," DATED MARCH 2015.
- 2. THE TEST PIT LOCATIONS WERE SURVEY LOCATED BY SCHOFIELD BROTHERS OF NEW ENGLAND, INC. TEST PITS WERE EXCAVATED AT APPROXIMATE STAKED LOCATIONS. THIS DATA SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE
- - COMPANY, INC. OF WILMINGTON, MA ON APRIL 6-9, 2015. THE TEST PITS WERE OBSERVED AND LOGGED BY NORTHEAST GEOTECHNICAL, INC. PERSONNEL.

NORTHEAST GEOTECHNICAL, INC.

PROPOSED RESIDENTIAL DEVELOPMENT

ASHLAND, MA

EXPLORATION LOCATION PLAN

Project No: 0189.00	Drawn By: JJP	Reviewed By: G.OLSON, P.E.
Date: 4/13/2015	Scale: 1"=140'	Figure No.: 1

JACK POWERS, 04/23/2015, 00:44:45 | FILE: C:\NORTHEAST\0189.00 ASHLAND\PLANS\018900F01.DWG

APPENDIX A

Limitations and Service Constraints

LIMITATIONS AND SERVICE CONSTRAINTS Geotechnical Engineering Consulting Services

The opinions, conclusions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by Northeast Geotechnical, Inc. and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the geotechnical consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that Northeast Geotechnical, Inc. relied upon any information prepared by other parties not under contract to Northeast Geotechnical, Inc. , Northeast Geotechnical, Inc. makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

Subsurface Explorations and Testing

Results of any observations, subsurface exploration or testing, and any findings presented in this report apply solely to conditions existing at the time when Northeast Geotechnical, Inc.'s exploratory work was performed. It must be recognized that any such observations and exploratory or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected and conditions can change with time. Northeast Geotechnical, Inc.'s ability to interpret exploratory and test results is related to the availability of the data and the extent of the exploratory and testing activities.

The findings, conclusions and recommendations submitted in this report are based, in part, on data obtained from subsurface borings, test pits, and specific, discrete sampling locations. The nature and extent of variation between these test locations, which may be widely spaced, may not become evident until construction. If variations are subsequently encountered, it will be necessary to re-evaluate the conclusions and recommendations of this report.

Correlations and descriptions of subsurface conditions presented in boring logs, test pit logs, subsurface profiles, and other materials are approximate only. Subsurface conditions may vary significantly from those encountered in borings and sampling locations and transitions between subsurface materials may be gradual or highly variable.

Conditions at the time water level measurements and other subsurface observations were made are presented in the boring logs or other sampling forms. This field data has been reviewed and interpretations provided in this report. However, groundwater levels may be variable and may fluctuate due to variation in precipitation, temperature, and other factors. Therefore, groundwater levels at the site at any time may be different than stated in this report.

Review

In the event that any change in the nature, design, or location of the proposed structure(s) is planned, the conclusions and recommendations in this report shall not be considered valid unless the changes are reviewed and the conclusions and recommendations of this report are modified or verified in writing.

Northeast Geotechnical, Inc. should be provided the opportunity for a general review of final design plans and specifications to assess that our recommendations have been properly interpreted and included in the design and construction documents.

Construction

To verify conditions presented in this report and modify recommendations based on field conditions encountered in the field, Northeast Geotechnical, Inc. should be retained to provide geotechnical engineering services during the construction phase of the project. This is to observe compliance with design concepts, specifications, and recommendations contained in this report, and to verify and refine our recommendations as necessary in the event that subsurface conditions differ from those anticipated prior to the start of construction.

APPENDIX B

Soil Evaluator Test Pit Logs (TP-1 through TP-18)

	NORTHEAST GEOTECHNICAL, INC.												
т	TEST PIT LOG Subcontractor: Silversmith Excavating Co., Inc. Operator: Kevin		Project:		Residential Deve 6 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number: _	TP-1		
Operator: Equipment:		n ted Escavator		Date/Weather: chnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	loration Location		-	File No.	1 of 1 O189.00 Glenn Olson, P.	<u> </u>		
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	loximorphic Featu (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other		
0-3±	A	10YR 2/1				Silt Loam			Massive	Friable			
3-25±	В	10YR 6/8				Loam	less than 5%	less than 5%	Massive	Friable			
25-30±	C ₁	10YR 7/2				Silt Loam			Massive	Friable			
30-100±	C ₂	2.5Y 6/4				Sandy Loam	25±%	10±%	Granular	Firm			
Estimated	Groundwater Observed: Yes Depth Weeping from Pit: 60± inches Depth Standing Water in Hole: 96± inches Estimated Depth (Elevation) to High Groundwater: 96± inches (Elevation 313± feet) Notes: 1. Sample no. S-1 was obtained from about 25± to 30± inches below ground surface. 2. Sample no. S-2 was obtained from about 30± to 100± inches below ground surface. 3. Test pit terminated in natural glacial till at 100± inches (8.3± feet) below ground surface.												

	NORTHEAST GEOTECHNICAL, INC.												
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number:	TP-2		
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 1	n ked Escavator		Date/Weather: chnical Observer: Test Pit Location: Surface Elevation:	See Exp	Zambernardi P.E		F	File No.	1 of 1 O189.00 Glenn Olson, P.			
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	loximorphic Feat (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other		
0-12±	A	10YR 2/1				Silt Loam			Massive	Friable			
12-28±	В	10YR 6/8				Silt Loam	less than 5%	less than 5%	Massive	Friable			
28-100±	С	2.5Y 6/4	39±	2.5YR 7/8	less than 5±%	Sandy Loam	20±%	5±%	Granular	Firm			
Estimated	Groundwater Observed: Yes Depth Weeping from Pit: 72± inches Depth Standing Water in Hole: Estimated Depth (Elevation) to High Groundwater: 84± inches (Elevation 313± feet)												

			Ν	ORTHEAS	GEOTEC	HNICAL, II	NC.					
т	EST PIT LOG		Project:		Residential Deve 6 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number: _	TP-3	
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 1	n ked Escavator		Date/Weather: cchnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	loration Location		Review	Page: File No wed By:	1 of 1 O189.00 Glenn Olson, P.	<u> </u>	
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	loximorphic Featu (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other	
0-4±	0	10YR 2/1				Silt			Massive	Friable		
4-10±	A	10YR 2/1				Silt			Massive	Friable		
10-27±	27± B 10YR 6/8					Silt			Massive	Friable		
27-36±	C ₁	10YR 8/1	27±	10R 6/8	30±%	Silt Loam			Massive	Friable		
36-108±	C ₂	10YR 6/6 to 7.5YR 6/2				Sandy Loam	20±%	5±%	Granular	Firm		
Groundwater Observed: Yes Depth Weeping from Pit: 18± inches Depth Standing Water in Hole: 92± inches Estimated Depth (Elevation) to High Groundwater: 92± inches (Elevation 326± feet) 92± inches (Elevation 326± feet) 92± inches (Elevation 326± feet)												
Notes:	 Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 27± to 36± inches below ground surface. 3. Sample no. S-2 was obtained from about 36± to 108± inches below ground surface. 4. Redoximorphic features appear to be indicative of a perched water condition. 5. Test pit terminated in natural glacial till at 108± inches (9± feet) below ground surface. 											

	NORTHEAST GEOTECHNICAL, INC.												
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number:	TP-4		
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 2	n ked Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	See Exp	Zambernardi P.E loration Location		Review	File No.	1 of 1 0189.00 Glenn Olson, P.			
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	doximorphic Featu (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other		
0-3± O 10YR 2/1 Silt									Massive	Friable			
3-12±	A	10YR 2/1				Silt			Massive	Friable			
12-33±	В	10YR 6/8				Silt			Massive	Friable			
33-100±	С	10YR 6/6	36±	2.5YR 5/8	20±%	Sandy Loam	25±%	5±%	Granular	Firm			
Groundwater Observed: Yes Depth Weeping from Pit: 18± inches Depth Standing Water in Hole: 78± inches Estimated Depth (Elevation) to High Groundwater: 78± inches (Elevation 326± feet)													
Notes:	Estimated Depth (Elevation) to High Groundwater: 78± inches (Elevation 326± feet) Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 33± to 100± inches below ground surface. 3. Test pit terminated in natural glacial till at 100± inches (8.3± feet) below ground surface. 4. Redoximorphic features appeared to be isolated and indicative of a perched water condition.												

			Ν	ORTHEAS	GEOTEC	HNICAL, II	NC.					
т	EST PIT LOG		Project:		Residential Deve 6 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number:	TP-5	
Operator: Equipment:	Silversmith Excav Kevii Cat. 315DL Track 3/4± C.Y / 2	n ed Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	loration Location		Reviev	Page: File No wed By:	1 of 1 O189.00 Glenn Olson, P.I	<u> </u>	
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	doximorphic Featu (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse I Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other	
0-3±	0	10YR 2/1				Silt			Massive	Friable		
3-6±	A	10YR 2/1				Silt			Massive	Friable		
6-36±	В	10YR 6/8				Silt			Massive	Friable		
36-102±	С	10YR 6/6	36±	2.5YR 5/8	20±%	Sandy Loam	25±%	10±%	Granular	Firm		
Estimated	Groundwater Observed: Yes Depth Weeping from Pit: 18± inches Depth Standing Water in Hole: 84± inches Estimated Depth (Elevation) to High Groundwater: 84± inches (Elevation 326± feet)											
	 Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 36± to 102± inches below ground surface. 3. Test pit terminated in natural glacial till at 102± inches (8.5± feet) below ground surface. 4. Redoximorphic features appeared to be isolated and indicative of a perched water condition. 											

	NORTHEAST GEOTECHNICAL, INC.												
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number: _	TP-6		
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 2	n ked Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	See Exp	Zambernardi P.E loration Location		I	File No.	1 of 1 O189.00 Glenn Olson, P.I	<u> </u>		
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	doximorphic Feat (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse I Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other		
0-9±	A	10YR 2/1				Silt			Massive	Friable			
9-20±	В	10YR 6/8				Silt Loam			Massive	Friable			
20-33±	C ₁	10YR 6/6	22±	2.5YR 6/8	50±%	Sandy Loam			Massive	Friable			
33-96±	C ₂	2.5Y 6/4				Loam	20±%	5±%	Granular	Firm			
Groundwater Observed: Yes Depth Weeping from Pit: 42± inches Depth Standing Water in Hole: 80± inches Estimated Depth (Elevation) to High Groundwater: 80± inches (Elevation 315± feet) 80± inches (Elevation 315± feet) 80± inches (Elevation 315± feet)													
Notes:	 Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 20± to 33± inches below ground surface. 3. Sample no. S-2 was obtained from about 33± to 96± inches below ground surface. 4. Test pit terminated in natural glacial till at 96± inches (8± feet) below ground surface. 5. Redoximorphic features appear to be indicative of a perched water condition. 												

			Ν	ORTHEAS	GEOTEC	HNICAL, II	NC.				
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number: _	TP-7
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 1	n ked Escavator		Date/Weather: cchnical Observer: Test Pit Location: Surface Elevation:	See Exp	Zambernardi P.E loration Location		Reviev	Page: File No wed By:	1 of 1 O189.00 Glenn Olson, P.I	 E
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	loximorphic Feati (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other
0-15±									Massive	Friable	
15-34±	В	10YR 6/8				Silt			Massive	Friable	
34-46±	C ₁	2.5Y 8/1	40±	2.5YR 6/8	25±%	Silt Loam			Massive	Friable	
46-108±	C ₂	2.5Y 6/4				Sandy Loam	25±%	10±%	Granular	Firm	
	Groundwater Observed: Yes Depth Weeping from Pit: 28± inches Depth Standing Water in Hole: 68± inches Estimated Depth (Elevation) to High Groundwater: 68± inches (Elevation 324± feet) 68± inches (Elevation 324± feet) 68± inches (Elevation 324± feet)										
	Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 34± to 46± inches below ground surface. 3. Sample no. S-2 was obtained from about 46± to 108± inches below ground surface. 4. Test pit terminated in natural glacial till at 108± inches (9± feet) below ground surface. 5. Redoximorphic features appear to be indicative of a perched water condition.										

			Ν	ORTHEAS	F GEOTEC	HNICAL, II	NC.					
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number:	TP-8	
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 1	n ed Escavator		Date/Weather: chnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	loration Location		Review	File No.	1 of 1 O189.00 Glenn Olson, P.	E.	
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist		loximorphic Feat (mottles)		Soil Texture		Fragments Cobbles &	Soil Structure	Soil Consistence	Other	
0-16±	A	(Munsell) 10YR 2/1	Depth (in.) Color Percent (USDA) Silt				Gravel	Stones 	Massive	(Moist) Friable		
16-26±	В	10YR 6/8				Silt			Massive	Friable		
26-36±	C ₁	2.5Y 8/1	36±	2.5YR 6/8	40±%	Silt Loam			Massive	Friable		
36-100±	C ₂	2.5Y 6/4				Sandy Loam	25±%	10±%	Granular	Firm		
	Groundwater Observed: Yes Depth Weeping from Pit: 18± inches Depth Standing Water in Hole: 62± inches Estimated Depth (Elevation) to High Groundwater: 62± inches (Elevation 324± feet) 62± inches (Elevation 324± feet) 62± inches (Elevation 324± feet)											
Notes:	 Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 26± to 36± inches below ground surface. 3. Sample no. S-2 was obtained from about 36± to 100± inches below ground surface. 4. Test pit terminated in natural glacial till at 100± inches (8.3± feet) below ground surface. 5. Redoximorphic features appear to be indicative of a perched water condition. 											

NORTHEAST GEOTECHNICAL, INC.												
EST PIT LOG		Project:					Test Pit/Deep	Observation	Hole Number:	TP-9		
Kevir Cat. 315DL Track	n ed Escavator		chnical Observer: Test Pit Location:	Mark See Exp	Zambernardi P.E			File No.	O189.00	<u> </u>		
Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)		(mottles)		Soil Texture (USDA)		Cobbles &	Soil Structure	Soil Consistence (Moist)	Other		
Topsoil Fill	10YR 2/1				Silt			Massive	Friable			
Granular Fill	2.5Y 6/4				Sandy Loam			Granular	Loose			
С	2.5Y 6/4	22±	10R 5/8	Less than 5%	Sandy Loam	25±%	10±%	Granular	Firm			
Groundwater Observed: Yes Depth Weeping from Pit: 24± inches Depth Standing Water in Hole: 75± inches Estimated Depth (Elevation) to High Groundwater: 75± inches (Elevation 305± feet)												
	Silversmith Excav Kevir Cat. 315DL Track 3/4± C.Y / 1 Soil Horizon/Layer Topsoil Fill Granular Fill C C C ater Observed: Depth (Elevation 1. Test pit walls v 2. Sample no. S-	Silversmith Excavating Co., Inc. Kevin Cat. 315DL Tracked Escavator 3/4± C.Y / 15± feet Soil Matrix: Color-Moist Horizon/Layer Soil Matrix: Color-Moist (Munsell) Topsoil Fill 10YR 2/1 Granular Fill 2.5Y 6/4 C 2.5Y 6/4 C 2.5Y 6/4 Image: Color-Moist Color-	EST PIT LOG Project: Silversmith Excavating Co., Inc. Kevin Cat. 315DL Tracked Escavator 3/4± C.Y / 15± feet Ground S Soil Matrix: Color-Moist (Munsell) Depth (in.) Topsoil Fill 10YR 2/1 Granular Fill 2.5Y 6/4 Granular Fill 2.5Y 6/4 C Soil C C C C C C C C C C C C C C C C C C C	EST PIT LOG Project: Proposed Silversmith Excavating Co., Inc. Northeast Geotechnical Observer: Date/Weather: Cat. 315DL Tracked Escavator Northeast Geotechnical Observer: Test Pit Location: 3/4± C.Y / 15± feet Ground Surface Elevation: Ground Surface Elevation: Soil Soil Matrix: Redoximorphic Feature Morizon/Layer Color-Moist (Munsell) Depth (in.) Color Topsoil Fill 10YR 2/1 Granular Fill 2.5Y 6/4 C 2.5Y 6/4 22± 10R 5/8 Line Interview Depth Weeping from Pit: Atter Observed: Yes Depth Weeping from Pit: Depth (Elevation) to High Groundwater: 75± inches (Elevation 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 11± to 101± inches below of	EST PIT LOG Project: Proposed Residential Deve	Project: Proposed Residential Development 466 Chestinut Street Ashland, MA Silversmith Excavating Co., Inc. Kevin Date/Weather: 4-6-2015 / Mostly Cloudy, 35 Cat. 315D. Tracked Escavator Northeast Geotechnical Observer: Mark Zambernardi P.E Soil Soil Matrix: Color-Moist Mark Zambernardi P.E Kevin Soil Matrix: Redoximorphic Features Soil Topsoil Fill 10YR 2/1 Soil Topsoil Fill 10YR 2/1 Silt Granular Fill 2.5Y 6/4 Sandy Loam C 2.5Y 6/4 22± 10R 5/8 Less than 5% Sandy Loam Iter Observed: Yes Depth Weeping from Pit: 24± inches Date Iter Observed: Yes Depth Weeping from Pit: 24± inches Date 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 11± to 101± inches below ground surface.	EST PIT LOG Project: Proposed Residential Development 466 Chestnut Street Ashland, MA Silversmith Excavating Co., Inc. Kevin Date/Weather: 4-6-2015 / Mostly Cloudy, 35 to 45'F Soll Mortheast Geotechnical Observer: Mark Zambernardi P.E. Test Pit Location: See Exploration Location Plan 3/4 ± C.Y/ 152 teet Soil Matrix: Color-Moist (Munsell) Redoximorphic Features (mottles) Soil Texture Coarse I Topsoil Fill 10YR 2/1 Silt Granular Fill 2.5Y 6/4 Sandy Loam C 2.5Y 6/4 22± 10R 5/8 Less than 5% Sandy Loam 25±% ter Observed: Yes Depth Weeping from Pit: 24± inches Depth Standing 1Depth (Elevation) to High Groundwater: 75± inches (Elevation 305± feet) 1. Text to 101± inches below ground surface. Depth Standing	EST PIT LOG Project: Proposed Residential Development 466 Chestnut Street Test Pit/Deep Silversmith Excavating Co., Inc. Kevin Date/Weather: 4-6-2015 / Mostly Cloudy, 35 to 45° F Test Pit/Deep Gat. 315DL Tracked Escavator Northeast Geotechnical Observer: Mark Zambernardi P.E. Review 3/4± C.Y./15: feet Soil Matrix: Redoximorphic Features (Munseli) Soil Matrix: Color-Moist (Munseli) Color-Moist (Munseli) <td>EST PIT LOG Project: Proposed Residential Development. 466 Chestrur Street Test Pit/Deep Observation Silversmith Excavating Co., Inc. Gat. 315DL Tracked Escavator. Northeast Gootochnical Observari. 4-6-2015 / Mostly Cloudy, 35 to 45 F Page: Filo No. 3/45 CY / 154 het Northeast Gootochnical Observari. Mark Zambernardi P.E. Ground Surface Elevation: Soil Coarse Fragments Ground Surface Elevation: Soil Coarse Fragments Gravel Soil Coarse Fragments Soil Soil Coarse Fragments Gravel Soil Coarse Fragments Gravel Soil Soil Coarse Fragments Gravel Soil Soil Topsoil Fill 10YR 2/1 Sitt Massive Granular Fill 2.5Y 6/4 Sandy Loarn 25±% 10±% Granular C 2.5Y 6/4 22± 10R 5/8 Less than 5% Sandy Loarn 25±% 10±% Granular Leep th (Elevation) to High Groundwater: 75± inches Depth Weeping from Pit: 24± inches Depth Standing Water in Hole: 75± inches I Depth (Elevation) to High Groundwater: 75± inches (Elevation 305± feet) </td> <td>EST PIT LOG Project: Proposed Residential Development 466 Chestnul Street Ashland, MA Test Pit/Deep Observation Hole Number: Silversmith Excavating Co., Inc. Cat. 315D, Tracked Ecavator 341± C.Y. 15s teet Northeast Geotechnical Observer: Test Pit Locanic Ground Surface Elevation: Add-2015 / Mostly Cloudy, 35 to 45°F Page: 1 of 1 Soil Northeast Geotechnical Observer: 341± C.Y. 15s teet Northeast Geotechnical Observer: Ground Surface Elevation: See Exploration Locanic Plan Reviewed By; Glem Olson, P. Soil Soil Matrix: (mottles) Redoximorphic Features (Mussil) Soil Coarse Fragments Soil Soil Soil Gravel Soil Structure Soil Moissi Structure Soil (Moissi) Topsoil Fill 10YR 2/1 Silt Massive Friable Granular Fill 2.5Y 6/4 Sandy Loam Granular Loose ter Observed: Yes Depth Weeping from Pit: 24± inches Depth Standing Water in Hole: .75± inches IDepth (Elevation) to High Groundwater: .75± inches (Elevation 305± feet) 1. Test pit walls were collapsing while the excavation was open. 2. .1</td>	EST PIT LOG Project: Proposed Residential Development. 466 Chestrur Street Test Pit/Deep Observation Silversmith Excavating Co., Inc. Gat. 315DL Tracked Escavator. Northeast Gootochnical Observari. 4-6-2015 / Mostly Cloudy, 35 to 45 F Page: Filo No. 3/45 CY / 154 het Northeast Gootochnical Observari. Mark Zambernardi P.E. Ground Surface Elevation: Soil Coarse Fragments Ground Surface Elevation: Soil Coarse Fragments Gravel Soil Coarse Fragments Soil Soil Coarse Fragments Gravel Soil Coarse Fragments Gravel Soil Soil Coarse Fragments Gravel Soil Soil Topsoil Fill 10YR 2/1 Sitt Massive Granular Fill 2.5Y 6/4 Sandy Loarn 25±% 10±% Granular C 2.5Y 6/4 22± 10R 5/8 Less than 5% Sandy Loarn 25±% 10±% Granular Leep th (Elevation) to High Groundwater: 75± inches Depth Weeping from Pit: 24± inches Depth Standing Water in Hole: 75± inches I Depth (Elevation) to High Groundwater: 75± inches (Elevation 305± feet)	EST PIT LOG Project: Proposed Residential Development 466 Chestnul Street Ashland, MA Test Pit/Deep Observation Hole Number: Silversmith Excavating Co., Inc. Cat. 315D, Tracked Ecavator 341± C.Y. 15s teet Northeast Geotechnical Observer: Test Pit Locanic Ground Surface Elevation: Add-2015 / Mostly Cloudy, 35 to 45°F Page: 1 of 1 Soil Northeast Geotechnical Observer: 341± C.Y. 15s teet Northeast Geotechnical Observer: Ground Surface Elevation: See Exploration Locanic Plan Reviewed By; Glem Olson, P. Soil Soil Matrix: (mottles) Redoximorphic Features (Mussil) Soil Coarse Fragments Soil Soil Soil Gravel Soil Structure Soil Moissi Structure Soil (Moissi) Topsoil Fill 10YR 2/1 Silt Massive Friable Granular Fill 2.5Y 6/4 Sandy Loam Granular Loose ter Observed: Yes Depth Weeping from Pit: 24± inches Depth Standing Water in Hole: .75± inches IDepth (Elevation) to High Groundwater: .75± inches (Elevation 305± feet) 1. Test pit walls were collapsing while the excavation was open. 2. .1		

	NORTHEAST GEOTECHNICAL, INC.												
т	EST PIT LOG		Project:		d Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number:	TP-10		
Operator: Equipment:	Silversmith Excav Kevir Cat. 315DL Track 3/4± C.Y / 1	in ked Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	oloration Location				1 of 1 0189.00 Glenn Olson, P.I	<u> </u>		
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	doximorphic Feate (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse I Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other		
0-6±	A	10YR 2/1				Silt			Massive	Friable			
6-12±	В	10YR 6/8				Silt Loam			Massive	Friable			
12-108±	С	C 10YR 6/6 60± 5YR 6/8 25±%					25±%	5±%	Granular	Firm			
Estimated	Groundwater Observed: Yes Depth Weeping from Pit: 22± inches Depth Standing Water in Hole: 80± inches Estimated Depth (Elevation) to High Groundwater: 60± inches (Elevation 305± feet)												
Notes.	 Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 12± to 61± inches below ground surface. 3. Test pit terminated in natural glacial till at 108± inches (9± feet) below ground surface. 												

	NORTHEAST GEOTECHNICAL, INC.												
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number:	TP-11		
Operator: Equipment:	Silversmith Excav Kevir Cat. 315DL Track 3/4± C.Y / 1	n ked Escavator		Date/Weather: chnical Observer: Test Pit Location: Surface Elevation:	See Exp	Zambernardi P.E			File No.	1 of 1 O189.00 Glenn Olson, P.	<u> </u>		
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	loximorphic Feate (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other		
0-11±	A	10YR 2/1				Silt			Massive	Friable			
11-43±	В	10YR 6/8	36±	10R 6/8	less than 5±%	Silt Loam	less than 5±%		Massive	Friable			
43-111±	С	2.5Y 6/4				Loamy Sand	20±%	5±%	Granular	Firm			
Groundwater Observed: Yes Depth Weeping from Pit: 46± inches Depth Standing Water in Hole: 92± inches Estimated Depth (Elevation) to High Groundwater: 92± inches (Elevation 318± feet)													

	NORTHEAST GEOTECHNICAL, INC.												
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Observation	Hole Number: _	TP-12		
Operator: Equipment:	Silversmith Excav Kevi Cat. 315DL Track 3/4± C.Y / 7	n ked Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	loration Location				1 of 1 O189.00 Glenn Olson, P.	<u> </u>		
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	Rec Depth (in.)	doximorphic Feato (mottles) Color	ures Percent	Soil Texture (USDA)	Coarse Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other		
0-2±	0	10YR 2/1			Silt			Massive	Friable				
2-10±	А	10YR 2/1				Silt			Massive	Friable			
10-24±	В	10YR 6/8			Silt	less than 5±%		Massive	Friable				
24-112±	С	2.5Y 6/4				Loamy Sand	20±%	5±%	Granular	Firm			
	Groundwater Observed: Yes Depth Weeping from Pit: 60± inches Depth Standing Water in Hole: 91± inches Estimated Depth (Elevation) to High Groundwater: 91± inches (Elevation 318± feet) 91± inches (Elevation 318± feet) 91± inches (Elevation 318± feet)												
Notes:	 Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 24± to 112± inches below ground surface. 3. Test pit terminated in natural glacial till at 112± inches (9.3± feet) below ground surface. 												

	NORTHEAST GEOTECHNICAL, INC.											
TI	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep Observation Hole Number: <u>TP-13</u>				
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 1	n xed Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	See Exp	Zambernardi P.E Ioration Location		Review	Page: File No wed By:	1 of 1 0189.00 Glenn Olson, P.	 E	
Depth (in.)	Soil Horizon/Layer	zon/Laver Color-Moist (mottles) Texture Co				Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other			
0-3±	0-3± O 10YR 2/1 Silt Massive Friable											
3-23± A 10YR 2/1 Silt Massive Friable												
23-42±	В	10YR 6/8				Silt			Massive	Friable		
42-54±	C ₁	2.5Y 8/1				Sandy Loam			Massive	Friable		
54-96±	C ₂	2.5Y 6/4	54± inches	10R 6/8	20±%	Sandy Loam	20±%	10±%	Granular	Firm		
	Groundwater Observed: Yes Depth Weeping from Pit: 54± inches Depth Standing Water in Hole: 75± inches Estimated Depth (Elevation) to High Groundwater: 54± inches (Elevation 313± feet) 54± inches (Elevation 313± feet) 54± inches (Elevation 313± feet)											
Notes:	2. Sample no. S- 3. Sample no. S-	1 was obtained 2 was obtained	while the excavatior from about 42± to 5 from about 54± to 9 glacial till at 96± inch	4± inches below gr 6± inches below gr	ound surface.							

	NORTHEAST GEOTECHNICAL, INC.										
т	EST PIT LOG		Project:	Proposed Residential Development 466 Chestnut Street Ashland, MA				Test Pit/Deep Observation Hole Number:TP			
Operator: Equipment:	Silversmith Excav Cat. 315DL Track	n ked Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	loration Location		File No Reviewed By:			
Depth (in.)	Soil Horizon/Layer	Color-Moist (mottles) Texture		Coarse I Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other			
0-3±	ο	10YR 2/1				Silt			Massive	Friable	
3-16±	А	10YR 2/1				Silt					
16-40±	В	10YR 6/8				Silt Loam		Massive Friable			
40-108±	С	2.5Y 6/4				Sandy Loam	20±%	5±%	Granular	Firm	
	Groundwater Observed: Yes Depth Weeping from Pit: 58± inches Depth Standing Water in Hole: 91± inches										
	 Estimated Depth (Elevation) to High Groundwater: 91± inches (Elevation 309± feet) Notes: 1. Test pit walls were collapsing while the excavation was open. 2. Sample no. S-1 was obtained from about 40± to 108± inches below ground surface. 3. Test pit terminated in natural glacial till at 108± inches (9± feet) below ground surface. 										

	NORTHEAST GEOTECHNICAL, INC.										
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep Observation Hole Number:			
Operator: Equipment:	Silversmith Excav Kevi Cat. 315DL Track 3/4± C.Y /	n ked Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	loration Location		Page: 1 of 1 File No. 0189.00 Reviewed By: Glenn Olson, P.E.			<u>E.</u>
Depth (in.)	Soil Horizon/Layer	Soil Matrix: Color-Moist (Munsell)	st (mottles) Texture		Coarse Gravel	Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other		
0-3±	0	10YR 2/1				Silt			Massive	Friable	
3-12±	А	10YR 2/1				Silt					
12-28±	В	10YR 6/8				Silt		Massive Friable			
28-108±	С	2.5Y 6/4				Sandy Loam	20±%	5±%	Granular	Firm	
Estimated	Groundwater Observed: Yes Depth Weeping from Pit: 48± inches Depth Standing Water in Hole: 92± inches Estimated Depth (Elevation) to High Groundwater: 92± inches (Elevation 305± feet)										
Notes:	2. Sample no. S-	1 was obtained fi	om about 28± to 1	n was open. 08± inches below ξ hes (9± feet) below							

	NORTHEAST GEOTECHNICAL, INC.											
т	EST PIT LOG		Project:	Proposed Residential Development 466 Chestnut Street Ashland, MA				Test Pit/Deep Observation Hole Number:				
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 2	n ked Escavator		Date/Weather: chnical Observer: Test Pit Location: Surface Elevation:	Mark See Exp	Ioration Location		Review	File No.	1 of 1 O189.00 Glenn Olson, P.		
Depth (in.)	HUHZUH/Laver		Fragments Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other						
0-3±	0	10YR 2/1				Silt			Massive	Friable		
3-16±	A	10YR 2/1				Silt		Massive Friable				
16-40±	В	10YR 6/8				Silt						
40-102±	С	2.5Y 6/4				Sandy Loam	20±%	5±%	Granular	Firm		
Groundwater Observed: Yes Depth Weeping from Pit: 58± inches Depth Standing Water in Hole: 97± inches Estimated Depth (Elevation) to High Groundwater: 97± inches (Elevation 303± feet) Inches Notes: 1. Test pit walls were collapsing while the excavation was open.												
	 Sample no. S-1 was obtained from about 40± to 102± inches below ground surface. Test pit terminated in natural glacial till at 102± inches (8.5± feet) below ground surface. 											

	NORTHEAST GEOTECHNICAL, INC.											
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep Observation Hole Number:TP-1				
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 1	n ted Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	See Exp	Zambernardi P.E		Review	Page: <u>1 of 1</u> File No. <u>O189.00</u> wed By: <u>Glenn Olson, P.E</u>			
Depth (in.)	Soil Horizon/Layer	('Olor-Molet (mottlee) (ovture Calibles 9		Soil Structure	Soil Consistence (Moist)	Other						
0-3±	0	10YR 2/1				Silt			Massive	Friable		
3-10±	A	10YR 2/1				Silt		Massive Friable				
10-36±	В	10YR 6/8				Silt						
36-102±	С	2.5Y 6/4	36±	2.5YR 6/8	less than $5\pm\%$	Sandy Loam	20±%	5±%	Granular	Firm		
Groundwater Observed: Yes Depth Weeping from Pit: 32± inches Depth Standing Water in Hole: 76± inches Estimated Depth (Elevation) to High Groundwater: 76± inches (Elevation 299± feet)												

	NORTHEAST GEOTECHNICAL, INC.											
т	EST PIT LOG		Project:		Residential Deve 66 Chestnut Stree Ashland, MA			Test Pit/Deep	Test Pit/Deep Observation Hole Number:			
Operator: Equipment:	Silversmith Excav Kevin Cat. 315DL Track 3/4± C.Y / 1	n red Escavator		Date/Weather: echnical Observer: Test Pit Location: Surface Elevation:	See Exp	Zambernardi P.E Ioration Location		Review	File No.	1 of 1 0189.00 Glenn Olson, P.		
Depth (in.)	Soil Horizon/Layer Soil Matrix: Color-Moist (Munsell) Redoximorphic Features (mottles) Soil Coarse Fragments Soil Depth (in.) Color Percent (USDA) Coarse Soil Soil					Soil Consistence (Moist)	Other					
0-3±	ο	10YR 2/1				Silt			Massive	Friable		
3-11± A 10YR 2/1 Silt less than 5±% Massive Friable												
11-33±	В	10YR 6/8	30±	5YR 6/8	less than 5±%	Silt			Friable			
33-108±	С	2.5Y 6/4	52±	5YR 7/8	40±%	Sandy Loam	20±%	5±%	Granular	Firm		
Estimated	Groundwater Observed: Yes Depth Weeping from Pit: 30± inches Depth Standing Water in Hole: 87± inches Estimated Depth (Elevation) to High Groundwater: 52± inches (Elevation 299± feet)											
	 Sample no. S-1 was obtained from about 33± to 108± inches below ground surface. Test pit terminated in natural glacial till at 108± inches (9± feet) below ground surface. 											

APPENDIX C

Test Pit Logs (TP-19 through TP-26)

		NORTH	EAST GEOTECHNICAL, IN	IC.	
TEST P		Project:	Proposed Residential Development	Test Pit No.:	TP-19
12011	11 200		466 Chestnut Street	Page:	1 of 1
			Ashland, MA	File No.:	O189.00
				Reviewed By:	Glenn Olson, P.E.
Subcontractor:	Silversmith Excavating	Co., Inc.	Date/Weather:	4-6-2015 / Mostly C	loudy, 35 to 45°F
Operator:	Kevin		Northeast Geotechnical Observer:	Mark Zamber	nardi, P.E.
Equipment:	Cat. 315DL Tracked E	xcavator	Test Pit Location:	See Exploration	Location Plan
Capacity/Reach:	3/4± C.Y / 15± fe	et	Ground Surface Elevation:	326± f	eet

Depth	Strata Change	Soil Description (Burmister Identification System)	Excavation Effort	Boulder Count	Note No.
	Topsoil Fill 0.6'±	Damp, black, SILT, some fine Sand, some Roots	E		
1'	Granular Fill	Light brown, fine to coarse SAND, some (+) Silt, little (-) fine to	Е		1
2'	1.8'±	coarse Gravel	L		I
3'	Fine Sand and Silt	Damp, beige to orange, fine SAND and SILT	E		
4'	4.3'±				
5'					
6'	Glacial Till	Damp to wet, brown, fine to coarse SAND, some Silt, some fine to			2
7'		coarse Gravel, trace Cobbles	Μ	10±A	
8'	8.5'±				3
9'		Bottom of test pit in natural glacial till at 8.5± feet			Ū.
10'					
11'					
12'					
13'					
14'					
15'					
Notes:	2. Groundwater was	tained from about $0.6\pm$ to $1.8\pm$ feet below the ground surface. seeping into the test pit at a depth of about $5.5\pm$ feet below the ground			

3. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface.

Test Pit D	Dimensions	Boulder Class	sification	Proportions Used	Abbreviations	Excavation Effort
N/S =	10+	Diameter	Class	Trace (T): 0-10%	F = Fine	E = Easy
N/S = 10±		6" - 18"	А	Little (Li): 10-20%	M = Medium	M = Moderate
E/W =	4+	18" - 36"	В	Some (So): 20-35%	C = Coarse	D = Difficult
	4±	>36"	С	And: 35-50%	F/M = Fine to Medium	

State Charge Project:		NORTHEAST GEOTECHNICAL, INC.										
Coparator: Kevin Northeast Geotechnical Observor: Mark Destruction: See Explanator: See Ex		TEST PIT L	OG	Project:	466 Chestnut Stre	-	F	Page: ile No.:	، 0	1 of 1 189.00		
Bit pupper line Call 3150L Traded Execution Test P4 Location: See Explorition Location Plan Capacity/Read: 3/42 C.Y.152 test Soll Description Excavation Excavation Beculater Count Note No. Park Forest Mat 0.31 Damp, Mack, SULT, Hitte fine Sand mixed with Roots and Leaves E E Forest Mat 0.31 Damp, Mack, SULT, Hitte fine Sand mixed with Roots and Leaves E E Forest Mat 0.31 Damp, Mack, SULT, Hitte fine Sand mixed with Roots and Leaves E E Forest Mat 0.31 Damp, Mack Now, SULT and fine SAND, trace Roots E E Forest Mat 0.31 Damp, Mack Now, SULT and fine SAND, trace Roots E E Forest Mat 0.31 Damp, Mack Now, SULT and fine SAND, trace Roots E E Forest Mat 0.31 Damp, Mack Now, SULT and fine SAND, trace Roots E E Forest Mat 0.31 Damp, Mack Now, SULT and fine SAND, trace Roots E Forest Now, Sult Sand Sand Now, Sult Sand Now, Sult Sand Now, Sult Sand No	Subcon	tractor: Sil	versmith Excavating	Co., Inc.	[Date/Weather:	4-6-2015 / 1	Mostly C	loudy, 35	to 45°F		
Capacity/Reach: 342 t. CY / 15k feet Ground Surface Elevation: 342 t. feet Depth Strate Charge Soll Description (Burmister Identification System) Excavation Effort Boulder Court Note No. 1 Forest Mat 0.3± Damp, black, SLT, Hild fine San Mused with Rosts and Leaves E E Image: Court of the Strate Charge Image: Court of the Strate Charge E Image: Court of the Strate Charge Image: Court of the Strate Charge E Image: Court of the Strate Charge	Op	perator:	Kevin									
Depth Strata Change Soli Description (Burmister Identification System) Excavation Effort Boulder Count Note No. 1 Forest Mat 0.3: 1 Damp, Jack, SLT, filth file Sand mixed with Roots and Leaves Subsoli 0.9: 3 E E E 1 3 Subsoli 1.8: 4 Damp, Jack, SLT, and file SAND, trace Roots 2 E E 1 1 3 Subsoli 1.8: 4 Damp, Jack brown, SILT and file SAND, trace Roots 5 E Note No. E 1 1 4' Glacial Till Damp to wet, brown, file to coarse SAND, some fine to coarse Gravel, little Sit, trace Cobbles M/D Note A 102A 4 4 10' 8.8'* Bottom of test pit in natural glacial till at 8.8: feet M/D 4 4 4 11' 12' Strate Cobbles Strate Cobbles 10'	Equi	ipment: Ca	at. 315DL Tracked E	xcavator						Plan		
Open in Strate Chainge (Burmister Identification System) Definition Boulder Count Note NO. - Forest Mat 0.31 Damp, black, SiLT, little fine Sand mixed with Roots and Leaves E E Image: Single System) E Image: Single System) E Image: Single System) Image:	Capacity	/Reach:	3/4± C.Y / 15± fe	eet	Ground Surfa	ace Elevation:		342±	feet			
Forest Mat 0.3*1 Damp, black, SILT, little fine Sand mixed with Roots and Leaves E 1 Topsoil 0.9*2 Damp, dark brown, SILT and fine SAND, trace Roots E 2 Subsoil 1.8*2 Damp, light brown, SILT and fine SAND, trace Roots E 3 Subsoil 1.8*2 Damp, light brown, SILT and fine SAND, trace Roots E 4' Subsoil 1.8*2 Damp to wet, brown, fine to coarse SAND, some fine to coarse M/D 10±A 6' Glacial Till Damp to wet, brown, fine to coarse SAND, some fine to coarse M/D 10±A 6' Subsoil 1.8*2 Damp to wet, brown, fine to coarse SAND, some fine to coarse M/D 10±A 6' Subsoil 1.8*2 Damp to wet, brown, fine to coarse SAND, some fine to coarse M/D 10±A 6' Subsoil 1.8*2 Bottom of test pit in natural glacial till at 8.8* feet M/D 10±A 10' Subsoil 1.8*2 Bottom of test pit in natural glacial till at 8.8* feet Subsoil 1.8*2 3 11' Subsoil 1.8*2 Bottom of test pit at a depth of about 4.3* feet below the ground surface. Subsoil 1.8*2 Subsoil 1.8*2 11' Subsoil 1.8*2 Subsoil 1.8*2 feet below the ground surface. Subsoil 2.0*2	Depth	Strata Cha	nge	(Burmi	-			Bould	er Count	Note No.		
1 Topsoil 0.9± Damp, dark brown, SILT and fine SAND, trace Roots E 2 Subsoil 1.8* Damp, light brown, SILT and fine SAND, trace Roots E I 3 Image: Sample constraints of the sample constraint		Forest Mat (0.3'± Damp, bl			and Leaves						
Subsoil 1.8± Damp, light brown, SILT and fine SAND, trace Roots E 1 2' Image: Sample root in the same root in the r	1'	Topsoil 0.9	9'± Dar	mp, dark brov	vn, SILT and fine SAND, trace	Roots	Е					
2		Subsoil 1 8	B'+ Dai	mp light brow	vn SILT and fine SAND trace	Roots	F					
$ \begin{array}{c c c c c c c } \hline 3 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 6 \\ \hline 7 \\ \hline 7 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 8 \\ \hline 8 \\ \hline 8 \\ \hline 9 \\ \hline 8 \\ \hline 10^{2} \\ \hline 8 \\ \hline 8 \\ \hline 8 \\ \hline 10^{2} \\ 10^{2} \\ \hline 10^{2} \\ \hline 10^{2} \\ 10^{2} \\ \hline 10^{2} \\ \hline 10^{2} $	2'			inp, iight brov		110010	L					
4' 5' Glacial Till Damp to wet, brown, fine to coarse SAND, some fine to coarse Gravel, little Silt, trace Cobbles M/D 102A 102A 6' 7' 0' 0' 0' 0' 0' 0' 8' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 0' 3 4 10' 11' 12' 0' 0' 0' 0' 0' 12' 13' 0' 0' 0' 0' 0' 0' 14' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 0' 0' 0' 0' 13' 14' 0' 0' 0' 0' 0' 0' 14' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 0' 0' 0' 0' 0' 0' 14' 15' 1. Samiding oroundwater was observed at a depth of about 4.3± feet below the ground surface. 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0'										1		
4' 5' Glacial Till Damp to wet, brown, fine to coarse SAND, some fine to coarse Gravel, little Silt, trace Cobbles M/D 102A 102A 6' 7' 0' 0' 0' 0' 0' 0' 8' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 0' 3 4 10' 11' 12' 0' 0' 0' 0' 0' 12' 13' 0' 0' 0' 0' 0' 0' 14' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 0' 0' 0' 0' 13' 14' 0' 0' 0' 0' 0' 0' 14' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 0' 0' 0' 0' 0' 0' 14' 15' 1. Samiding oroundwater was observed at a depth of about 4.3± feet below the ground surface. 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0'	3'											
5' Glacial Till Damp to wet, brown, fine to coarse SAND, some fine to coarse M/D 10±A 6' 7 B Barban to coarse M/D 10±A 9' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 3 10' 10' Bottom of test pit in natural glacial till at 8.8± feet 4 10' 11' Bottom of test pit in natural glacial till at 8.8± feet 4 11' 12' Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 5 13' 14' 15' Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 3 14' 15' Caroundwater was observed at a depth of about 4.3± feet below the ground surface. 5 2. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 5 5 10' 11' 12' 13' 14' 15' Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 5 10' 10' 11' 10' 10' 10' 10' 10' 10' 10' 10' 10' 10'												
5' Glacial Till Damp to wet, brown, fine to coarse SAND, some fine to coarse M/D 10±A 6' 7 B Barban to coarse M/D 10±A 9' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 3 10' 10' Bottom of test pit in natural glacial till at 8.8± feet 4 10' 11' Bottom of test pit in natural glacial till at 8.8± feet 4 11' 12' Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 5 13' 14' 15' Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 3 14' 15' Caroundwater was observed at a depth of about 4.3± feet below the ground surface. 5 2. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 5 5 10' 11' 12' 13' 14' 15' Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 5 10' 10' 11' 10' 10' 10' 10' 10' 10' 10' 10' 10' 10'	4'									2		
Gladal III Damp to wet, brown, fine to coarse Gravel, little Sit, trace Cobbles M/D 10:A 6' 7' Gravel, little Sit, trace Cobbles M/D 10:A 8' 8.8'± 3 4 10' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 4 10' 11' 11' 12' 13' 11' 13' 14' 15' 1.5 to btained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was observed at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 1. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 2. Groundwater was observed at a depth of about 8.5± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0.10% F = Fine E = Easy F/M = 4* 18' - 36'' B Some (So): 20:55% C = Coarse D = Difficult										_		
Gladal III Damp to wet, brown, fine to coarse Gravel, little Sit, trace Cobbles M/D 10:A 6' 7' Gravel, little Sit, trace Cobbles M/D 10:A 8' 8.8'± 3 4 10' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 4 10' 11' 11' 12' 13' 11' 13' 14' 15' 1.5 to btained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was observed at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 1. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 2. Groundwater was observed at a depth of about 8.5± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0.10% F = Fine E = Easy F/M = 4* 18' - 36'' B Some (So): 20:55% C = Coarse D = Difficult	5'											
6' 7' 7' 8' 9' 8.8'± 10' 10' 11' 11' 12' 13' 13' 14' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 3. Standing to undwater was observed at a depth of about 8.5± feet below the ground surface. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Two set the test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Two set terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Two set terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Two set terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Two set terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Two set terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Twis set te		Glacial Ti	ill Damp to			ne to coarse	M/D	1	0±A			
7 8' 3 9' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 10' 10' 11' 11' 12' 13' 14' 15' 1.5 sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 10' 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy M = Medium N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy M = Medium E = Easy M = Moderate F/W = 4± 18' - 36' B Some (So): 20-35% C = Coarse D = Difficult	e!			Grave	el, little Silt, trace Cobbles							
8' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 3 10' 11' 12' 13' 14' 12' 13' 14' 15' 15' Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 3. 3 3. 14' 15' 15' 15' Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 3. 3 3. Standing groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. 10' 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. 3. 10' 7. NS = 12± Diameter Class Trace (T): 0.10% F = Fine E = Easy N/S = 12± Diameter Class Trace (T): 0.10% M = Medium M = Medium F/W = 4± 18'' - 36'' B Some (So): 20-35% C = Coarse D = Difficult	6											
8' 8.8'± Bottom of test pit in natural glacial till at 8.8± feet 3 10' 11' 12' 13' 14' 12' 13' 14' 15' 15' Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 3. 3 3. 14' 15' 15' 15' Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 3. 3 3. Standing groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. 10' 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. 3. 10' 7. NS = 12± Diameter Class Trace (T): 0.10% F = Fine E = Easy N/S = 12± Diameter Class Trace (T): 0.10% M = Medium M = Medium F/W = 4± 18'' - 36'' B Some (So): 20-35% C = Coarse D = Difficult												
3 9' 8.8'± 10' Bottom of test pit in natural glacial till at 8.8± feet 10' 11' 11' 12' 13' 14' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. N/S = 12± Diameter Classification Trace (T): 0.10% F = Fine E = Easy M = Moduim N/S = 12± Diameter Class Trace (T): 0.10% M = Medium M = Moderate M = Moderate D = Diffi	7'											
3 9' 8.8'± 10' Bottom of test pit in natural glacial till at 8.8± feet 10' 11' 11' 12' 13' 14' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. The test pit at matural glacial till at a depth of about 8.5± feet below the ground surface. N/S = 12± Diameter Classification Trace (T): 0.10% F = Fine E = Easy M = Moduim N/S = 12± Diameter Class Trace (T): 0.10% M = Medium M = Moderate M = Moderate D = Diffi												
g' Bottom of test pit in natural glacial till at 8.8± feet 10' 11' 11' 12' 13' 14' 15' 1.5 ample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy F/W = 4± 18'' - 36'' B Some (So): 20-35% C = Coarse D = Difficult	8'									3		
g' Bottom of test pit in natural glacial till at 8.8± feet 10' 11' 11' 12' 13' 14' 15' 1.5 ample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy F/W = 4± 18'' - 36'' B Some (So): 20-35% C = Coarse D = Difficult		8.8'±								4		
11' 12' 13' 13' 14' 15' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy FW = 4± 18" - 36" B Some (So): 20-35% C = Coarse D = Difficult	9'		В	Bottom of test	pit in natural glacial till at 8.8±	feet						
11' 12' 13' 13' 14' 15' 15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 4.3± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy FW = 4± 18" - 36" B Some (So): 20-35% C = Coarse D = Difficult												
12' 13' 14' 15' Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. MVS = 12± Diameter Class 6" - 18" A Little (Li): 10-20% M = Medium M = Medium M = Moderate FW = 4± 18" - 36"	10'											
12' 13' 14' 15' Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.5± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. MVS = 12± Diameter Class 6" - 18" A Little (Li): 10-20% M = Medium M = Medium M = Moderate FW = 4± 18" - 36"												
13' 14' 14' 15' Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. M/S = 12± Diameter Class 6" - 18" A Little (Li): 10-20% M = Medium M = Medium M = Moderate FW = 4± 18" - 36"	11'											
13' 14' 14' 15' Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. M/S = 12± Diameter Class 6" - 18" A Little (Li): 10-20% M = Medium M = Medium M = Moderate FW = 4± 18" - 36"												
14' 15' Image: Second sec	12'											
14' 15' Image: Second sec												
15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.3± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy N/S = 12± Diameter Class Trace (T): 0-20% M = Medium M = Moderate F/W = 4± 18" - 36" B Some (So): 20-35% C = Coarse D = Difficult	13'											
15' 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8.3± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy N/S = 12± Diameter Class Trace (T): 0-20% M = Medium M = Moderate F/W = 4± 18" - 36" B Some (So): 20-35% C = Coarse D = Difficult												
Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy 6" - 18" A Little (Li): 10-20% M = Medium M = Moderate F/W = 18" - 36" B Some (So): 20-35% C = Coarse D = Difficult	14'											
Notes: 1. Sample no. S-1 obtained from about 1.8± to 8.8± feet below the ground surface. 2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy 6" - 18" A Little (Li): 10-20% M = Medium M = Moderate F/W = 18" - 36" B Some (So): 20-35% C = Coarse D = Difficult												
2. Groundwater was seeping into the test pit at a depth of about 4.3± feet below the ground surface. 3. Standing groundwater was observed at a depth of about 8± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. 5. Excavation Effort Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy F/W = 4± 18" - 36" B Some (So): 20-35% C = Coarse D = Difficult												
3. Standing groundwater was observed at a depth of about 8± feet below the ground surface. 4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface. Test Pit Dimensions Boulder Classification Proportions Used Abbreviations Excavation Effort N/S = 12± Diameter Class Trace (T): 0-10% F = Fine E = Easy F/W = 4± 18" - 36" B Some (So): 20-35% C = Coarse D = Difficult		-			—							
4. The test pit was terminated in natural glacial till at a depth of about 8.5± feet below the ground surface.Test Pit DimensionsBoulder ClassificationProportions UsedAbbreviationsExcavation EffortN/S =12±DiameterClassTrace (T): 0-10%F = FineE = Easy6" - 18"ALittle (Li): 10-20%M = MediumM = ModerateF/W =18" - 36"BSome (So): 20-35%C = CoarseD = Difficult				-	-	-						
Test Pit DimensionsBoulder ClassificationProportions UsedAbbreviationsExcavation EffortN/S = 12±DiameterClassTrace (T): 0-10%F = FineE = Easy6" - 18"ALittle (Li): 10-20%M = MediumM = ModerateF/W = 4±18" - 36"BSome (So): 20-35%C = CoarseD = Difficult												
N/S =12±DiameterClassTrace (T): 0-10%F = FineE = Easy $6'' - 18''$ ALittle (Li): 10-20%M = MediumM = Moderate $F/W =$ $18'' - 36''$ BSome (So): 20-35%C = CoarseD = Difficult				naturai yiatia	$a_1 a_2 a_3 a_4 a_4 a_4 a_4 a_4 a_4 a_4 a_4 a_4 a_4$		giouna sundue.					
N/S =12± $6" - 18"$ ALittle (Li): 10-20%M = MediumM = Moderate $F/W =$ $4*$ $18" - 36"$ BSome (So): 20-35%C = CoarseD = Difficult	Test Pit	Dimensions	Boulder Class	sification	Proportions Used	A	bbreviations		Excava	ation Effort		
$F/W = 4+ \begin{array}{cccc} 6" - 18" & A & Little (Li): 10-20\% & M = Medium & M = Moderate \\ 18" - 36" & B & Some (So): 20-35\% & C = Coarse & D = Difficult \end{array}$	N/S =	12±		Class						-		
	E/W =	4±	18" - 36" >36"	B C	Some (So): 20-35% And: 35-50%				D =	Difficult		

	NORTHEAST GEOTECHNICAL, INC.										
	TEST PIT LOG		Project:	Proposed Residential De 466 Chestnut Stre Ashland, MA	-	F	Pit No.: _ Page: _ File No.: _ wed By:	^ 0	P-21 of 1 189.00 Olson, P.E.		
Subcor	ntractor: Silvers	mith Excavating	Co., Inc.		Date/Weather:		Cloudy, F	Rain, 35	to 45°F		
	perator:			Northeast Geotechn			Zamberr				
	ipment: Cat. 31					See Exp			Plan		
Capacity	y/Reach: 3	5/4± 0.1 / 15± 100	el	Giouna Sun			342± 16	el			
Depth	Strata Change			Soil Description		Excavation			Note No.		
Deptil	otrata onange			ster Identification System)		Effort	Boulder	Count	Note No.		
	Forest Mat 0.3'±	Damp, bla	ack, SILT, lit	tle fine Sand mixed with Roots	and Leaves	E					
1'	Topsoil 0.8'±	Dar	np, dark bro	wn, SILT, little fine Sand, little	Roots	E					
2'	Subsoil	Damp, li		SILT, little fine Sand, trace fine , trace Cobbles, trace Roots	e to coarse	Е					
	2.6'±			, ,							
3'									1,2		
4'											
5'											
	Glacial Till	Damp to we	at aravish h	rown, fine to coarse SAND, so	me Silt little (.						
6'		Damp to we		coarse Gravel, trace Cobbles	nie Siit, iittie (*	E/M	5±	A			
			,								
7'									3,4		
									3,4		
8'											
9'	9'±								5		
		Bottor	m of test pit	in natural glacial till/boulders a	at 9± feet						
10'											
11'	4										
12'	4										
13'	4										
14'	4										
15'											
Notes:	-			o 9± feet below the ground su at a depth of about 3± feet belo		surface					
			-	lepth of about $7\pm$ feet below th	-						
	4. The test pit wall				5						
				dery glacial till at a depth of ab			face.	_			
Test Pit	t Dimensions	Boulder Classi		Proportions Used	AI	bbreviations			ation Effort		
N/S =	10±	Diameter 6" - 18"	Class A	Trace (T): 0-10% Little (Li): 10-20%	Ν	F = Fine A = Medium			= Easy Moderate		
		18" - 36"	В	Some (So): 20-35%		C = Coarse			Difficult		
E/W =	4±	>36"	С	And: 35-50%	F/M =	Fine to Medium					

	NORTHEAST GEOTECHNICAL, INC.									
	TEST PIT LO)G	Project:	Proposed Residential De 466 Chestnut Stro Ashland, MA	-	F	Page: File No.:			
Subcon	ntractor: Silve	ersmith Excavating	Co., Inc.	-	Date/Weather:	4-7-2015 /	Cloudy,	Rain, 35	to 45°F	
-	perator:			Northeast Geotechr	-			mardi, P.I		
-		. 315DL Tracked E				See Exp			Plan	
Capacity	y/Reach:	3/4± C.Y / 15± fe	et	Ground Surf	ace Elevation:		337±	feet		
Depth	Strata Chan	ge	(Burmi	Soil Description		Excavation	Pould	er Count	Note No.	
	Forest Mat 0	4' Damp bl		tle fine Sand mixed with Roots	and Leaves	Effort E	Боша			
	Topsoil 0.9	-		wn, SILT, little fine Sand, trace		E				
1'	10050110.9	Dai	np, uaik bio			E				
2'	Subsoil	W	et, light brow	n, SILT, little fine Sand, trace	Roots	E			2	
3'	3'									
4'									1	
5'										
6'	Glacial Till	Damp to y	vet aravish l	brown, fine to coarse SAND, s	ome Silt little					
7'		Dump to t		coarse Gravel, trace Cobbles		М	10	0±A		
8'									3,4	
9'	-									
10'	9.8'	В	ottom of test	t pit in natural glacial till at 9.8-	⊦ feet				5	
11'				,						
12'										
13'										
14'										
15'										
Notes:	1. Sample no. S	S-1 obtained from	about 3± to	9.8± feet below the ground su	rface.					
	2. Groundwater	was seeping into	the test pit a	at a depth of about 2± feet bel	ow the ground s					
				lepth of about 7± feet below th	e ground surfac	ce.				
	-	alls collapsed wh		-	oot bolow the	round out				
Test Pit	5. The test pit w	as terminated in Boulder Class		al till at a depth of about 9.8± f Proportions Used		breviations		Excave	ation Effort	
		Diameter	Class	Trace (T): 0-10%		F = Fine			= Easy	
N/S =	10±	6" - 18"	A	Little (Li): 10-20%	N	1 = Medium			Moderate	
E/W =	4±	18" - 36" >36"	B C	Some (So): 20-35% And: 35-50%		C = Coarse Fine to Medium		D =	Difficult	

		NOF	THEAST GEOTECH	NICAL, IN	С.			
TEST PIT LOG			Project: Proposed Residential Development 466 Chestnut Street Ashland, MA			Test Pit No.: TP-23 Page: 1 of 1 File No.: O189.00 Reviewed By: Glenn Olson, P		
		mith Excavating Co., Inc.		Date/Weather:				
	perator:		Northeast Geotechr				nardi, P.I	
	y/Reach:	15DL Tracked Excavator		st Pit Location: face Elevation:		340±		Pian
oupdon.		0/12 0.17/1021000				0.01		
Depth	Strata Change		Soil Description		Excavation			Note No.
	_	(В	urmister Identification System)		Effort	Boulde	er Count	
	Forest Mat 0.3	± Damp, black, SIL	T, little fine Sand mixed with Roots	s and Leaves	E			
1'	Topsoil 1.1'±	Damp	o, dark brown, SILT, little fine Sand	l,	Е			
2'	Subsoil	Damp light	brown, SILT, little fine Sand, trace	P Roots	Е			
		Damp, iight			E			
3'	3'±							
	Sandy Silt	Domp. gro	yish brown to beige, SILT, little find	Sand	Е			
4'	4	Damp, gra	yish brown to beige, SILT, little line	e Sanu	E			
5'	4.5'±							1,2
6'								
7'	Glacial Till	Wet, brown, fin	e to coarse SAND, some Silt, som	e (-) fine to	E/M	1/	A 10	
			coarse Gravel, trace Cobbles		E/M	10)±A	
8'	4							3,4
9'	1							
10'	10'±							5
		Bottom o	f test pit in natural glacial till at 10-	± feet				
11'								
12'	4							
13'	4							
14'	4							
4.51								
15' Notes:	1. Sample no. S-1	obtained from about 4	.5± to 10± feet below the ground s	urface				
	-		pit at a depth of about $4.8\pm$ feet b		surface.			
	3. Standing groun	dwater was observed a	t a depth of about 7.5± feet below	-				
		Is collapsed while the e	-	not bolow the are	und surface			
Test Pit	-	Boulder Classification	placial till at a depth of about 10± for Proportions Used	_	ound surface.		Excava	ation Effort
N/S =		Diameter Clas	• • • • • • • • • • • • • • • • • • •		F = Fine			= Easy
N/3 =	±	6" - 18" A	Little (Li): 10-20%		= Medium		M =	Moderate
E/W =	±	18" - 36" B	Some (So): 20-35%	-	= Coarse		D =	Difficult
		>36" C	And: 35-50%	F/M = F	ine to Medium			

			NORTH	EAST GEOTECH	NICAL, IN	NC.			
TEST PIT LOG			PIT LOG Project: Proposed Residential Development 466 Chestnut Street Ashland, MA				Test Pit No.: TP-2 Page: 1 of File No.: 0189 Reviewed By: Glenn Ols		
Subcon	tractor: Silver	rsmith Excavating	Co., Inc.		Date/Weather:	4-7-2015 /	Cloudy,	Rain, 35	to 45°F
-	perator:			Northeast Geotech				nardi, P.E	
	ipment: Cat.					See Exp			Plan
Capacity	//Reach:	3/4± C.Y / 15± fe	et	Ground Sur	fface Elevation:		333± f	eet	
Depth	Strata Chang	e	(Burmis	Soil Description ster Identification System)		Excavation Effort	Boulde	r Count	Note No.
	Root Mat 0.3	± Damp, bl		le fine Sand mixed with Roots	s and Leaves	E	Douido	· · · · · · ·	
1'	Topsoil 1.2'±	: Dar	np, dark brow	n, SILT, some Roots, little fir	ne Sand	Е			
2'	Subsoil 2.5'±	Dai		n, SILT, little fine Sand, trace		E			2
3'	Sandy Silt 3.5'±			tan, SILT, some fine Sand		Е			
4'	0.01								1
5'	Glacial Till	Damp, to		prown, fine to coarse SAND, so coarse Gravel, trace Cobbles	some Silt, little	E/M	5:	±Α	3,4
6'	6'±								5
7'			Bottom of test	t pit in natural glacial till at 6±	feet				
8'									
9'									
10'									
11'									
12'									
13'									
14'									
15'									
Notes:	 Groundwater v Standing ground The test pit was 	was seeping into ndwater was obs alls collapsed wh	the test pit at served at a de ile the excava	$6\pm$ feet below the ground sub- c a depth of about 2.5± feet be- pth of about 5.5± feet below ation was open. till at a depth of about $6\pm$ feet	elow the ground the ground surfa	ace.	•		
	Dimensions	Boulder Class		Proportions Used		breviations		Excava	ation Effort
N/S =	4±	Diameter 6" - 18"	Class A	Trace (T): 0-10% Little (Li): 10-20%	N	F = Fine 1 = Medium			= Easy Moderate
E/W =	10±	18" - 36" >36"	B C	Some (So): 20-35% And: 35-50%		C = Coarse Fine to Medium		D =	Difficult

			NORT	HEAST GEOTECH	NICAL, IN	IC.			
TEST PIT LOG			Project: Proposed Residential Development 466 Chestnut Street Ashland, MA			Test Pit No.: TP-25 Page: 1 of 1 File No.: O189.0 Reviewed By: Glenn Olso			1 of 1 189.00
Subcon	tractor: Si	Iversmith Excavating	Co., Inc.		Date/Weather:	4-7-2015 /			
Op	perator:			Northeast Geotech	nical Observer:			rnardi, P.I	
-		at. 315DL Tracked E			st Pit Location:			Location	Plan
Capacity	//Reach:	3/4± C.Y / 15± fe	et	Ground Sur	face Elevation:		336±	feet	
Depth	Strata Cha	inge	(Durm)	Soil Description ister Identification System)		Excavation	David		Note No.
	Forest Mat	0.3'± Damp, b	-	le fine Sand mixed with Roots	and Leaves	Effort E	Bould	er Count	
1'	Topsoil 1	-		vn, SILT, some fine Sand, som		Е			
2'	Subsoil 2'±		mp, light bro	wn, SILT, little fine Sand, trace	e Roots	E			
3'	Glacial T	ill Damp to	wet gravish h	prown, fine to coarse Sand, some	fine to coarse				
5'		Danp to		vel, some Silt, trace Cobbles		E/M	5	σ±Α	1
6'	6.2'±								2
7'		E	Bottom of tes	t pit in natural glacial till at 6.2	± feet				
8'									
9'									
10'									
11'									
12'									
13'									
14'									
15'									
Notes:			-	at a depth of about 4.5± feet b al till at a depth of about 6.2± f	-				
Test Pit	Dimensions	Boulder Class	sification	Proportions Used	Ab	breviations			ation Effort
N/S =	4±	Diameter 6" - 18"	Class A	Trace (T): 0-10% Little (Li): 10-20%		F = Fine I = Medium		M =	= Easy Moderate
E/W =	10±	18" - 36" >36"	B C	Some (So): 20-35% And: 35-50%	-	C = Coarse Fine to Medium		D =	Difficult

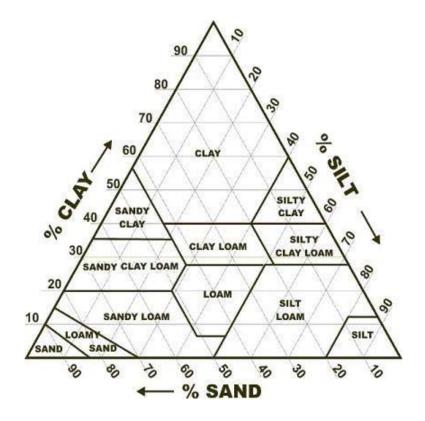
NORTHEAST GEOTECHNICAL, INC.								
TEST P	IT LOG	Project:	Proposed Residential Development	Test Pit No.:	TP-26			
			466 Chestnut Street	Page:	1 of 1			
			Ashland, MA	File No.:	O189.00			
				Reviewed By:	Glenn Olson, P.E.			
Subcontractor:	Silversmith Excavating	Co., Inc.	Date/Weather:	4-8-2015 / Partly	Cloudy, 40°F			
Operator: Kevin			Northeast Geotechnical Observer:	Mark Zamber	nardi, P.E.			
Equipment: Cat. 315DL Tracked Ex		xcavator	Test Pit Location:	See Exploration	Location Plan			
Capacity/Reach: 3/4± C.Y / 15± fee		et Ground Surface Elevation:		320± feet				

Depth	Strata Change	Soil Description (Burmister Identification System)	Excavation Effort	Boulder Count	Note No.
	Root Mat 0.3'±	Damp, black, SILT, trace fine Sand mixed with Roots and Leaves	Е		
1'	Topsoil 1.3'±	Damp, dark brown, SILT, little fine Sand, little Roots	Е		
2'	Subsoil	Damp, light brown, SILT, some fine Sand, trace Roots	E		
-	2.5'±		L		
3'					
4'	Glacial Till	Damp to wet, grayish brown, fine to medium SAND, some Silt, little (+) fine to coarse Gravel, trace Cobbles	Μ	5±A	1
5'	5'±				2
		Bottom of test pit in natural glacial till at $5\pm$ feet			
6'					
7'					
0'					
8'					
9'					
10'					
11'					
12'					
13'					
14'					
15'					
lotes:		seeping into the test pit at a depth of about $3.8\pm$ feet below the ground			
	2. The test pit was te	rminated in natural glacial till at a depth of about $5\pm$ feet below the gro	und surface.		

Test Pit Dimensions		Boulder Classification		Proportions Used	Abbreviations	Excavation Effort
N/S =	10±	Diameter	Class	Trace (T): 0-10%	F = Fine	E = Easy
N/3 =	101	6" - 18"	А	Little (Li): 10-20%	M = Medium	M = Moderate
E/W =	4±	18" - 36"	В	Some (So): 20-35%	C = Coarse	D = Difficult
$\Box / VV =$	4±	>36"	С	And: 35-50%	F/M = Fine to Medium	

APPENDIX D

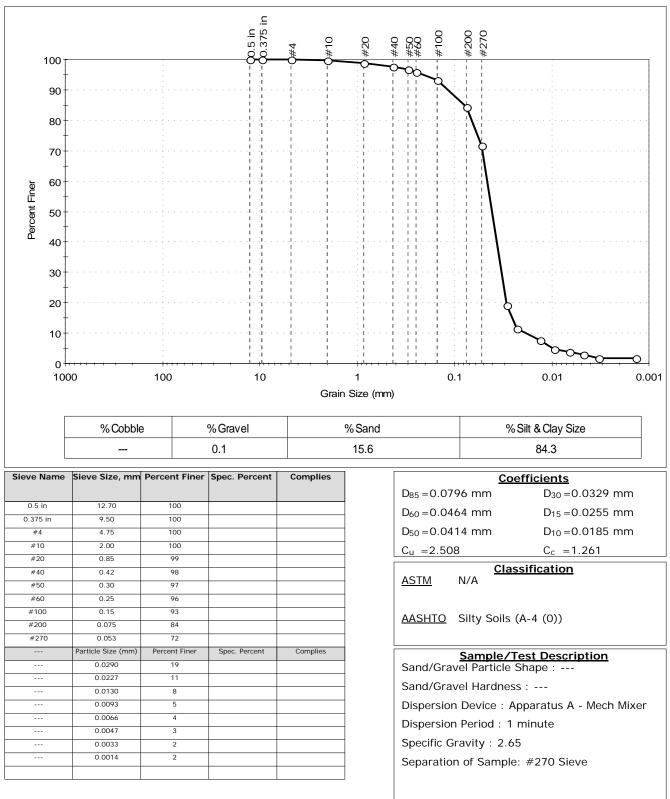
Soil Laboratory Test Results

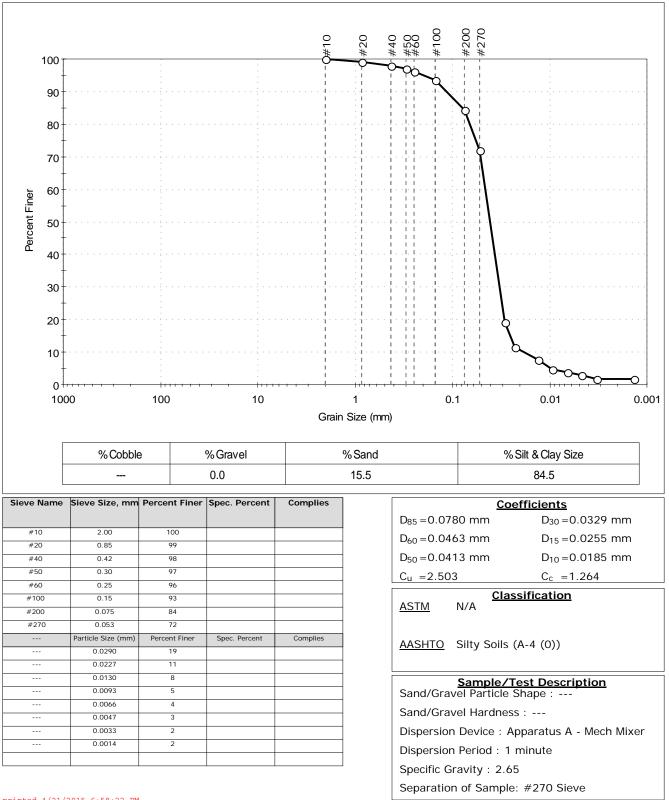

Client:	Northeast Geotechnical, Inc.							
Project:	Proposed	Residential Dev	/elopment					
Location:	Ashland, I	AN			Project No:	GTX-303030		
Boring ID:	TP-1		Sample Type:	bag	Tested By:	jbr		
Sample ID	: S-1		Test Date:	04/14/15	Checked By:	emm		
Depth :	25-30 in		Test Id:	327732				
Test Comm	nent:							
Sample Description:		Moist, yellowish brown silt with sand						
Sample Comment:								

USDA Textural Classification

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-1	S-1	25-30 in	33	65	2	Silt Loam

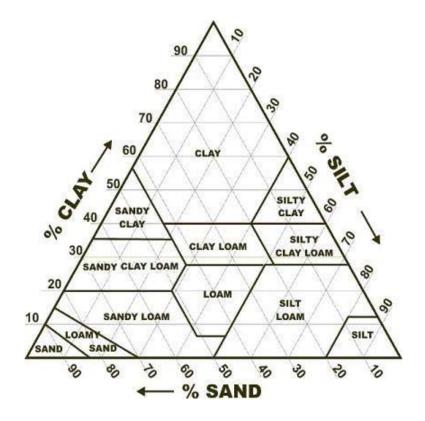
Classifications based only on material passing the #10 sieve


Sand: material passing 2.0 mm and retained on 0.05 mm diameter Silt: material passing 0.05 mm and retained on 0.002 mm diameter Clay: material passing 0.002 mm diameter

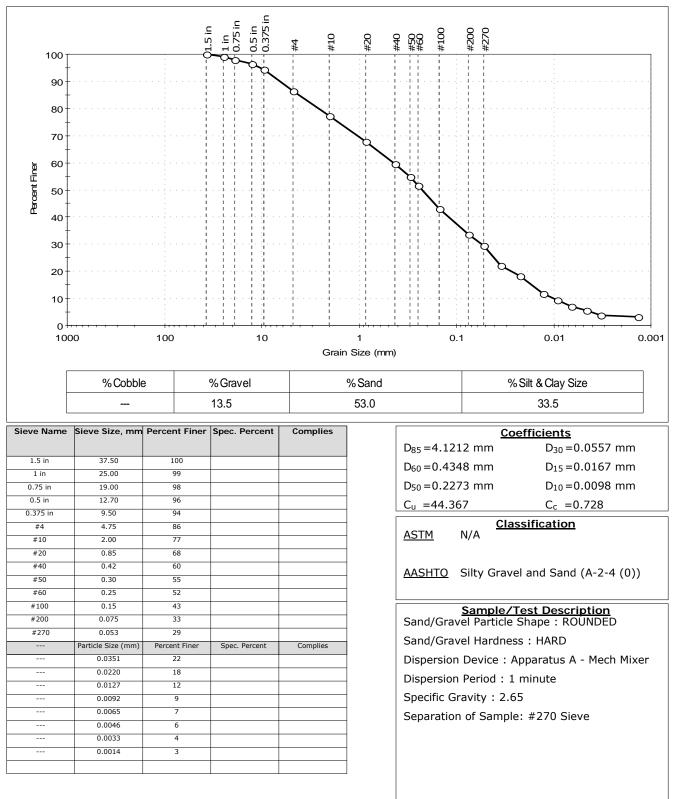

Client:	Northeast Geotechnical, Inc.								
Project:	Proposed	Residential Dev	velopment						
Location:	Ashland, M	ЛА			Project No:	GTX-303030			
Boring ID:	TP-1		Sample Type:	bag	Tested By:	jbr			
Sample ID:	: S-1		Test Date:	04/15/15	Checked By:	n/a			
Depth :	25-30 in		Test Id:	327744					
Test Comm	Test Comment:								
Sample Description: Moist		Moist, yellowi	loist, yellowish brown silt with sand						
Sample Co	mment:								

Particle Size Analysis - ASTM D422

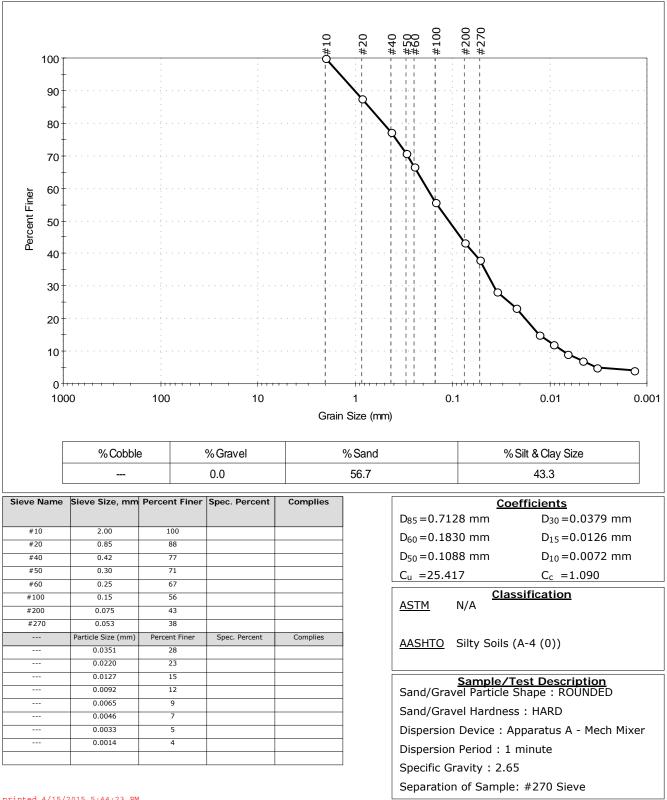
Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, I	AN			Project No:	GTX-303030	
Boring ID:	TP-1		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/15/15	Checked By:	n/a	
Depth :	25-30 in		Test Id:	327744			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample Description: Moist, yellowish			sh brown silt w	ith sand			
Sample Co	mment:						



Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	ЛА			Project No:	GTX-303030	
Boring ID:	TP-2		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/14/15	Checked By:	emm	
Depth :	28-100 in		Test Id:	327733			
Test Comm	nent:						
Sample Description: Moist, light bro			rown silty sand				
Sample Comment:							

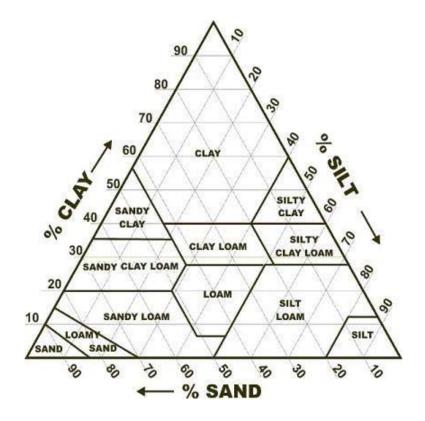

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-2	S-1	28-100 in	64	32	4	Sandy Loam

Classifications based only on material passing the #10 sieve

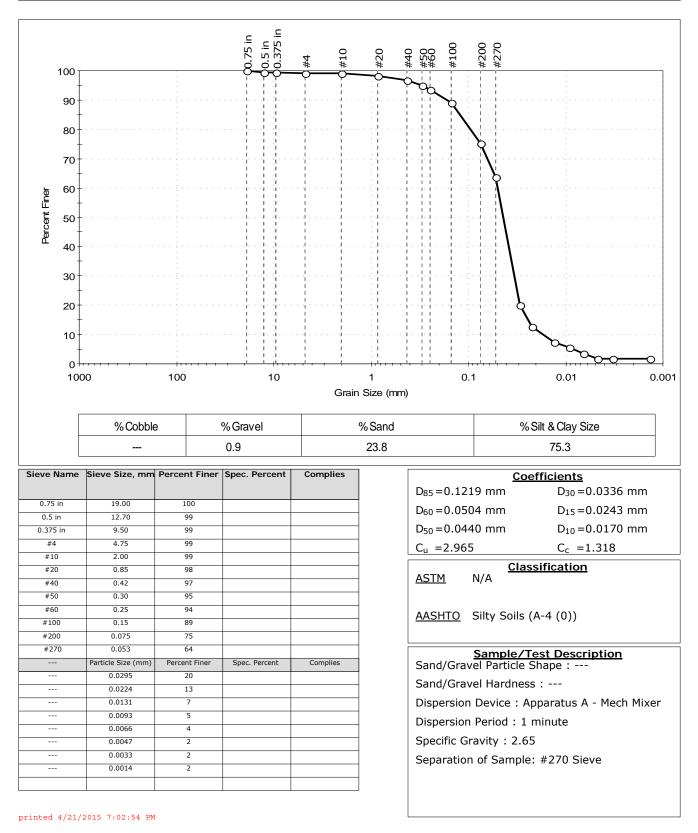


Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	1A			Project No:	GTX-303030	
Boring ID:	TP-2		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/14/15	Checked By:	emm	
Depth :	28-100 in		Test Id:	327745			
Test Comm	nent:						
Sample Description: Moist, light br			own silty sand				
Sample Comment:							

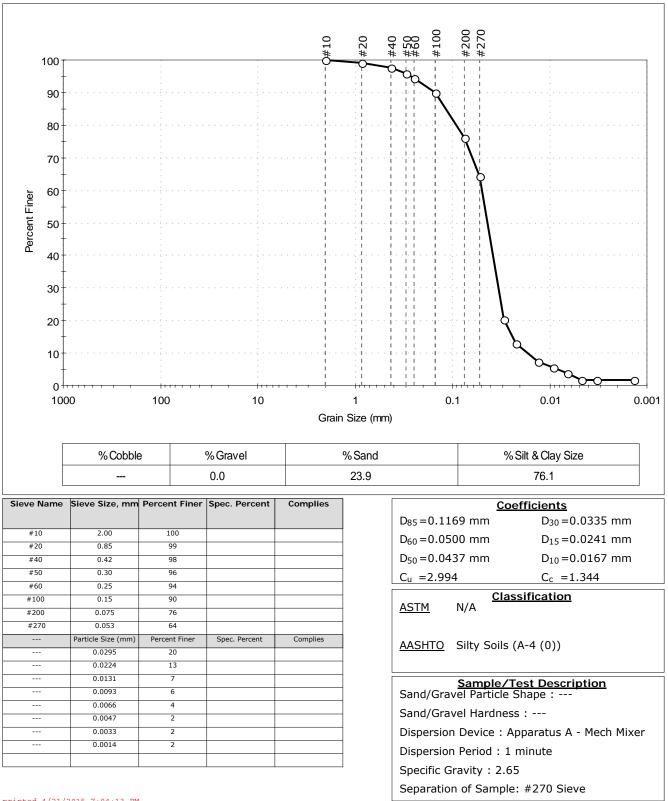
Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	1A			Project No:	GTX-303030	
Boring ID:	TP-2		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/14/15	Checked By:	emm	
Depth :	28-100 in		Test Id:	327745			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample Description: Moist, light br			rown silty sand				
Sample Co	mment:						



Client:	Northeast Geotechnical, Inc.							
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, M	AN			Project No:	GTX-303030		
Boring ID:	TP-3		Sample Type:	bag	Tested By:	jbr		
Sample ID:	: S-1		Test Date:	04/14/15	Checked By:	emm		
Depth :	27-36 in		Test Id:	327737				
Test Comm	nent:							
Sample Description: Moist, brown		silt with sand						
Sample Co	mment:							

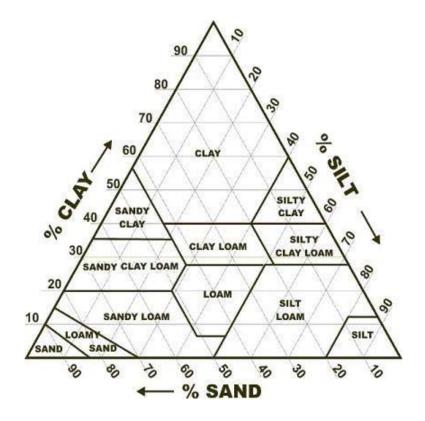

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-3	S-1	27-36 in	40	58	2	Silt Loam

Classifications based only on material passing the #10 sieve

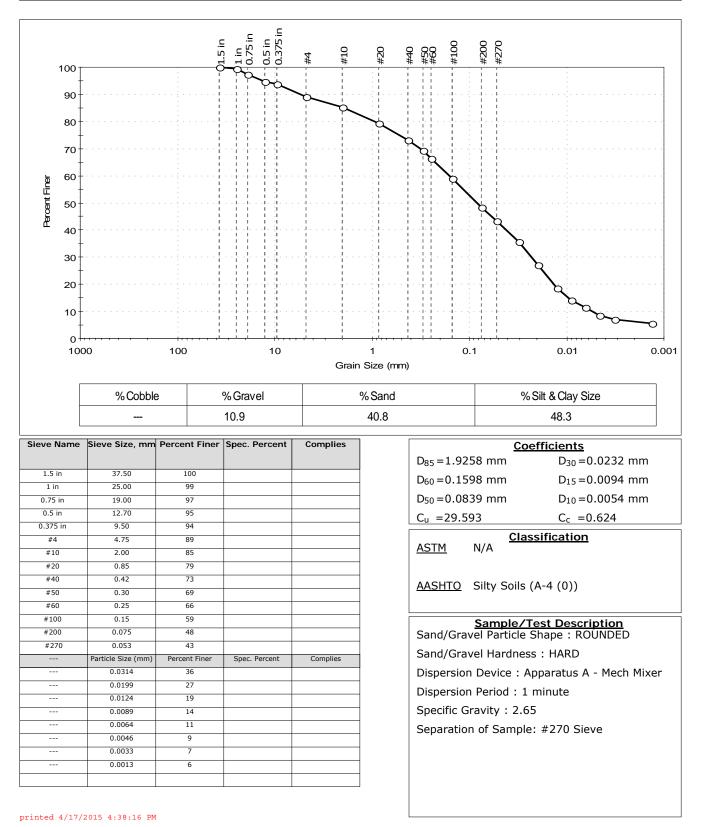


Client:	Northeast Geotechnical, Inc.					
Project:	Proposed Residential Development					
Location:	Ashland, I	MA			Project No:	GTX-303030
Boring ID:	TP-3		Sample Type:	bag	Tested By:	jbr
Sample ID	: S-1		Test Date:	04/14/15	Checked By:	emm
Depth :	27-36 in		Test Id:	327749		
Test Comm	nent:					
Sample Description: Moist, brown		silt with sand				
Sample Co	mment:					

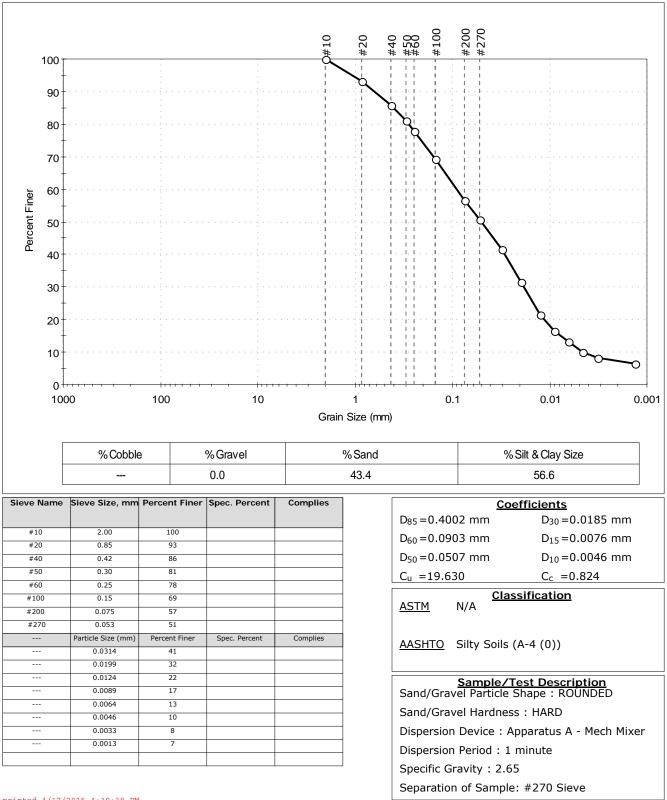
Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, I	MA			Project No:	GTX-303030	
Boring ID:	TP-3		Sample Type:	bag	Tested By:	jbr	
Sample ID: S-1			Test Date:	04/14/15	Checked By:	emm	
Depth :	27-36 in		Test Id:	327749			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample Description: Moist, brown			silt with sand				
Sample Co	mment:						



Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	ЛA			Project No:	GTX-303030	
Boring ID:	TP-4		Sample Type:	bag	Tested By:	jbr	
Sample ID:	: S-1		Test Date:	04/14/15	Checked By:	emm	
Depth :	33-100 in		Test Id:	327738			
Test Comm	nent:						
Sample Description: Moist, brown		silty sand					
Sample Co	mment:						

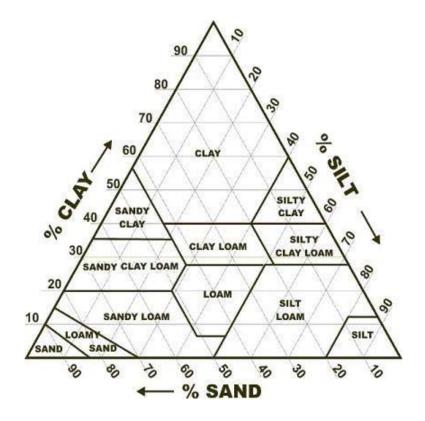

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-4	S-1	33-100 in	50	43	7	Sandy Loam

Classifications based only on material passing the #10 sieve

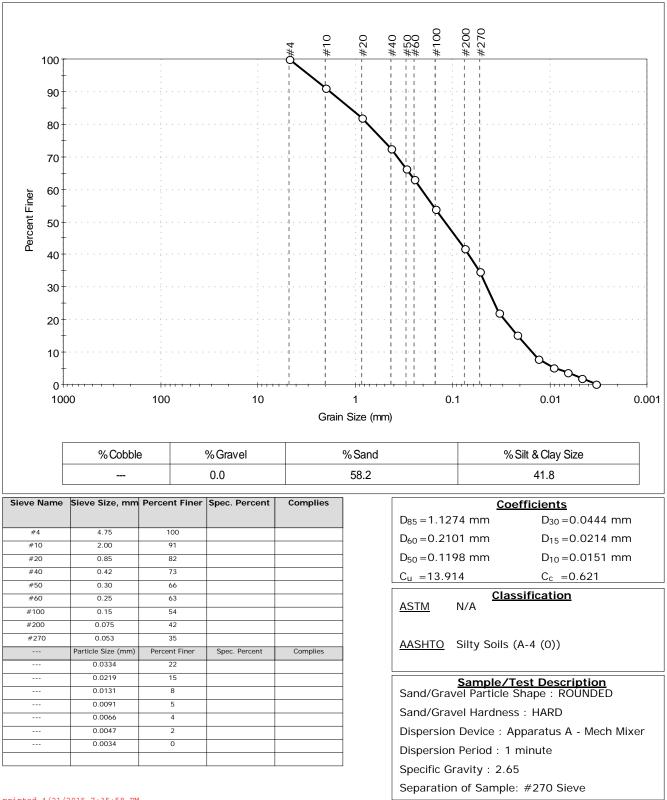


Client:	Northeast	Northeast Geotechnical, Inc.					
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	1A			Project No:	GTX-303030	
Boring ID:	TP-4		Sample Type:	bag	Tested By:	jbr	
Sample ID:	: S-1		Test Date:	04/14/15	Checked By:	emm	
Depth :	33-100 in		Test Id:	327750			
Test Comm	nent:						
Sample Description: Moist, brown			silty sand				
Sample Co	mment:						

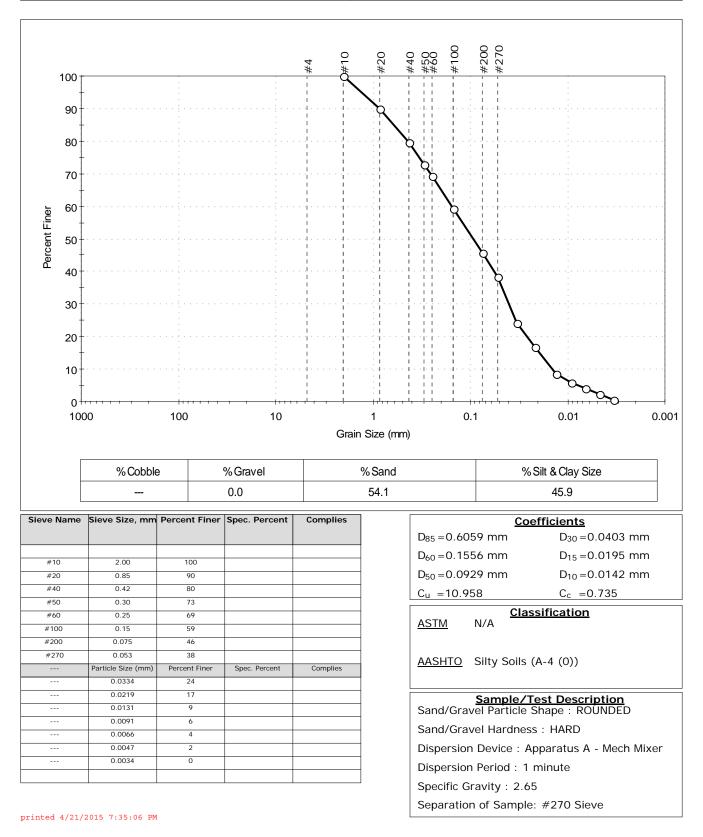
Client:	Northeast	Geotechnical,	Inc.				
Project:	Proposed I	Proposed Residential Development					
Location:	Ashland, M	1A			Project No:	GTX-303030	
Boring ID:	TP-4		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/14/15	Checked By:	emm	
Depth :	33-100 in		Test Id:	327750			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA classi	ification		
Sample Description: Moist, brown			silty sand				
Sample Co	mment:						



Client:	Northeast	Northeast Geotechnical, Inc.					
Project:	Proposed	Residential Dev	velopment				
Location:	Ashland, N	AN			Project No:	GTX-303030	
Boring ID:	TP-5		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/21/15	Checked By:	emm	
Depth :	36-100 in		Test Id:	327739			
Test Comm	nent:						
Sample Description: Moist, yellowish brown silty sand							
Sample Comment:							

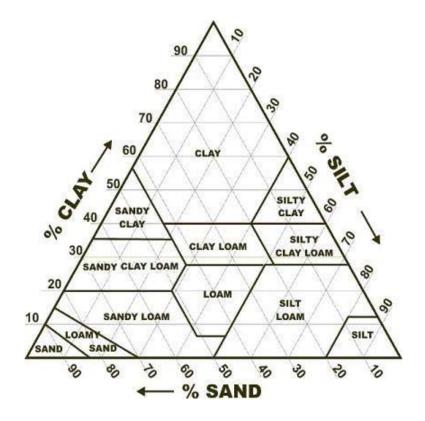

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-5	S-1	36-100 in	64	35	1	Sandy Loam

Classifications based only on material passing the #10 sieve

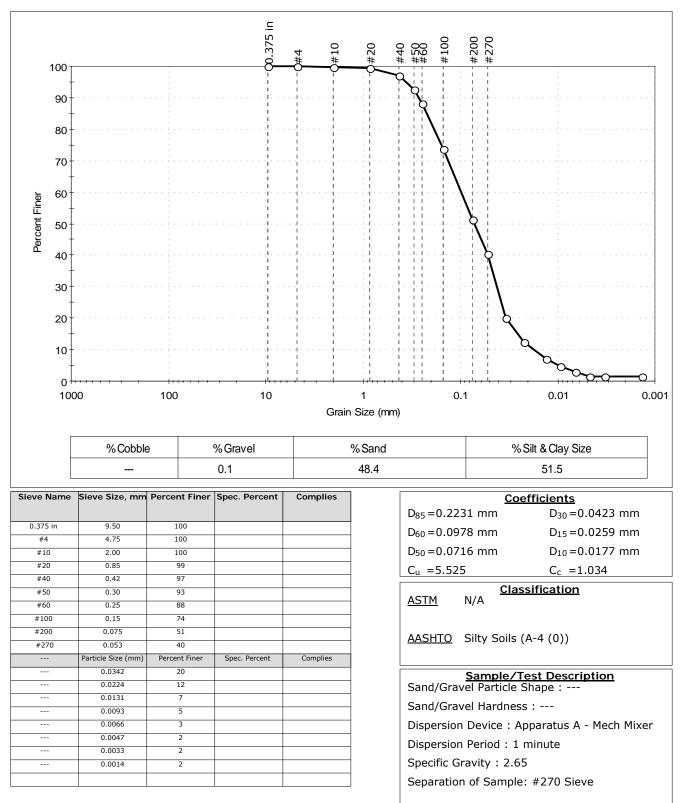


Client:	Northeast	Northeast Geotechnical, Inc.					
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	ЛА			Project No:	GTX-303030	
Boring ID:	TP-5		Sample Type:	bag	Tested By:	jbr	
Sample ID:	: S-1		Test Date:	04/21/15	Checked By:	emm	
Depth :	36-100 in		Test Id:	327751			
Test Comm	nent:						
Sample Description: Moist, yellowish brown silty sand							
Sample Co	Sample Comment:						

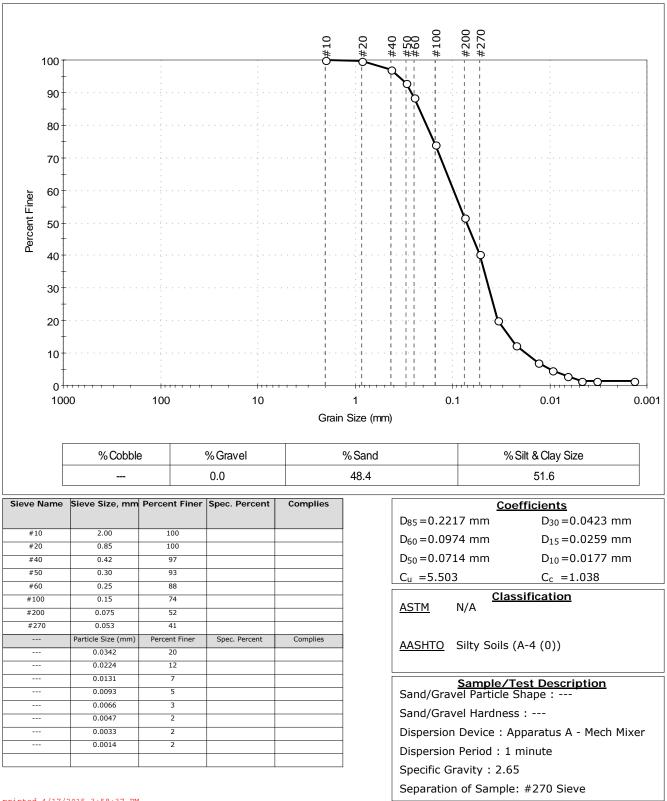
Client:	Northeast	Northeast Geotechnical, Inc.					
Project:	Proposed	Residential Dev	/elopment				
Location:	Ashland, M	ЛА			Project No:	GTX-303030	
Boring ID:	TP-5		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/21/15	Checked By:	emm	
Depth :	36-100 in		Test Id:	327751			
Test Comn	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample De	Sample Description: Moist, yellowish brown silty sand						
Sample Co	mment:						



Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, M	AN			Project No:	GTX-303030		
Boring ID:	TP-6		Sample Type:	bag	Tested By:	jbr		
Sample ID:	: S-1		Test Date:	04/14/15	Checked By:	emm		
Depth :	20-33 in		Test Id:	327736				
Test Comment:								
Sample Description: Moist, brown		sandy silt						
Sample Comment:								

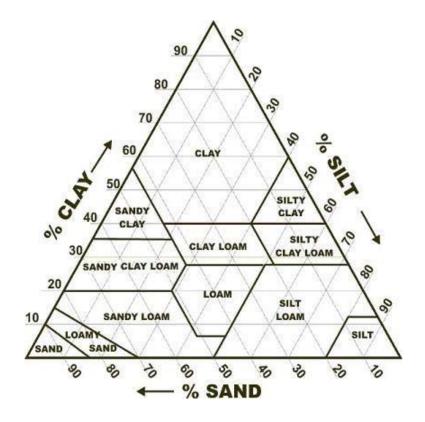

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-6	S-1	20-33 in	62	36	2	Sandy Loam

Classifications based only on material passing the #10 sieve

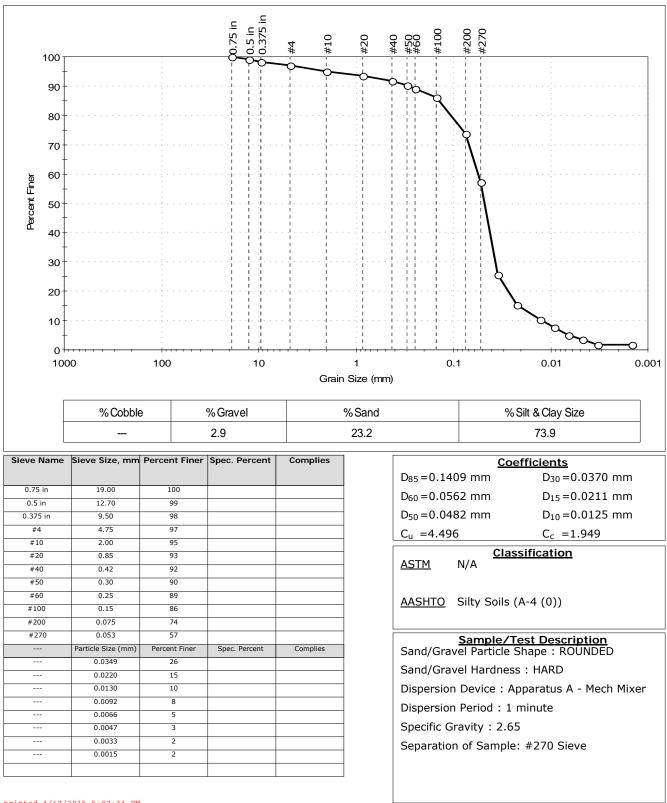


Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, I	MA			Project No:	GTX-303030		
Boring ID:	TP-6		Sample Type:	bag	Tested By:	jbr		
Sample ID	: S-1		Test Date:	04/14/15	Checked By:	emm		
Depth :	20-33 in		Test Id:	327748				
Test Comm	nent:							
Sample De	scription:	Moist, brown	sandy silt					
Sample Co	mment:							

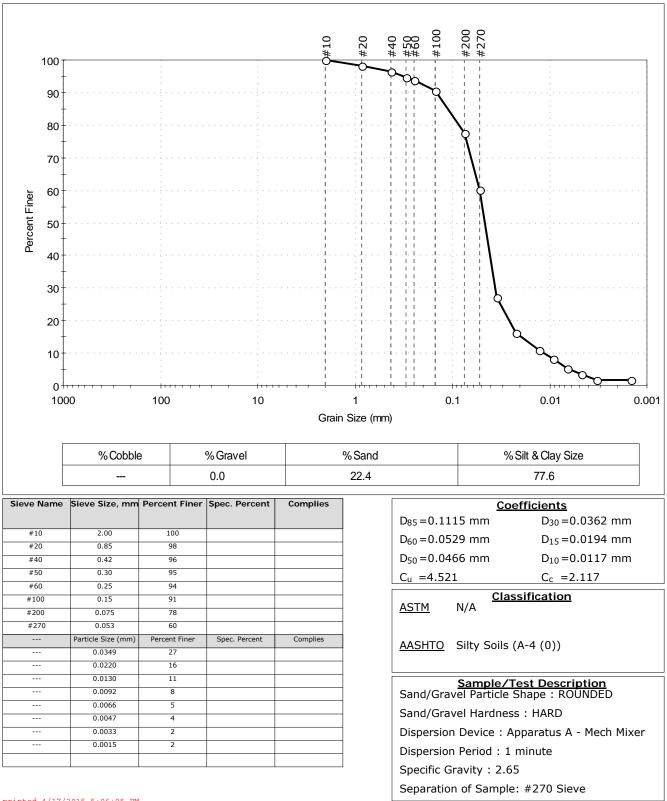
Client:	Northeast	Geotechnical,	Inc.					
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, I	MA			Project No:	GTX-303030		
Boring ID:	TP-6		Sample Type:	bag	Tested By:	jbr		
Sample ID: S-1			Test Date:	04/14/15	Checked By:	emm		
Depth :	20-33 in		Test Id:	327748				
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA classi	ification			
Sample De	Moist, brown	sandy silt						
Sample Co	mment:							



Client:	Northeast	Northeast Geotechnical, Inc.					
Project:	Proposed	Residential Dev	velopment				
Location:	Ashland, M	AN			Project No:	GTX-303030	
Boring ID:	TP-7		Sample Type:	bag	Tested By:	jbr	
Sample ID:	: S-1		Test Date:	04/15/15	Checked By:	emm	
Depth :	34-46 in		Test Id:	327868			
Test Comm	nent:						
Sample Description: Moist, light br			rown sandy silt				
Sample Co	mment:						

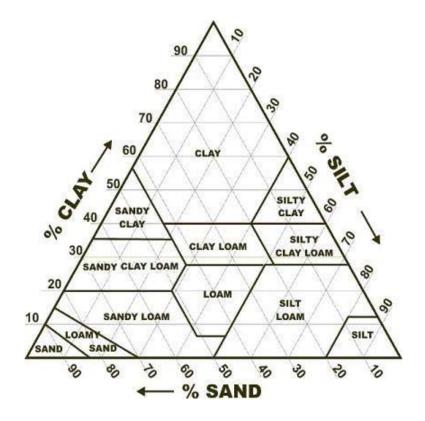

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-7	S-1	34-46 in	45	53	2	Silt Loam

Classifications based only on material passing the #10 sieve

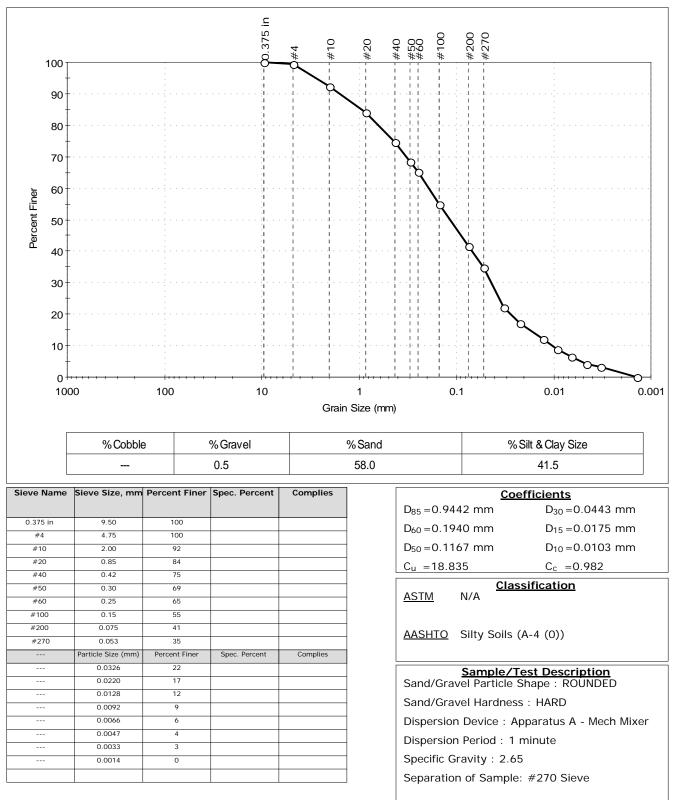


Client:	Northeast	Northeast Geotechnical, Inc.					
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, I	MA			Project No:	GTX-303030	
Boring ID:	TP-7		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm	
Depth :	34-46 in		Test Id:	327858			
Test Comm	nent:						
Sample Description: Moist, light br			rown sandy silt				
Sample Co	mment:						

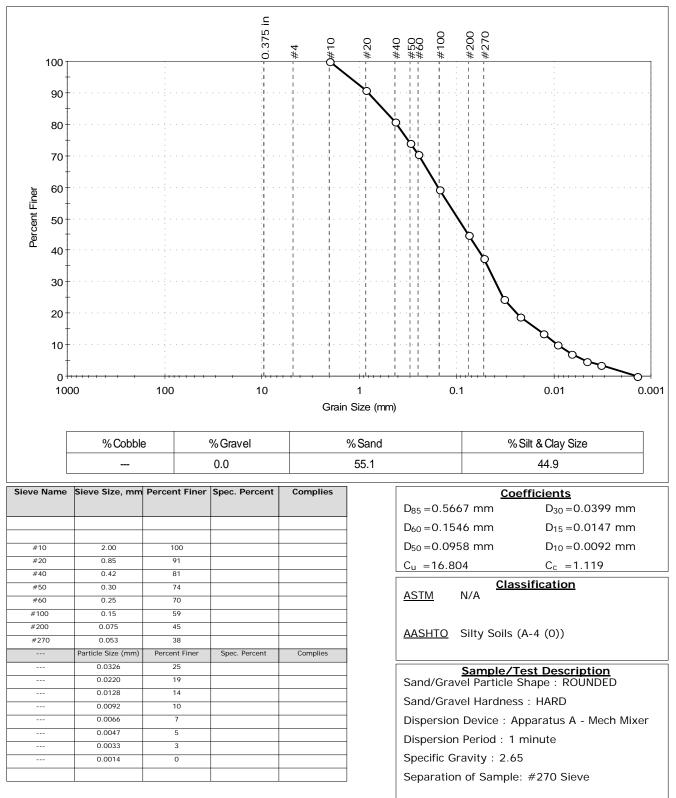
Client:	Northeast Geotechnical, Inc.							
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, I	MA			Project No:	GTX-303030		
Boring ID: TP-7			Sample Type: bag		Tested By:	jbr		
Sample ID: S-1			Test Date:	04/16/15	Checked By:	emm		
Depth :	34-46 in		Test Id:	327858				
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification			
Sample Description: Moist, light be			own sandy silt					
Sample Co	mment:							



Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, N	ЛА			Project No:	GTX-303030		
Boring ID:	TP-8		Sample Type:	bag	Tested By:	jbr		
Sample ID:	: S-2		Test Date:	04/21/15	Checked By:	emm		
Depth :	36-100 in		Test Id:	327869				
Test Comm	nent:							
Sample Description: Moist, light br			rown silty sand					
Sample Co	mment:							

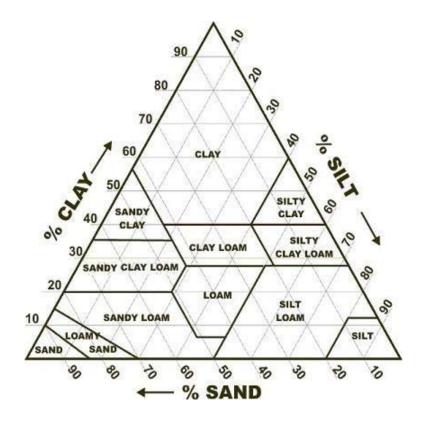

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-8	S-2	36-100 in	64	35	1	Sandy Loam

Classifications based only on material passing the #10 sieve



Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed I	Proposed Residential Development						
Location:	Ashland, N	ΛA			Project No:	GTX-303030		
Boring ID:	TP-8		Sample Type:	bag	Tested By:	jbr		
Sample ID:	: S-2		Test Date:	04/21/15	Checked By:	emm		
Depth :	36-100 in		Test Id:	327859				
Test Comm	nent:							
Sample Description: Moist, light b		rown silty sand						
Sample Comment:								

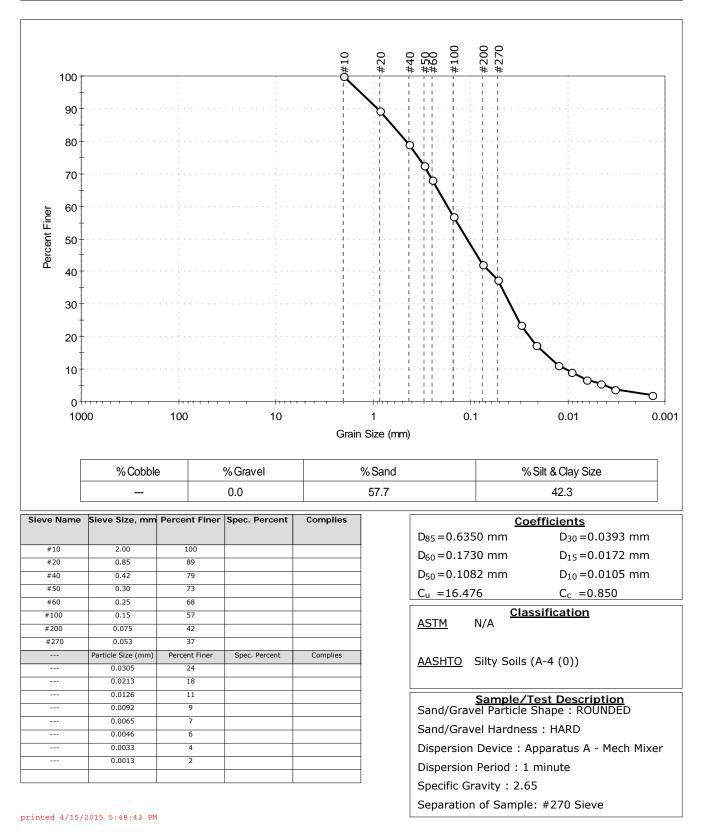
Client:	Northeast Geotechnical, Inc.							
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, N	ЛА			Project No:	GTX-303030		
Boring ID:	TP-8		Sample Type:	bag	Tested By:	jbr		
Sample ID	: S-2		Test Date:	04/21/15	Checked By:	emm		
Depth :	36-100 in		Test Id:	327859				
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification			
Sample De	scription:	Moist, light br	rown silty sand					
Sample Co	mment:							



Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed F	Proposed Residential Development						
Location:	Ashland, N	IA			Project No:	GTX-303030		
Boring ID:	TP-9		Sample Type:	bag	Tested By:	jbr		
Sample ID:	S-1		Test Date:	04/14/15	Checked By:	emm		
Depth :	11-101 in		Test Id:	327734				
Test Comm	ent:							
Sample Des	scription:	Moist, yellowis	Moist, yellowish brown silty sand with gravel					
Sample Cor	nment:							

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-9	S-1	11-101 in	65	33	2	Sandy Loam

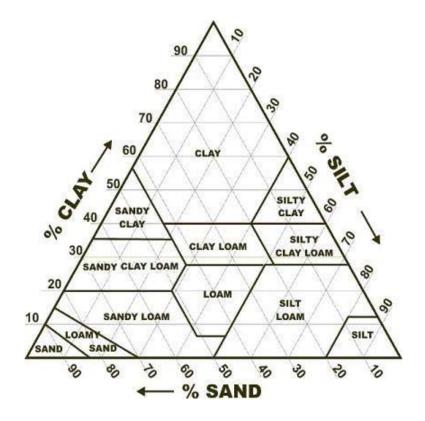
Classifications based only on material passing the #10 sieve



Client:	Northeast Geotechnical, Inc.							
Project:	Proposed I	Proposed Residential Development						
Location:	Ashland, M	1A			Project No:	GTX-303030		
Boring ID:	TP-9		Sample Type:	bag	Tested By:	jbr		
Sample ID	: S-1		Test Date:	04/14/15	Checked By:	emm		
Depth :	11-101 in		Test Id:	327746				
Test Comm	nent:							
Sample Description: Moist, yellowish brown silty sand with				sand with g	ravel			
Sample Co	mment:							

		Ë L	1.5.11 1.11 0.75.1n 0.5.1n 0.375.1n	#4 #20	#40 #50 #100	#270 #27		
100		Å		* * *	* ** *	* *		
	+							
90 -	+							
80-				\sim	1.1.1.1.1.1			
	+							
70-	+							
	+							
60	+		na indra india a s Contra traje	ni se se si se se si si se se si se se si se se si se se se si se				
Barcent Finer	<u> </u>				2			
0 50 0 50	-							
<u>ل</u> 40	+							
	÷							
30 -								
20.	İ							
20	-							
10-								
-	ŧ					محمور		
0		····· · · ·	<u> </u>	- ¹	·· · · · · · · · · · · · · · · · · · ·			
10	000	100	10	1 Orain Siza (mm	0.1	1 0.01 0.0		
		1		Grain Size (mm	IJ.	· · · · · · · · · · · · · · · · · · ·		
	% Cobble % Gravel		%Gravel	% Sand		% Silt & Clay Size		
			17.1	49.6		33.3		
eve Name	e Sieve Size, mm	Percent Finer	Spec. Percent	Complies		<u>Coefficients</u>		
2 in	50.00	100			D ₈₅ =6.035			
1.5 in	37.50	98			D ₆₀ =0.365	$D_{15} = 0.0235 \text{ mm}$		
1 in	25.00	97			D ₅₀ =0.203	35 mm D ₁₀ =0.0142 mm		
0.75 in	19.00	93			C _u =25.73			
0.5 in	12.70	91						
0.375 in	9.50	89	1		ASTM	Classification N/A		
#4 #10	4.75	83 79			<u> </u>			
#10	0.85	79						
#40	0.42	62			AASHTO	Silty Gravel and Sand (A-2-4 (0))		
#50	0.30	57						
#60	0.25	54				Sample/Test Description		
	0.15	45			Sand/Grav	el Particle Shape : ROUNDED		
#100		22			Sand/Gravel Hardness : HARD			
#200	0.075	33 29			Sand/Grav	el Hardness : HARD		
		33 29 Percent Finer	Spec. Percent	Complies				
#200 #270	0.075	29	Spec. Percent	Complies	Dispersion	Device : Apparatus A - Mech Mixer		
#200 #270 	0.075 0.053 Particle Size (mm) 0.0305 0.0213	29 Percent Finer 19 14	Spec. Percent	Complies	Dispersion Dispersion	Device : Apparatus A - Mech Mixer Period : 1 minute		
#200 #270 	0.075 0.053 Particle Size (mm) 0.0305 0.0213 0.0126	29 Percent Finer 19 14 9	Spec. Percent	Complies	Dispersion Dispersion Specific Gr	Device : Apparatus A - Mech Mixer Period : 1 minute ravity : 2.65		
#200 #270 	0.075 0.053 Particle Size (mm) 0.0305 0.0213 0.0126 0.0092	29 Percent Finer 19 14 9 7	Spec. Percent	Complies	Dispersion Dispersion Specific Gr	Device : Apparatus A - Mech Mixer Period : 1 minute		
#200 #270 	0.075 0.053 Particle Size (mm) 0.0305 0.0213 0.0126 0.0092 0.0065	29 Percent Finer 19 14 9 7 7 5	Spec. Percent	Complies	Dispersion Dispersion Specific Gr	Device : Apparatus A - Mech Mixer Period : 1 minute ravity : 2.65		
#200 #270 	0.075 0.053 Particle Size (mm) 0.0305 0.0213 0.0126 0.0092	29 Percent Finer 19 14 9 7 5 5 4	Spec. Percent	Complies	Dispersion Dispersion Specific Gr	Device : Apparatus A - Mech Mixer Period : 1 minute ravity : 2.65		
#200 #270 	0.075 0.053 Particle Size (mm) 0.0305 0.0126 0.0092 0.0065 0.0046	29 Percent Finer 19 14 9 7 7 5	Spec. Percent	Complies	Dispersion Dispersion Specific Gr	Device : Apparatus A - Mech Mixer Period : 1 minute ravity : 2.65		

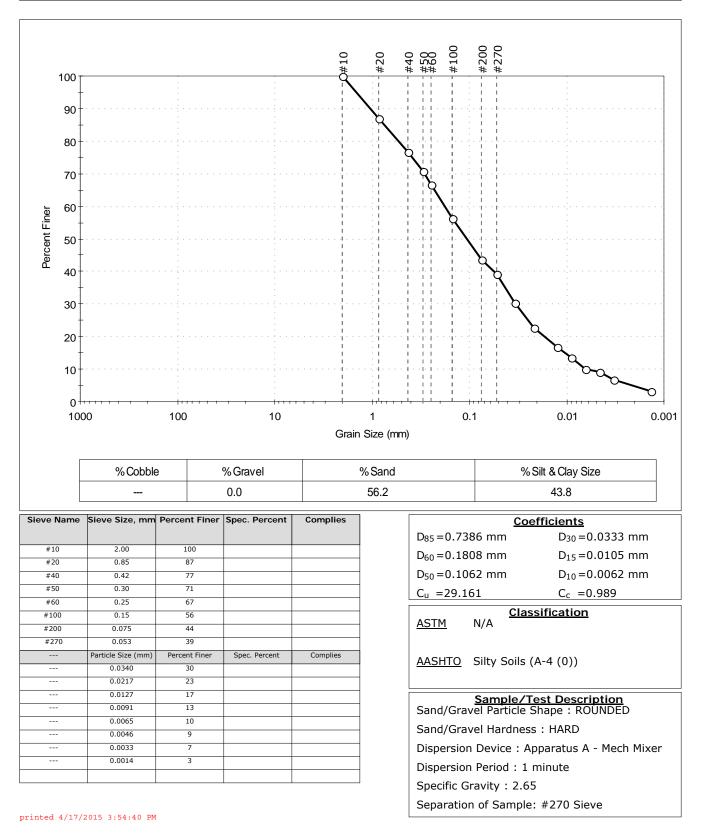
Client:	Northeast Geotechnical, Inc.						
Project:	Proposed I	Proposed Residential Development					
Location:	Ashland, N	1A			Project No:	GTX-303030	
Boring ID:	TP-9		Sample Type:	bag	Tested By:	jbr	
Sample ID: S-1			Test Date:	04/14/15	Checked By:	emm	
Depth :	11-101 in		Test Id:	327746			
Test Comm	nent:	Only minus No	o. 10 sieve for	USDA class	ification		
Sample Description: Moist, yellowish brown silty sand with gravel							
Sample Co	mment:						



Client:	Northeast Geotechnical, Inc.							
Project:	Proposed I	Proposed Residential Development						
Location:	Ashland, M	1A			Project No:	GTX-303030		
Boring ID:	TP-10		Sample Type:	bag	Tested By:	jbr		
Sample ID:	S-1		Test Date:	04/14/15	Checked By:	emm		
Depth :	12-61 in		Test Id:	327735				
Test Comm	ent:							
Sample Description: M		Moist, light bro	own silty sand	with gravel				
Sample Comment:								

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-10	S-1	12-61 in	63	34	3	Sandy Loam

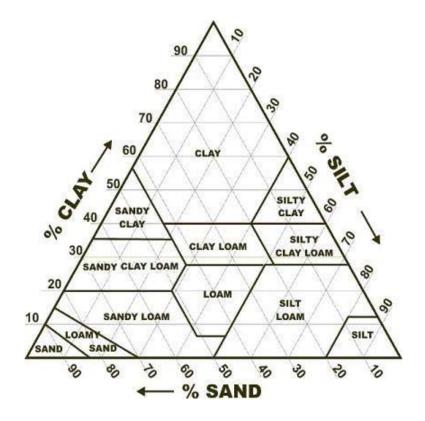
Classifications based only on material passing the #10 sieve



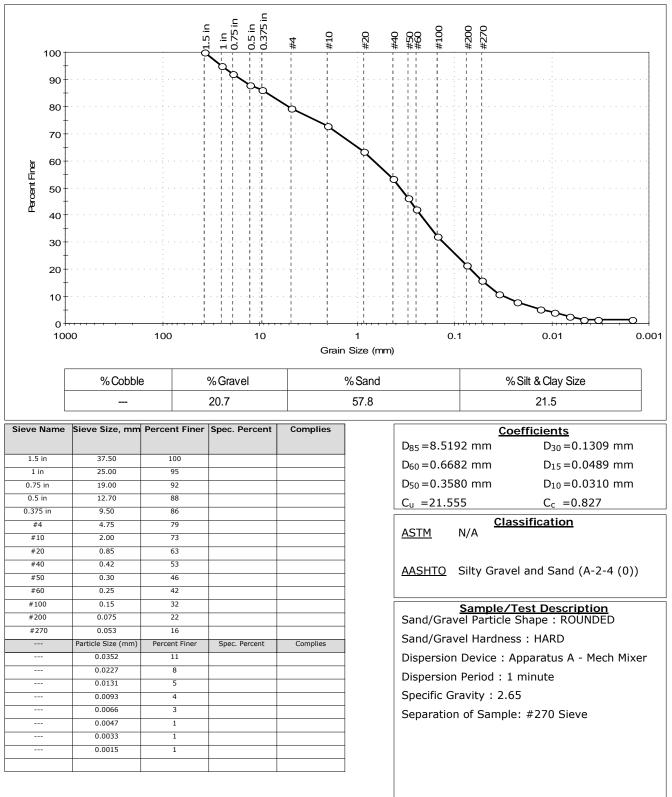
Client:	Northeast Geotechnical, Inc.							
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, N	٩A			Project No:	GTX-303030		
Boring ID:	pring ID: TP-10 Sample Type: bag			Tested By:	jbr			
Sample ID: S-1		Test Date:	04/14/15	Checked By:	emm			
Depth :	12-61 in		Test Id:	327747				
Test Comm	ent:							
Sample Description: Moist, light brown silty sand with grave								
Sample Co	Sample Comment:							

			L	11 c.11 1 in 0.75 in 0.5 in 0.375 in	#10	#20	#40 #50 #100	#200 #270		
	100				+ + + + 1	#		¥ ¥		
				ba						
	90									
	80+									
	ŧ									
	70			n de la compositación de la com En la compositación de la compos						
*	60									
Percent Finer	-									
Cent	50									
Ĕ	10									
	40					- 1	2			
	30+									
	ł									
	20								<u> </u>	
	10+							1 1 (1 1 	~~~~	
	10								مصص	
	o∔								+ + + + + + + + + + + + + + + + + + + +	
	100	00	100	10		1	0.	1	0.01	0.0
					Grair	n Size (mm)			
	% Cobble		e	% Gravel		% Sand		%	Silt & Clay Size	
				24.7		44.8			30.5	
eve l	Vame	Sieve Size, mm	Percent Finer	Spec Percent	Complies	1		Cor	efficients	
					een.p.i.co		D ₈₅ =9.373		D ₃₀ =0.0708	mm
1.5	in	37.50	100				$D_{60} = 0.789$		D ₁₅ =0.0197	
1 ir		25.00	93							
0.75		19.00	92			-	D ₅₀ =0.316		$D_{10} = 0.0100$	mm
0.5		12.70 9.50	89 85			-	C _u =78.91	.0	C _c =0.635	
#4		4.75	75			-		<u>Clas</u>	sification	
#10	2	2.00	70			1	<u>ASTM</u>	N/A		
#20		0.85	61]				
#40		0.42	54 49			-	<u>AASHTO</u>	Silty Grave	I and Sand (A-2-	4 (0))
#50		0.30	49	+		-				
#10		0.15	39	+		-		Sample /T	oct Docorintian	
#20		0.075	31	+ +		1	Sand/Grav	el Particle S	est Description Shape : ROUNDE	D
#27	70	0.053	27			1		el Hardnes	•	
		Particle Size (mm)	Percent Finer	Spec. Percent	Complies]				
		0.0340	21			-			pparatus A - Mec	n Mixer
		0.0217	16	+		-	Dispersion	Period: 1	minute	
		0.0091	9	++		+	Specific Gr	avity: 2.6	5	
		0.0065	7	+ +		1	· ·		: #270 Sieve	
		0.0046	6			1		i or oample	. #270 JIEVE	
	-					1				
		0.0033	5							
		0.0033	5			-				

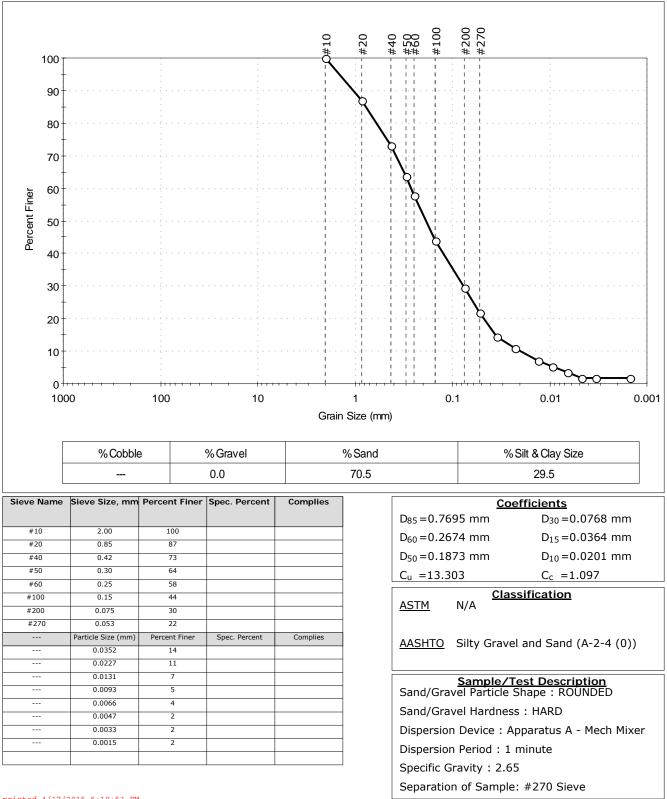
Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	٩A			Project No:	GTX-303030	
Boring ID: TP-10			Sample Type	: bag	Tested By:	jbr	
Sample ID: S-1			Test Date:	04/14/15	Checked By:	emm	
Depth :	12-61 in		Test Id:	327747			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample Description: Moist, light brown silty s				with gravel			
Sample Co	Sample Comment:						



Client:	Northeast Geotechnical, Inc.					
Project:	Proposed F	Residential Dev	elopment			
Location:	Ashland, N	IA			Project No:	GTX-303030
Boring ID:	TP-11		Sample Type:	bag	Tested By:	jbr
Sample ID:	S-1		Test Date:	04/16/15	Checked By:	emm
Depth :	43-111 in		Test Id:	327870		
Test Comm	ent:					
Sample Description: Moist, light brown			own silty sand	with gravel		
Sample Comment:						

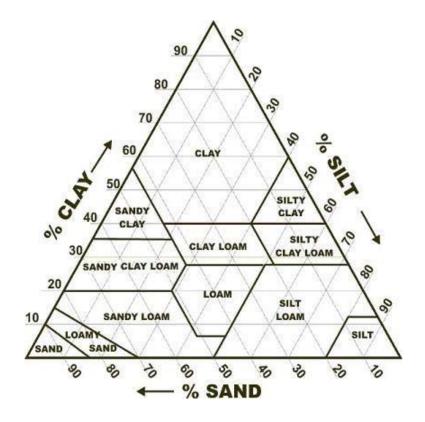

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-11	S-1	43-111 in	80	19	1	Loamy Sand

Classifications based only on material passing the #10 sieve

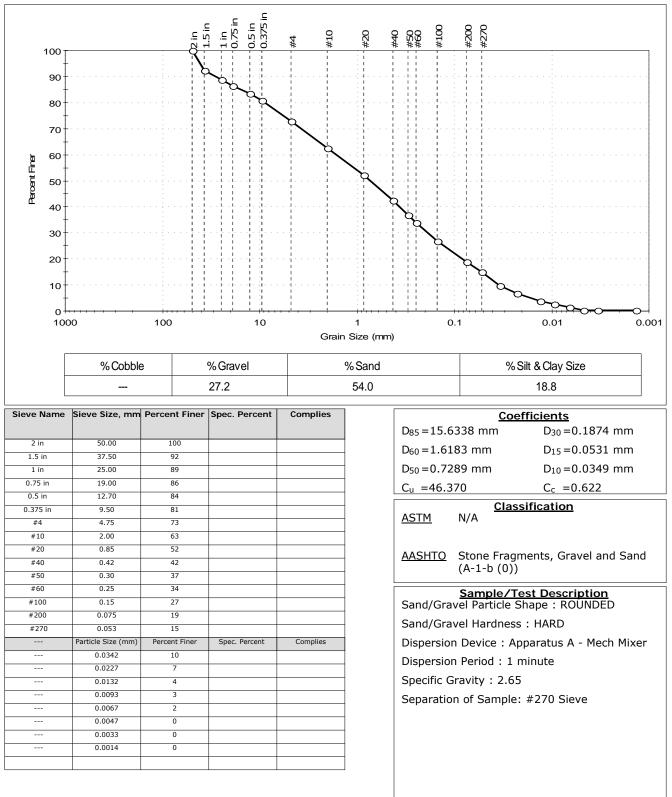


Client: Northe	Northeast Geotechnical, Inc.						
Project: Propose	Proposed Residential Development						
Location: Ashland	l, MA			Project No:	GTX-303030		
Boring ID: TP-11		Sample Type	: bag	Tested By:	jbr		
Sample ID: S-1	Test Date:	04/16/15	Checked By:	emm			
Depth : 43-111	in	Test Id:	327860				
Test Comment:							
Sample Description: Moist, light brown silty sand with grave							
Sample Comment:							

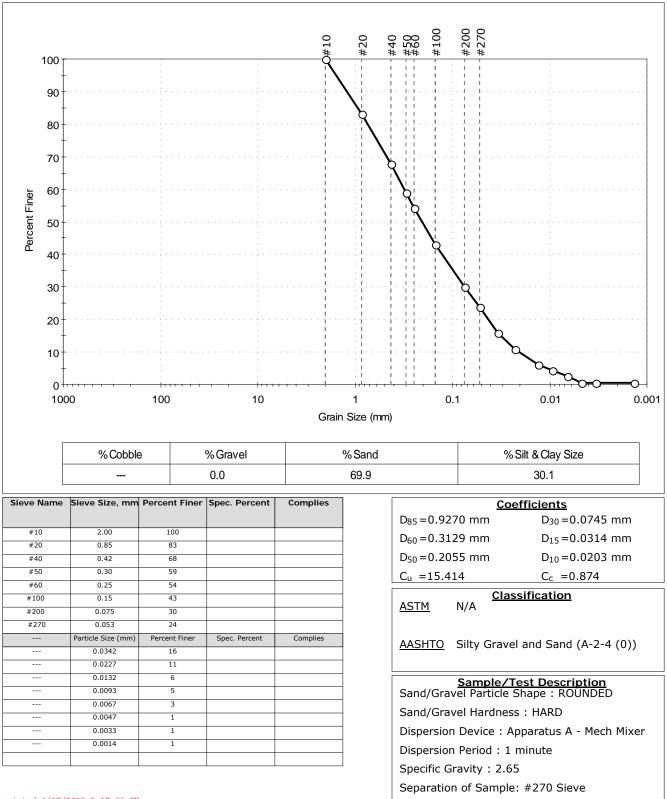
Client:	Northeast Geotechnical, Inc.						
Project:	Proposed I	Proposed Residential Development					
Location:	Ashland, N	1A			Project No:	GTX-303030	
Boring ID:	TP-11		Sample Type:	bag	Tested By:	jbr	
Sample ID: S-1			Test Date:	04/16/15	Checked By:	emm	
Depth :	43-111 in		Test Id:	327860			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample De	scription:	Moist, light br	own silty sand	with gravel			
Sample Co	mment:						



Client:	Northeast Geotechnical, Inc.					
Project:	Proposed F	Residential Dev	elopment			
Location:	Ashland, N	1A			Project No:	GTX-303030
Boring ID:	TP-12		Sample Type:	bag	Tested By:	jbr
Sample ID:	S-1		Test Date:	04/17/15	Checked By:	emm
Depth :	24-112 in		Test Id:	327871		
Test Comm	ent:					
Sample Description: Moist, light brown silty san			own silty sand	with gravel		
Sample Cor	mment:					

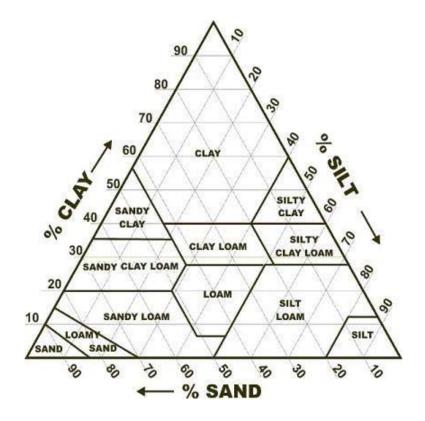

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-12	S-1	24-112 in	78	22	0	Loamy Sand

Classifications based only on material passing the #10 sieve

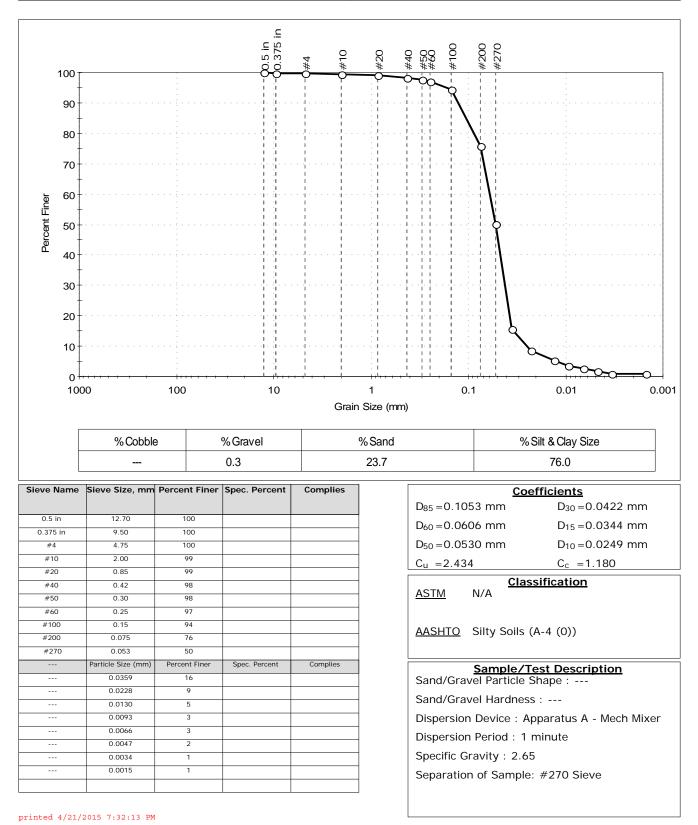


Client:	Northeast Geotechnical, Inc.						
Project:	Proposed I	Proposed Residential Development					
Location:	Ashland, M	1A			Project No:	GTX-303030	
Boring ID:	TP-12		Sample Type:	bag	Tested By:	jbr	
Sample ID:	S-1		Test Date:	04/17/15	Checked By:	emm	
Depth :	24-112 in		Test Id:	327861			
Test Comm	ent:						
Sample Description: Moist, light brown silty sand with gr			with gravel				
Sample Co	Sample Comment:						

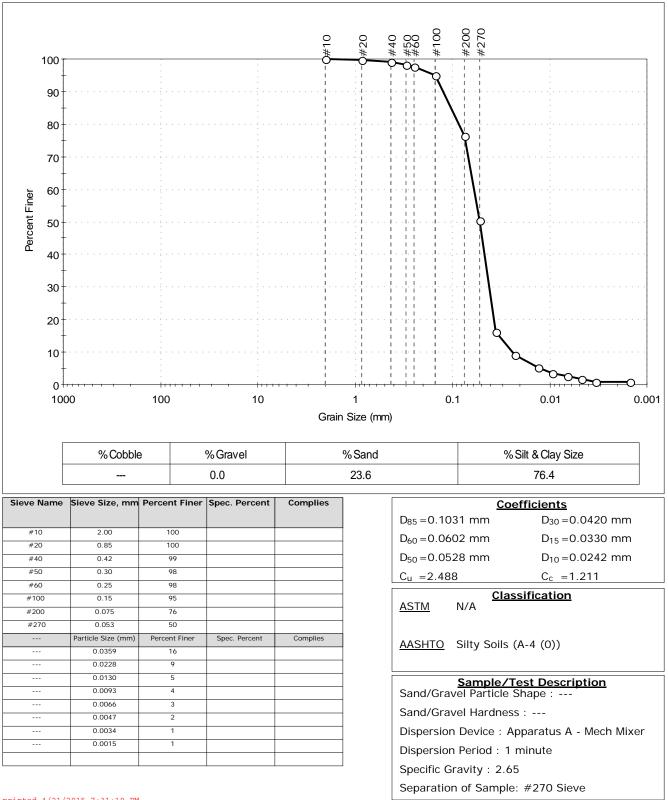
Client:	Northeast Geotechnical, Inc.						
Project:	Proposed I	Proposed Residential Development					
Location:	Ashland, N	1A			Project No:	GTX-303030	
Boring ID: TP-12			Sample Type:	bag	Tested By:	jbr	
Sample ID: S-1			Test Date:	04/17/15	Checked By:	emm	
Depth :	24-112 in		Test Id:	327861			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample Description: Moist, light bi			rown silty sand	with gravel			
Sample Co	Sample Comment:						



Client:	Northeast Geotechnical, Inc.						
Project:	Proposed Residential Development						
Location:	Ashland, M	AN			Project No:	GTX-303030	
Boring ID:	TP-13		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm	
Depth :	42-54 in		Test Id:	327872			
Test Comm	nent:						
Sample Description: Moist, light br			rown sandy silt				
Sample Co	Sample Comment:						

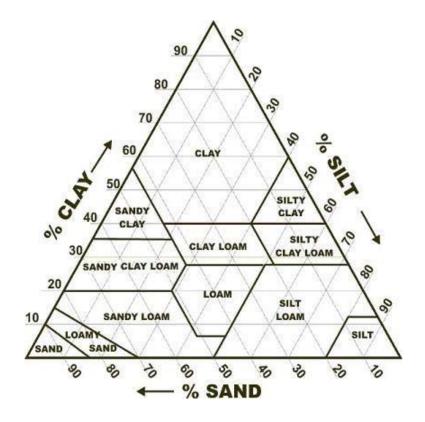

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-13	S-1	42-54 in	55	44	1	Sandy Loam

Classifications based only on material passing the #10 sieve



Client:	Northeast Geotechnical, Inc.								
Project:	Proposed Residential Development								
Location:	Ashland, M	AN			Project No:	GTX-303030			
Boring ID:	TP-13		Sample Type	: bag	Tested By:	jbr			
Sample ID:	: S-1		Test Date:	04/16/15	Checked By:	emm			
Depth :	42-54 in		Test Id:	327862					
Test Comment:									
Sample De	scription:	Moist, light brown silt with sand							
Sample Co	mment:								

Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed Residential Development							
Location:	Ashland, M	AN			Project No:	GTX-303030		
Boring ID:	TP-13		Sample Type:	bag	Tested By:	jbr		
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm		
Depth :	42-54 in		Test Id:	327862				
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification			
Sample De	scription:	Moist, light br	rown silt with sa	and				
Sample Co	mment:							

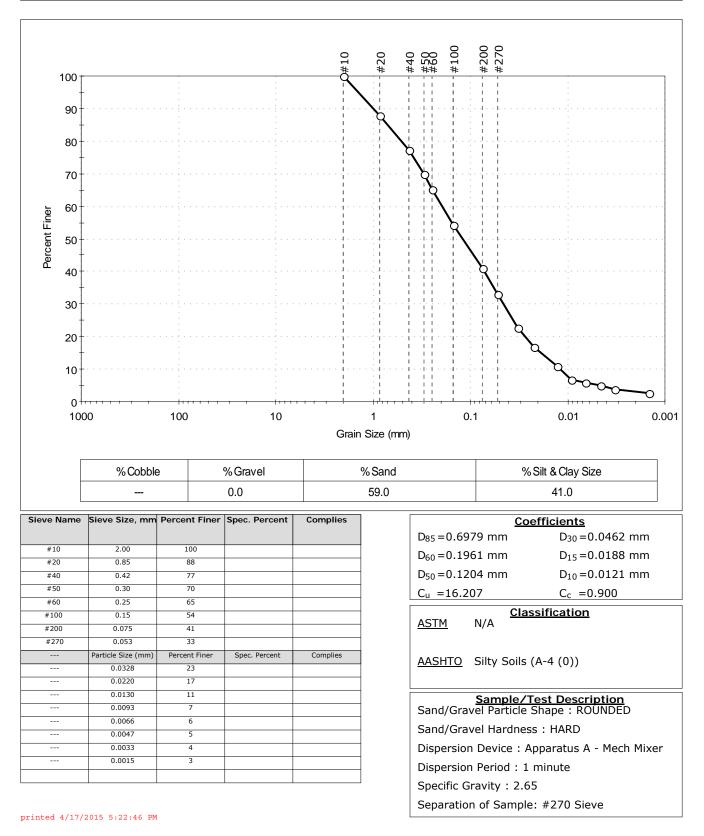

Client:	Northeast	Geotechnical, I	nc.					
Project:	Proposed F	Proposed Residential Development						
Location:	Ashland, N	IA			Project No:	GTX-303030		
Boring ID:	TP-14		Sample Type:	bag	Tested By:	jbr		
Sample ID:	S-1		Test Date:	04/15/15	Checked By:	emm		
Depth :	40-108 in		Test Id:	327873				
Test Comm	ent:							
Sample Des	scription:	Moist, light bro	own silty sand	with gravel				
Sample Cor	mment:							

USDA Textural Classification

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-14	S-1	40-108 in	69	29	2	Sandy Loam

Classifications based only on material passing the #10 sieve

Sand: material passing 2.0 mm and retained on 0.05 mm diameter Silt: material passing 0.05 mm and retained on 0.002 mm diameter Clay: material passing 0.002 mm diameter



Client: No	Northeast Geotechnical, Inc.						
Project: Pr	Proposed Residential Development						
Location: As	shland, M	A			Project No:	GTX-303030	
Boring ID: TF	P-14		Sample Type:	bag	Tested By:	jbr	
Sample ID: S-	-1		Test Date:	04/16/15	Checked By:	emm	
Depth : 40	0-108 in		Test Id:	327863			
Test Commen	it:						
Sample Descr	iption:	Moist, light broken	own silty sand	with gravel			
Sample Comm	nent:						

		_	1.5 in 1 in 0.75 in 0.5 in 0.375 in	- 9		#60 #100 #200	#270		
100 T				#10	#20 #40	#60 #10 #20]
ł	-								
90	- · · · · · · · · · · · · · · · · ·						· - · · · · · · · · · · · · · · · · · ·		
80									
+	-			λ_{α}			i		
70									
	-						1		
	-						1		
Beroent Finer					 . ` p		.		
	-						i i		
40	- · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	ылыылылық (н. т. 1 ПП ПП ПП 1 ПП ПП П		ala a a da ala alta a da da da da alta da	\sim			
30									
	-						Ň.		
20									
	-						1 Ta		
10-								2 miles	
0			L.L.L. A.		i i i i	L. L. Inder			<u> </u>
100	00	100	10		1	0.1		0.01	0.0
				Grain Si	ize (mm)				
[% Cobble		% Gravel	0/ 0	Sand		% Silt	& Clay Size	
ŀ		5			Sanu		70 Oiit	a ciay Size	
			16.9	5	52.8			30.3	
eve Name	 Sieve Size, mm	Percent Finer		Complies 5				cients	
					Da	₂₅ =5.5904 n	nm	<u>cients</u> D ₃₀ =0.07	
eve Name 2 in 1.5 in	Sieve Size, mm 50.00 37.50	Percent Finer			Da	₂₅ =5.5904 n ₅₀ =0.5419 n	nm	cients	
2 in	50.00	100			Da Da		nm nm	<u>cients</u> D ₃₀ =0.07	74 mm
2 in 1.5 in 1 in 0.75 in	50.00 37.50 25.00 19.00	100 99 99 99 97			Da Da Ds	₅₀ =0.5419 n ₅₀ =0.2742 n	nm nm	$\begin{array}{l} \hline cients \\ D_{30} = 0.07 \\ D_{15} = 0.02 \\ D_{10} = 0.01 \end{array}$	74 mm 62 mm
2 in 1.5 in 1 in 0.75 in 0.5 in	50.00 37.50 25.00 19.00 12.70	100 99 99 97 94			Da Da Ds	₆₀ =0.5419 n	nm nm nm	$\begin{array}{c} \hline cients \\ D_{30} = 0.07 \\ D_{15} = 0.02 \\ D_{10} = 0.01 \\ C_c = 0.61 \end{array}$	74 mm 62 mm
2 in 1.5 in 1 in 0.75 in	50.00 37.50 25.00 19.00	100 99 99 99 97			De De Ds	₅₀ =0.5419 n ₅₀ =0.2742 n	nm nm nm <u>Classif</u>	$\begin{array}{l} \hline cients \\ D_{30} = 0.07 \\ D_{15} = 0.02 \\ D_{10} = 0.01 \end{array}$	74 mm 62 mm
2 in 1.5 in 1 in 0.75 in 0.5 in 0.375 in	50.00 37.50 25.00 19.00 12.70 9.50	100 99 99 97 94 91			De De Ds	$f_{0} = 0.5419 \text{ n}$ $f_{0} = 0.2742 \text{ n}$ $f_{1} = 33.451$	nm nm nm <u>Classif</u>	$\begin{array}{c} \hline cients \\ D_{30} = 0.07 \\ D_{15} = 0.02 \\ D_{10} = 0.01 \\ C_c = 0.61 \end{array}$	74 mm 62 mm
2 in 1.5 in 1 in 0.75 in 0.5 in 0.375 in #4	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85	100 99 97 97 94 91 83 74 65				₅₀ =0.5419 n ₅₀ =0.2742 n <u>1 =33.451</u> <u>5TM</u> N/A	nm nm nm <u>Classif</u>	$\frac{cients}{D_{30} = 0.07} \\ D_{15} = 0.02 \\ D_{10} = 0.01 \\ C_{c} = 0.61 \\ \hline ccication$	74 mm 62 mm 7
2 in 1.5 in 1 in 0.75 in 0.5 in 0.375 in #4 #10 #20 #40	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42	100 99 97 94 91 83 74 65 57				₅₀ =0.5419 n ₅₀ =0.2742 n <u>1 =33.451</u> <u>5TM</u> N/A	nm nm nm <u>Classif</u>	$\begin{array}{l} \hline cients \\ D_{30} = 0.07 \\ D_{15} = 0.02 \\ D_{10} = 0.01 \\ C_c = 0.61 \end{array}$	74 mm 62 mm 7
2 in 1.5 in 1 in 0.75 in 0.5 in 0.375 in #4 #10 #20 #40 #50	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30	100 99 97 94 91 83 74 65 57 52				50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Silt	nm nm <mark>Classif</mark> y Gravel ar	$\frac{cients}{D_{30} = 0.07}$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ fication and Sand (A-	74 mm 62 mm 7 2-4 (0))
2 in 1.5 in 1 in 0.75 in 0.5 in 44 #10 #20 #40 #50 #60	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25	100 99 97 94 91 83 74 65 57 52 48				50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Silt ¹ Sai	nm nm <u>Classif</u> y Gravel ar	cients $D_{30} = 0.07$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ c_{c} = 0.61 c_{c} c_{c} br>c_{c} c_{c}	74 mm 62 mm 7 2-4 (0))
2 in 1.5 in 1 in 0.75 in 0.5 in 0.375 in #4 #10 #20 #40 #50	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30	100 99 97 94 91 83 74 65 57 52				50 =0.5419 n 50 =0.2742 n 1 =33.451 5TM N/A ASHTO Silt ASHTO Silt Sar and/Gravel P	nm nm <u>Classif</u> y Gravel ar mple/Test Particle Sha	cients $D_{30} = 0.07$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_c = 0.61$ cication and Sand (A- cication cication = 0.01 cication = 0	74 mm 62 mm 7 2-4 (0))
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053	100 99 97 94 91 83 74 65 57 52 48 48				50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Silt ASHTO Silt and/Gravel P and/Gravel F	nm nm <u>Classif</u> y Gravel ar <u>mple/Tes</u> Particle Sha lardness :	$\frac{cients}{D_{30} = 0.07} \\ D_{15} = 0.02 \\ D_{10} = 0.01 \\ C_{c} = 0.61 \\ \hline ication \\ \hline hd Sand (A-therefore a constraints) \\ \hline t Description \\ here : ROUNI \\ HARD \\ \hline hard b = 0.07 \\ \hline t Description \\ \hline t De$	74 mm 62 mm 7 2-4 (0)) 2-5 DED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm)	100 99 97 94 91 83 74 65 57 52 48 40 30 24 Percent Finer				50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A 5TM N/A ASHTO Silt Sar and/Gravel P	nm nm <u>Classif</u> y Gravel ar <u>mple/Tes</u> Particle Sha lardness :	$\frac{cients}{D_{30} = 0.07} \\ D_{15} = 0.02 \\ D_{10} = 0.01 \\ C_{c} = 0.61 \\ \hline ication \\ \hline hd Sand (A-therefore a constraints) \\ \hline t Description \\ here : ROUNI \\ HARD \\ \hline hard b = 0.07 \\ \hline t Description \\ \hline t De$	74 mm 62 mm 7 2-4 (0)) 2-5 DED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0328	100 99 97 94 91 83 74 65 57 52 48 40 30 24 Percent Finer 17	Spec. Percent	Complies	De De Cu AS Sa Di	50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Silt ASHTO Silt and/Gravel P and/Gravel F	nm nm <u>Classif</u> y Gravel ar Particle Sha Hardness : vice : Appa	$\frac{cients}{D_{30} = 0.07}$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$	74 mm 62 mm 7 2-4 (0)) 2-5 DED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0328 0.0220	100 99 97 94 91 83 74 65 57 52 48 40 30 24 Percent Finer 17 13	Spec. Percent	Complies	De De Cu AS Sa Di Di Di	50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Silt and/Gravel P and/Gravel F spersion Devision Persion Persi	nm nm <u>Classif</u> y Gravel ar <u>mple/Tes</u> Particle Sha Hardness : vice : Appa riod : 1 mir	$\frac{cients}{D_{30} = 0.07}$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$	74 mm 62 mm 7 2-4 (0)) 2-5 DED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0328	100 99 97 94 91 83 74 65 57 52 48 40 30 24 Percent Finer 17	Spec. Percent	Complies	De De Ds Cu As Sa Sa Di Di Sp	50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Siltr and/Gravel P and/Gravel F spersion Dev spersion Per pecific Gravit	nm nm <u>Classif</u> y Gravel ar Particle Sha Hardness : vice : Appa riod : 1 min ty : 2.65	$\frac{cients}{D_{30} = 0.07}$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$	74 mm 62 mm 7 2-4 (0)) 2-5 DED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0328 0.0220 0.0130	100 99 97 94 91 83 74 65 57 52 48 40 30 24 Percent Finer 17 13 8	Spec. Percent	Complies	De De Ds Cu As Sa Sa Di Di Sp	50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Silt and/Gravel P and/Gravel F spersion Devision Persion Persi	nm nm <u>Classif</u> y Gravel ar Particle Sha Hardness : vice : Appa riod : 1 min ty : 2.65	$\frac{cients}{D_{30} = 0.07}$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$	74 mm 62 mm 7 2-4 (0)) 2-5 DED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0220 0.0130 0.0093 0.0066 0.0047	100 99 97 94 91 83 74 65 57 52 48 40 30 24 Percent Finer 17 13 8 8 5 5 4 4	Spec. Percent	Complies	De De Ds Cu As Sa Sa Di Di Sp	50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Siltr and/Gravel P and/Gravel F spersion Dev spersion Per pecific Gravit	nm nm <u>Classif</u> y Gravel ar Particle Sha Hardness : vice : Appa riod : 1 min ty : 2.65	$\frac{cients}{D_{30} = 0.07}$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$	74 mm 62 mm 7 2-4 (0)) 2-5 DED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0308 0.0130 0.0093 0.0047	100 99 97 94 91 83 74 65 57 52 48 40 30 24 Percent Finer 17 13 8 8 5 5 4 4 4 3	Spec. Percent	Complies	De De Ds Cu As Sa Sa Di Di Sp	50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Siltr and/Gravel P and/Gravel F spersion Dev spersion Per pecific Gravit	nm nm <u>Classif</u> y Gravel ar Particle Sha Hardness : vice : Appa riod : 1 min ty : 2.65	$\frac{cients}{D_{30} = 0.07}$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$	74 mm 62 mm 7 2-4 (0)) 2-5 DED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0220 0.0130 0.0093 0.0066 0.0047	100 99 97 94 91 83 74 65 57 52 48 40 30 24 Percent Finer 17 13 8 8 5 5 4 4	Spec. Percent	Complies	De De Ds Cu As Sa Sa Di Di Sp	50 = 0.5419 n 50 = 0.2742 n 1 = 33.451 5TM N/A ASHTO Siltr and/Gravel P and/Gravel F spersion Dev spersion Per pecific Gravit	nm nm <u>Classif</u> y Gravel ar Particle Sha Hardness : vice : Appa riod : 1 min ty : 2.65	$\frac{cients}{D_{30} = 0.07}$ $D_{15} = 0.02$ $D_{10} = 0.01$ $C_{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$ $\frac{c}{c} = 0.61$	74 mm 62 mm 7 2-4 (0)) 2-5 DED

Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed I	Proposed Residential Development						
Location:	Ashland, N	1A			Project No:	GTX-303030		
Boring ID:	TP-14		Sample Type	: bag	Tested By:	jbr		
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm		
Depth :	40-108 in		Test Id:	327863				
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification			
Sample De	scription:	Moist, light br	own silty sand	with gravel				
Sample Co	mment:							

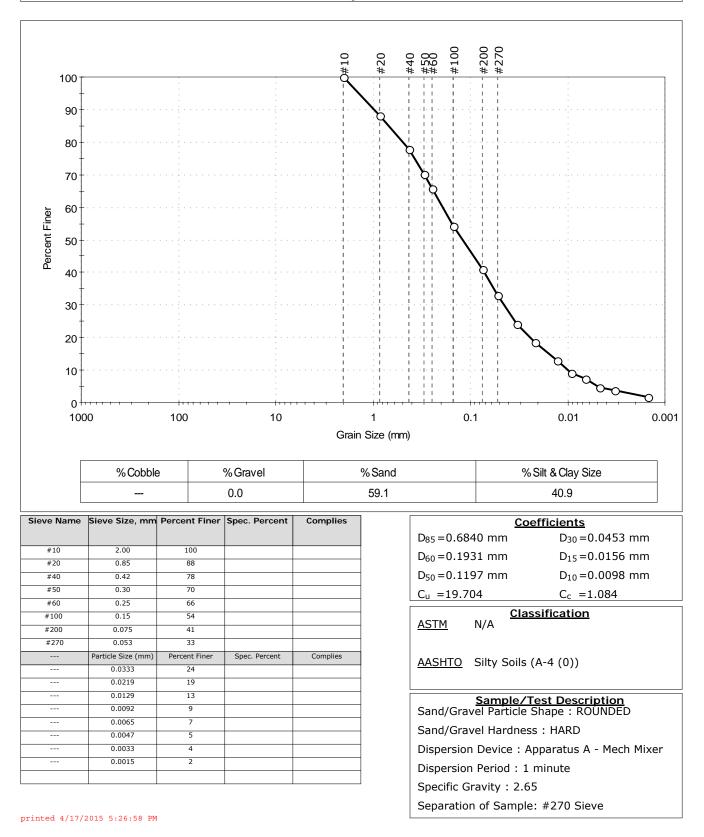

Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed Residential Development							
Location:	Ashland, N	ЛА			Project No:	GTX-303030		
Boring ID:	TP-15		Sample Type:	bag	Tested By:	jbr		
Sample ID:	: S-1		Test Date:	04/15/15	Checked By:	emm		
Depth :	28-108 in		Test Id:	327874				
Test Comm	nent:							
Sample Description: Moist, light brown silty s								
Sample Co	mment:							

USDA Textural Classification

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-15	S-1	28-108 in	69	29	2	Sandy Loam

Classifications based only on material passing the #10 sieve

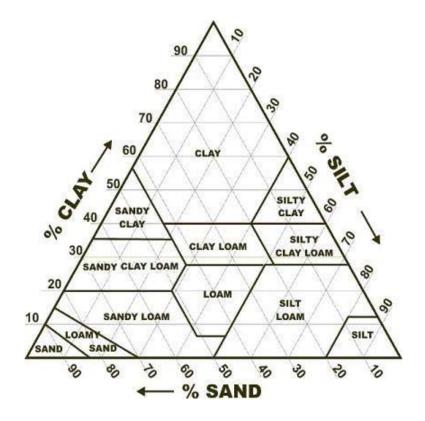
Sand: material passing 2.0 mm and retained on 0.05 mm diameter Silt: material passing 0.05 mm and retained on 0.002 mm diameter Clay: material passing 0.002 mm diameter



Client:	Northeast	Geotechnical,	Inc.					
Project:	Proposed	Proposed Residential Development						
Location:	Ashland, N	٩A			Project No:	GTX-303030		
Boring ID:	TP-15		Sample Type:	bag	Tested By:	jbr		
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm		
Depth :	28-108 in		Test Id:	327864				
Test Comm	nent:							
Sample De	Sample Description: Moist, light br							
Sample Co	mment:							

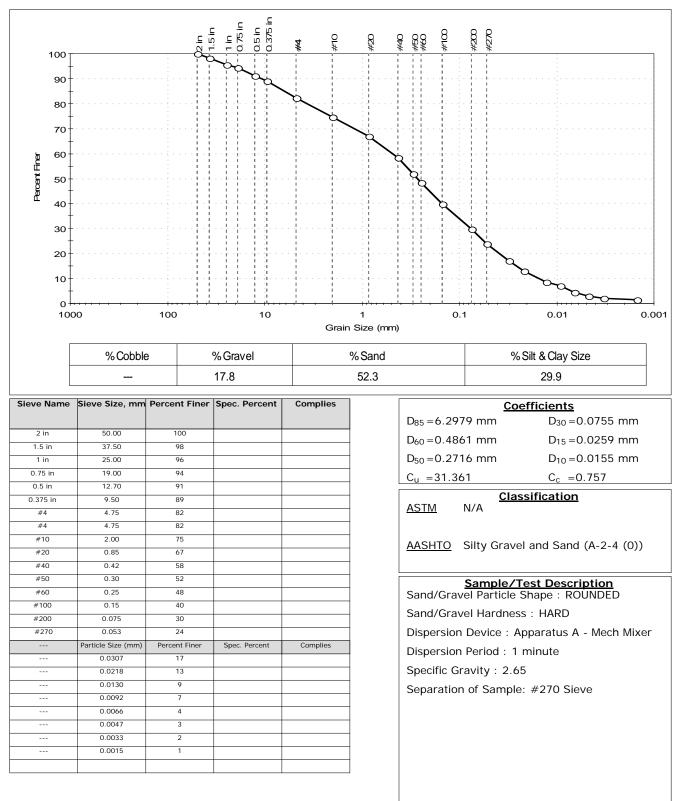
			ច ៉ុ ចស		0			
		ו⊒. ע	1.5 in 1 in 0.75 in 0.5 in 0.375 in	#10 #20	#40 #50 #100	#200 #270		
100								
90								
	÷							
80								
70	<u>+</u>							
70	+							
৳ 60								
Ē	ł							
Beroent Finer 100 100 100 100 100 100 100 100 100 10	+	· · · · · · · · · · · · · · · · · · ·		internet in the second se				
É 10	İ		1 1 1 1 1 1 1 1 1 1 1 1 1					
- 40	-							
30						`\		
	ŧ					à		
20	+	· · · · · · · · · · · · · · · · · · ·						
10	İ							
10							"aa	
0			1 1 1 1 1 1 L ₁ L ₁ L ₁ L ₁ L ₁ L ₁ L ₁ L ₁ L ₁ L ₁ L ₁			, , , , , , , , , , , , , , , , , , ,		
10	000	100	10	1	0.	1	0.01	0.0
				Grain Size (r	mm)			
	% Cobble	•	%Gravel	% Sano	d	%	Silt & Clav Size	
	% Cobble	•	% Gravel	% Sano	ł	%	Silt & Clay Size	
	% Cobble	9	% Gravel 14.0	% Sand 54.2	t	%	Silt & Clay Size 31.8	
ieve Name			14.0			Coe	31.8 efficients	677 mm
ieve Name 2 in			14.0	54.2	D ₈₅ =4.257	<u>Coe</u> 78 mm	31.8 efficients D ₃₀ = 0.0	
	 Sieve Size, mm	Percent Finer	14.0	54.2	D ₈₅ =4.257 D ₆₀ =0.409	<u>Coe</u> 78 mm 98 mm	31.8 efficients D ₃₀ = 0.0 D ₁₅ = 0.0	230 mm
2 in 1.5 in 1 in	 Sieve Size, mm 50.00 37.50 25.00 	Percent Finer 100 97 96	14.0	54.2	D ₈₅ =4.257	<u>Coe</u> 78 mm 98 mm	31.8 efficients D ₃₀ = 0.0	230 mm
2 in 1.5 in 1 in 0.75 in	 Sieve Size, mm 50.00 37.50 25.00 19.00 	Percent Finer 100 97 96 95	14.0	54.2	D ₈₅ =4.257 D ₆₀ =0.409	<u>Coe</u> 78 mm 98 mm 41 mm	31.8 efficients D ₃₀ = 0.0 D ₁₅ = 0.0	230 mm 127 mm
2 in 1.5 in 1 in 0.75 in 0.5 in	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70	Percent Finer 100 97 96 95 95	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$	<u>Coe</u> 78 mm 98 mm 41 mm 58	31.8 efficients $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$	230 mm 127 mm
2 in 1.5 in 1 in 0.75 in	 Sieve Size, mm 50.00 37.50 25.00 19.00 	Percent Finer 100 97 96 95	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$	<u>Coe</u> 78 mm 98 mm 41 mm 58	31.8 <u>efficients</u> D ₃₀ = 0.0 D ₁₅ = 0.0 D ₁₀ = 0.0	230 mm 127 mm
2 in 1.5 in 1 in 0.75 in 0.5 in 0.375 in	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50	Percent Finer 100 97 96 95 95 93	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$	<u>Coe</u> 78 mm 98 mm 41 mm 58 Clas	31.8 efficients $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$	230 mm 127 mm
2 in 1.5 in 1 in 0.75 in 0.5 in 0.375 in #4	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75	Percent Finer 100 97 96 95 95 93 86	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ <u>ASTM</u>	<u>Coe</u> 78 mm 98 mm 41 mm 58 N/A	31.8 efficients D ₃₀ = 0.0 D ₁₅ = 0.0 D ₁₀ = 0.0 C _c = 0.8 ssification	230 mm 127 mm 81
2 in 1.5 in 1 in 0.75 in 0.5 in 0.375 in #4 #10 #20 #40	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42	Percent Finer 100 97 96 95 95 93 86 78 69 61	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ <u>ASTM</u>	<u>Coe</u> 78 mm 98 mm 41 mm 58 N/A	31.8 efficients $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$	230 mm 127 mm 81
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30	Percent Finer 100 97 96 95 95 93 86 78 69 61 55	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ <u>ASTM</u> <u>AASHTO</u>	Coa 78 mm 98 mm 41 mm 58 N/A Silty Grave	31.8 efficients $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_c = 0.8$ estification	230 mm 127 mm 81 -2-4 (0))
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25	Percent Finer 100 97 96 95 93 86 78 69 61 55 51	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ <u>ASTM</u> <u>AASHTO</u>	Coe 78 mm 98 mm 41 mm 58 N/A Silty Grave Sample/T	31.8 efficients $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_c = 0.8$ estification el and Sand (A	230 mm 127 mm 81 2-4 (0)) ion
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15	Percent Finer 100 97 96 95 93 86 78 69 61 55 51 42	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ $ASTM$ $AASHTO$ $Sand/Grav$	Coe 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave	31.8 $efficients$ $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$ $sification$ $el and Sand (A$ $Fest Descript$ $Shape : ROUN$	230 mm 127 mm 81 2-4 (0)) ion
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25	Percent Finer 100 97 96 95 93 86 78 69 61 55 51	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ $ASTM$ $AASHTO$ $Sand/Grav$	Coe 78 mm 98 mm 41 mm 58 N/A Silty Grave Sample/T	31.8 $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$ $Sification$ $el and Sand (A)$ $Cest Descript$ $Shape : ROUN$	230 mm 127 mm 81 2-4 (0)) ion
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15	Percent Finer 100 97 96 95 93 86 78 69 61 55 51 42 32	14.0	54.2	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ <u>ASTM</u> <u>AASHTO</u> Sand/Grav Sand/Grav	Coe 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave Sample/T rel Particle S rel Hardnes	31.8 $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$ $Sification$ $el and Sand (A)$ $Cest Descript$ $Shape : ROUN$	230 mm 127 mm 81 -2-4 (0)) ion IDED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0333	Percent Finer 100 97 96 95 93 86 78 69 61 55 51 42 32 26 Percent Finer 19	14.0	Complies	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ <u>ASTM</u> <u>AASHTO</u> Sand/Grav Sand/Grav Dispersion	Coe 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave Sample/T rel Particle S rel Hardnes Device : A	31.8 efficients $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_c = 0.8$ estification el and Sand (A Fest Descript Shape : ROUN s : HARD paratus A - I	230 mm 127 mm 81 -2-4 (0)) ion IDED
2 in 1.5 in 1 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0333 0.0219	Percent Finer 100 97 96 95 95 93 86 78 69 61 55 51 42 32 26 Percent Finer 19 14	14.0	Complies	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_{u} = 32.26$ $ASTM$ $AASHTO$ $Sand/Grav$ $Sand/Grav$ $Dispersion$ $Dispersion$	Coe 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave Silty Grave Perice : A Period : 1	31.8 efficients $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_c = 0.8$ estification el and Sand (A Fest Descript Shape : ROUN s : HARD pparatus A - I minute	230 mm 127 mm 81 -2-4 (0)) ion IDED
2 in 1.5 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0333 0.0219 0.0129	Percent Finer 100 97 96 95 95 93 86 78 69 61 55 51 42 32 26 Percent Finer 19 14 10	14.0	Complies	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_u = 32.26$ $ASTM$ $AASHTO$ $Sand/Grav$ $Sand/Grav$ $Dispersion$ $Dispersion$ $Specific Grav$	Coo 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave Silty Grave M/A Silty Grave Supple/T vel Particle S vel Hardnes Device : A Period : 1 ravity : 2.65	31.8 $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$ $Sification$ $el and Sand (A)$ $Fest Descript$ Shape : ROUN s : HARD pparatus A - I minute 5	230 mm 127 mm 81 -2-4 (0)) ion IDED
2 in 1.5 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #40 #200 #200 #200 	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.033 0.0219 0.0129 0.0092	Percent Finer 100 97 96 95 95 93 86 78 69 61 55 51 42 32 26 Percent Finer 19 14 10 7	14.0	Complies	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_u = 32.26$ $ASTM$ $AASHTO$ $Sand/Grav$ $Sand/Grav$ $Dispersion$ $Dispersion$ $Specific Grav$	Coo 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave Silty Grave M/A Silty Grave Supple/T vel Particle S vel Hardnes Device : A Period : 1 ravity : 2.65	31.8 efficients $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_c = 0.8$ estification el and Sand (A Fest Descript Shape : ROUN s : HARD pparatus A - I minute	230 mm 127 mm 81 -2-4 (0)) ion IDED
2 in 1.5 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #60 #100 #200 #270 	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.053 Particle Size (mm) 0.0333 0.0219 0.0129	Percent Finer 100 97 96 95 95 93 86 78 69 61 55 51 42 32 26 Percent Finer 19 14 10	14.0	Complies	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_u = 32.26$ $ASTM$ $AASHTO$ $Sand/Grav$ $Sand/Grav$ $Dispersion$ $Dispersion$ $Specific Grav$	Coo 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave Silty Grave M/A Silty Grave Supple/T vel Particle S vel Hardnes Device : A Period : 1 ravity : 2.65	31.8 $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$ $Sification$ $el and Sand (A)$ $Fest Descript$ Shape : ROUN s : HARD pparatus A - I minute 5	230 mm 127 mm 81 -2-4 (0)) ion IDED
2 in 1.5 in 0.75 in 0.375 in #4 #10 #20 #40 #50 #40 #200 #200 #200 	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.033 0.0219 0.0129 0.0092 0.0065	Percent Finer 100 97 96 95 95 93 86 78 69 61 55 61 55 51 42 32 26 Percent Finer 19 14 10 7 6	14.0	Complies	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_u = 32.26$ $ASTM$ $AASHTO$ $Sand/Grav$ $Sand/Grav$ $Dispersion$ $Dispersion$ $Specific Grav$	Coo 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave Silty Grave M/A Silty Grave Supple/T vel Particle S vel Hardnes Device : A Period : 1 ravity : 2.65	31.8 $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$ $Sification$ $el and Sand (A)$ $Fest Descript$ Shape : ROUN s : HARD pparatus A - I minute 5	230 mm 127 mm 81 -2-4 (0)) ion IDED
2 in 1.5 in 0.75 in 0.375 in #4 #10 #20 #40 #20 #40 #20 #200 #200 	Sieve Size, mm 50.00 37.50 25.00 19.00 12.70 9.50 4.75 2.00 0.85 0.42 0.30 0.25 0.15 0.075 0.033 0.0219 0.0129 0.0092 0.0065 0.0047	Percent Finer 100 97 96 95 95 93 86 78 69 61 55 61 55 51 42 32 26 Percent Finer 19 14 10 7 6 4	14.0	Complies	$D_{85} = 4.257$ $D_{60} = 0.409$ $D_{50} = 0.234$ $C_u = 32.26$ $ASTM$ $AASHTO$ $Sand/Grav$ $Sand/Grav$ $Dispersion$ $Dispersion$ $Specific Grav$	Coo 78 mm 98 mm 41 mm 58 N/A Silty Grave Silty Grave Silty Grave M/A Silty Grave Supple/T vel Particle S vel Hardnes Device : A Period : 1 ravity : 2.65	31.8 $D_{30} = 0.0$ $D_{15} = 0.0$ $D_{10} = 0.0$ $C_{c} = 0.8$ $Sification$ $el and Sand (A)$ $Fest Descript$ Shape : ROUN s : HARD pparatus A - I minute 5	230 mm 127 mm 81 -2-4 (0)) ion IDED

Client:	Northeast	Northeast Geotechnical, Inc.						
Project:	Proposed I	Proposed Residential Development						
Location:	Ashland, M	1A			Project No:	GTX-303030		
Boring ID:	TP-15		Sample Type:	bag	Tested By:	jbr		
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm		
Depth :	28-108 in		Test Id:	327864				
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification			
Sample De	scription:	Moist, light br	own silty sand					
Sample Co	mment:							

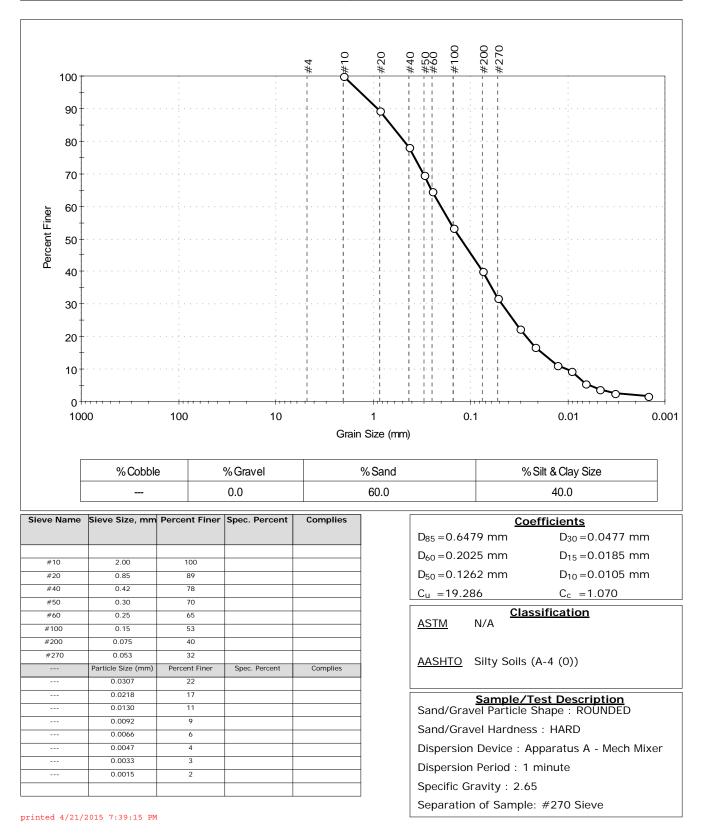

Client:	Northeast	Geotechnical, I	nc.					
Project:	Proposed F	Proposed Residential Development						
Location:	Ashland, N	IA			Project No:	GTX-303030		
Boring ID:	TP-16		Sample Type:	bag	Tested By:	jbr		
Sample ID:	S-1		Test Date:	04/21/15	Checked By:	emm		
Depth :	40-102 in		Test Id:	327875				
Test Comm	ent:							
Sample Des	scription:	Moist, light bro	own silty sand	with gravel				
Sample Cor	mment:							

USDA Textural Classification

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-16	S-1	40-102 in	70	28	2	Sandy Loam

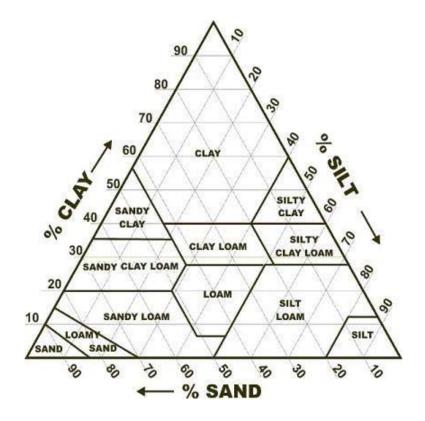

Classifications based only on material passing the #10 sieve

Sand: material passing 2.0 mm and retained on 0.05 mm diameter Silt: material passing 0.05 mm and retained on 0.002 mm diameter Clay: material passing 0.002 mm diameter



Client:	Northeast	Geotechnical, I	nc.			
Project:	Proposed I	Residential Dev	elopment			
Location:	Ashland, M	ΛA			Project No:	GTX-303030
Boring ID:	TP-16		Sample Type:	bag	Tested By:	jbr
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm
Depth :	40-102 in		Test Id:	327865		
Test Comm	nent:					
Sample Description: Moist, light brown silty sand with grave				with gravel		
Sample Co	mment:					

Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	ЛА			Project No:	GTX-303030	
Boring ID:	TP-16		Sample Type:	bag	Tested By:	jbr	
Sample ID:	: S-1		Test Date:	04/16/15	Checked By:	emm	
Depth :	40-102 in		Test Id:	327865			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA classi	ification		
Sample De	scription:	Moist, light br	own silty sand	with gravel			
Sample Co	mment:						

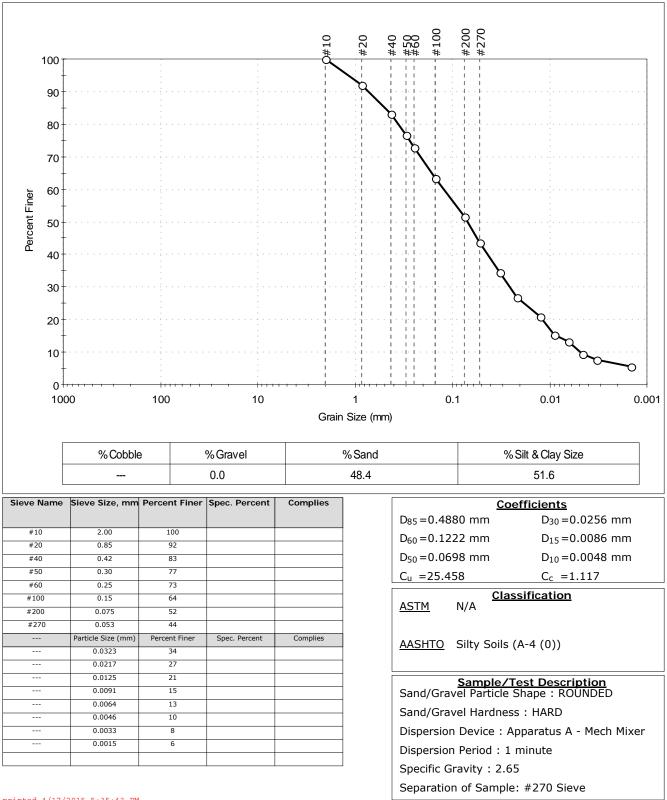

Client:	Northeast	Geotechnical,	Inc.			
Project:	Proposed	Residential Dev	velopment			
Location:	Ashland, N	ЛА			Project No:	GTX-303030
Boring ID:	TP-17		Sample Type:	bag	Tested By:	jbr
Sample ID:	: S-1		Test Date:	04/16/15	Checked By:	emm
Depth :	36-102 in		Test Id:	327876		
Test Comm	nent:					
Sample Description: Moist, light bro			rown silty sand			
Sample Co	mment:					

USDA Textural Classification

Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-17	S-1	36-102 in	58	37	5	Sandy Loam

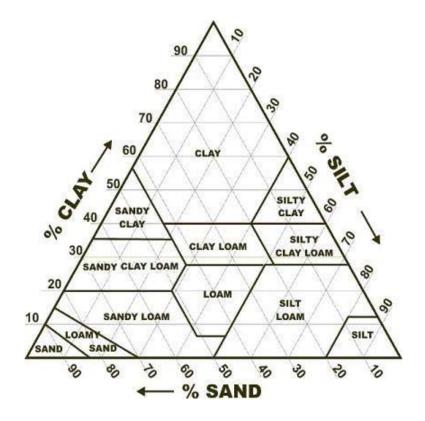
Classifications based only on material passing the #10 sieve

Sand: material passing 2.0 mm and retained on 0.05 mm diameter Silt: material passing 0.05 mm and retained on 0.002 mm diameter Clay: material passing 0.002 mm diameter



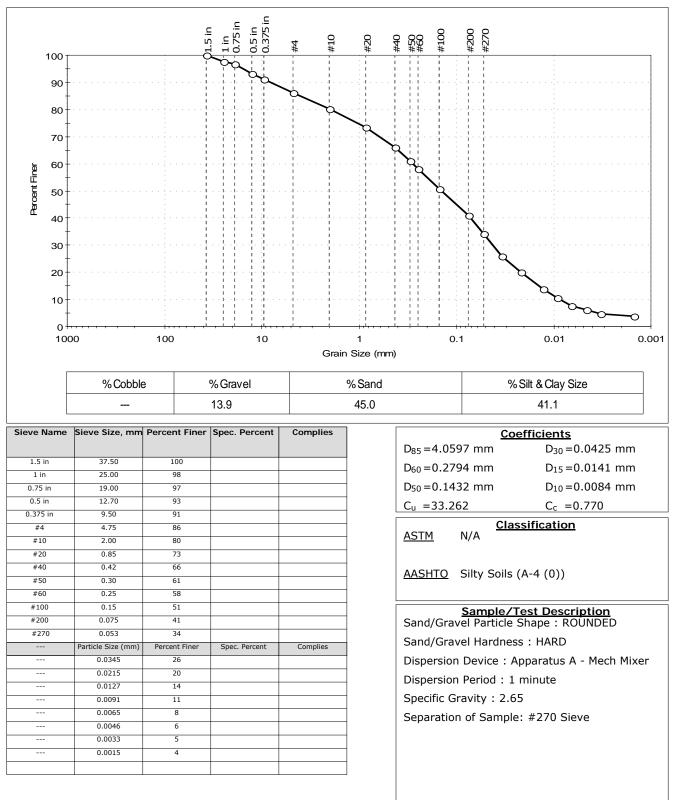
Client:	Northeast Geotechnical, Inc.							
Project:	Proposed I	Proposed Residential Development						
Location:	Ashland, M	1A			Project No:	GTX-303030		
Boring ID:	TP-17		Sample Type:	bag	Tested By:	jbr		
Sample ID:	: S-1		Test Date:	04/16/15	Checked By:	emm		
Depth :	36-102 in		Test Id:	327866				
Test Comm	nent:							
Sample Description: Moist, light br		rown silty sand						
Sample Co	mment:							

Client:	Northeast	Geotechnical, I	Inc.				
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	1A			Project No:	GTX-303030	
Boring ID:	TP-17		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm	
Depth :	36-102 in		Test Id:	327866			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample Description: Moist, light brown silty sand							
Sample Co	mment:						

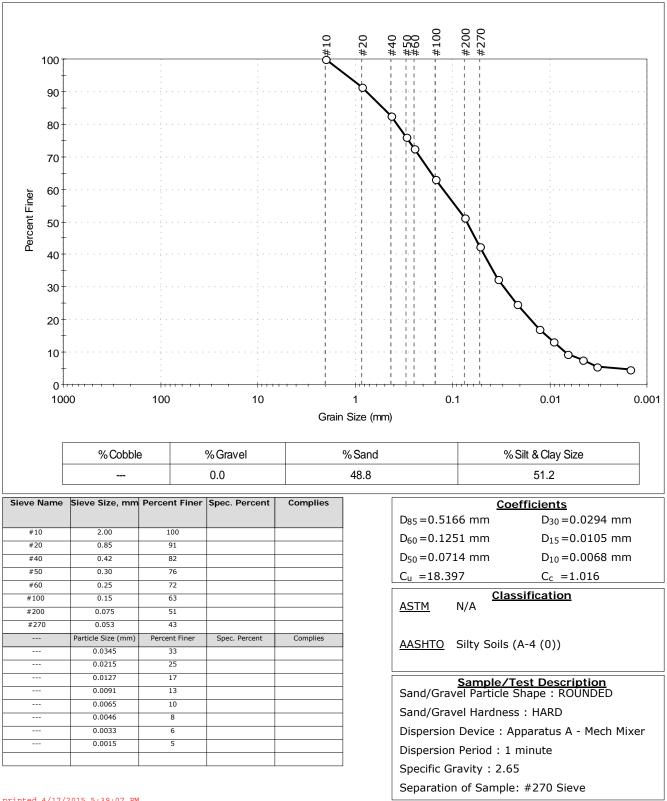

Client:	Northeast Geotechnical, Inc.						
Project:	Proposed	Proposed Residential Development					
Location:	Ashland, N	ЛА			Project No:	GTX-303030	
Boring ID:	TP-18		Sample Type:	bag	Tested By:	jbr	
Sample ID:	: S-1		Test Date:	04/16/15	Checked By:	emm	
Depth :	33-108 in		Test Id:	327877			
Test Comm	nent:						
Sample Description: Moist, light br		rown silty sand					
Sample Co	mment:						

USDA Textural Classification

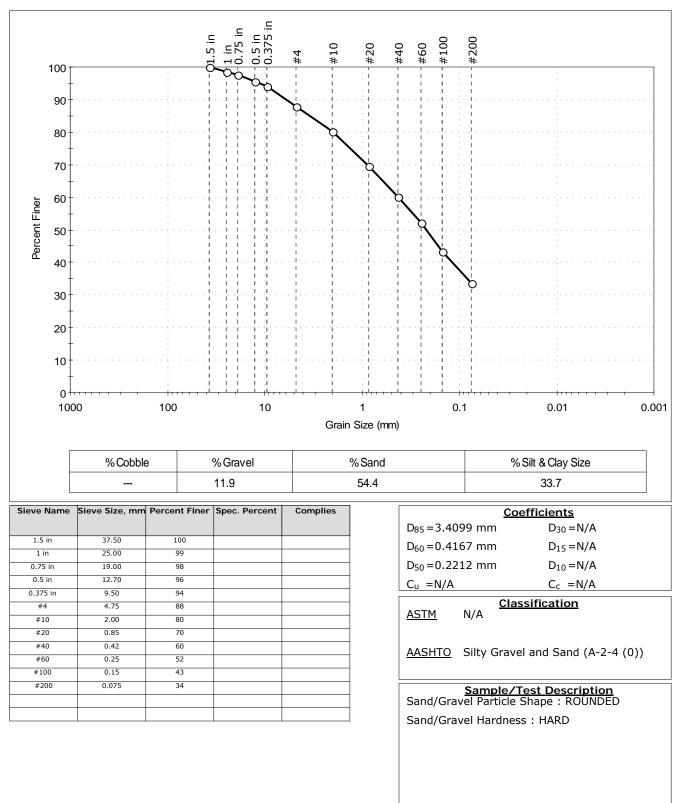
Boring ID	Sample ID	Depth	Sand, %	Silt, %	Clay, %	Classification
TP-18	S-1	33-108 in	60	36	4	Sandy Loam


Classifications based only on material passing the #10 sieve

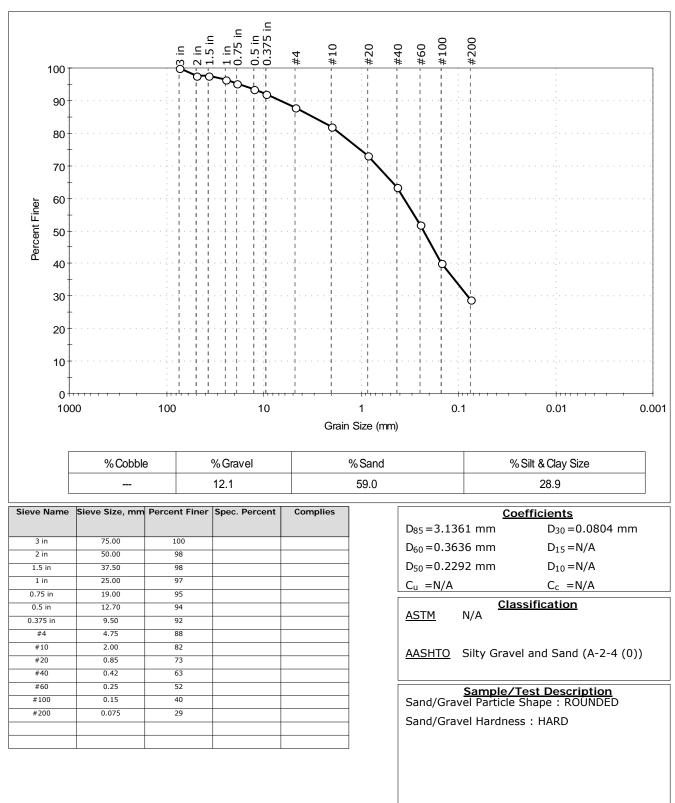
Sand: material passing 2.0 mm and retained on 0.05 mm diameter Silt: material passing 0.05 mm and retained on 0.002 mm diameter Clay: material passing 0.002 mm diameter



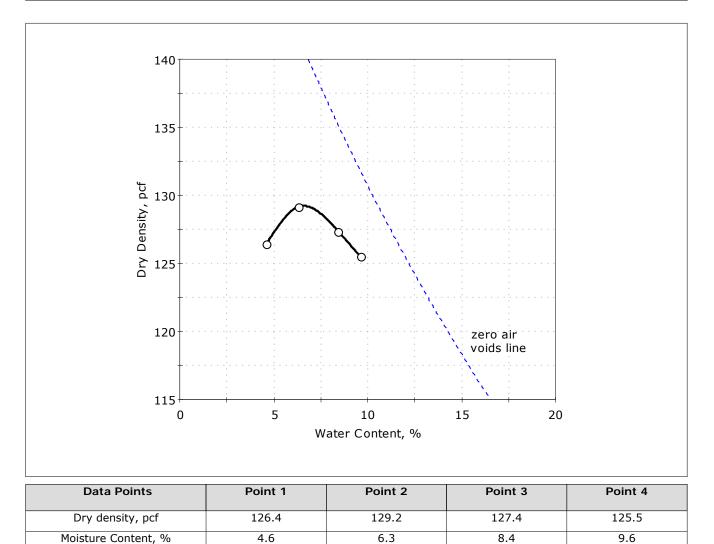
Client:	Northeast	Northeast Geotechnical, Inc.					
Project:	Proposed F	Proposed Residential Development					
Location:	Ashland, №	1A			Project No:	GTX-303030	
Boring ID:	Boring ID: TP-18		Sample Type: bag		Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm	
Depth :	33-108 in		Test Id:	327867			
Test Comm	nent:						
Sample Description: Moist, light bi		own silty sand					
Sample Co	mment:						



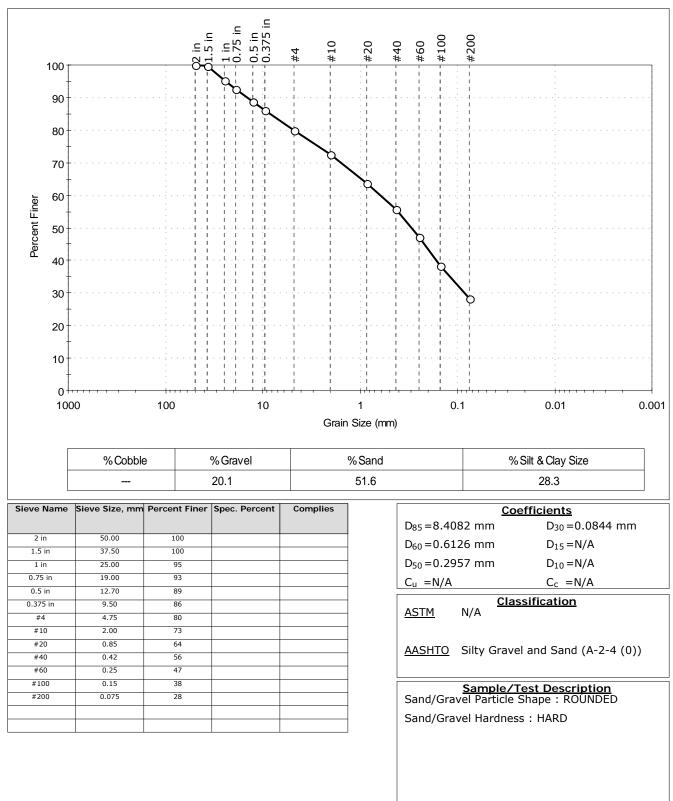
Client:	Northeast	Geotechnical,	Inc.				
Project:	Proposed I	Proposed Residential Development					
Location:	Ashland, M	1A			Project No:	GTX-303030	
Boring ID:	TP-18		Sample Type:	bag	Tested By:	jbr	
Sample ID	: S-1		Test Date:	04/16/15	Checked By:	emm	
Depth :	33-108 in		Test Id:	327867			
Test Comm	nent:	Only minus N	o. 10 sieve for	USDA class	ification		
Sample Description: Moist, light br			own silty sand				
Sample Co	mment:						



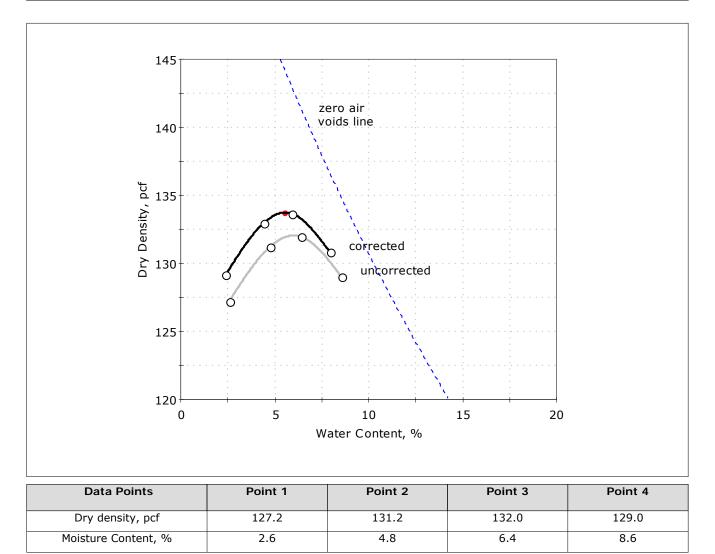
Client:	Northeast Geotechnical, Inc.					
Project:	Proposed	Proposed Residential Development				
Location:	Ashland, N	1A			Project No:	GTX-303030
Boring ID:	TP-19		Sample Type	: bag	Tested By:	jbr
Sample ID	: S-1		Test Date:	04/17/15	Checked By:	emm
Depth :	0.6-1.8 ft		Test Id:	327878		
Test Comm	nent:					
Sample Description: Moist, light br		rown silty sand				
Sample Co	mment:					


Client:	Northeast Geotechnical, Inc.					
Project:	Proposed I	Proposed Residential Development				
Location:	Ashland, M	1A			Project No:	GTX-303030
Boring ID:	TP-21		Sample Type:	bag	Tested By:	jbr
Sample ID:	S-1		Test Date:	04/16/15	Checked By:	emm
Depth :	2.6-9 ft		Test Id:	327741		
Test Comm	ent:					
Sample De	scription:	Moist, light oli	ve brown silty	sand		
Sample Co	mment:					

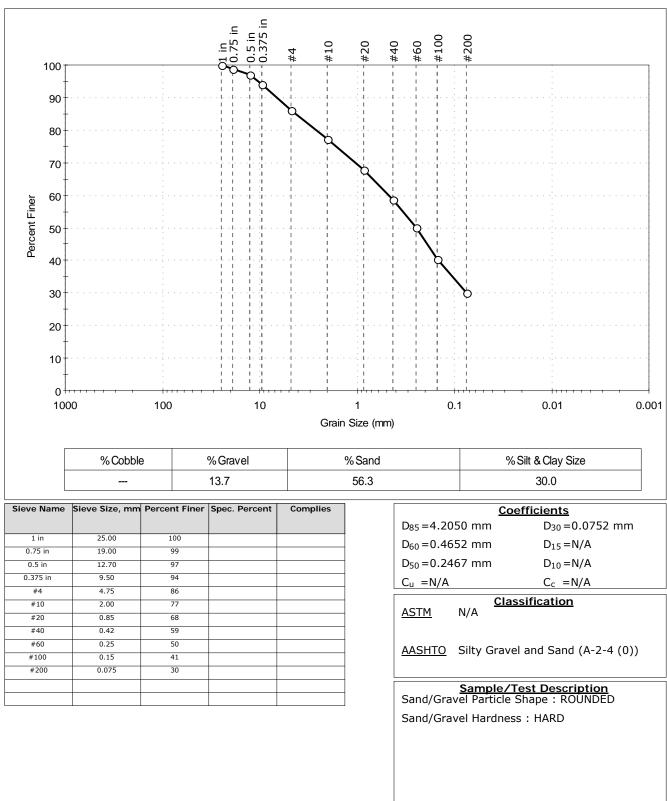
Client:	Northeast Geotechnical, Inc.					
Project:	Proposed F	Residential Dev	elopment			
Location:	Ashland, M	1A			Project No:	GTX-303030
Boring ID:	TP-21		Sample Type:	bag	Tested By:	cwd
Sample ID:	S-1		Test Date:	04/14/15	Checked By:	emm
Depth :	2.6-9 ft		Test Id:	327743		
Test Comme	ent:					
Sample Des	cription:	Moist, light oli	ve brown silty	sand		
Sample Corr	nment:					

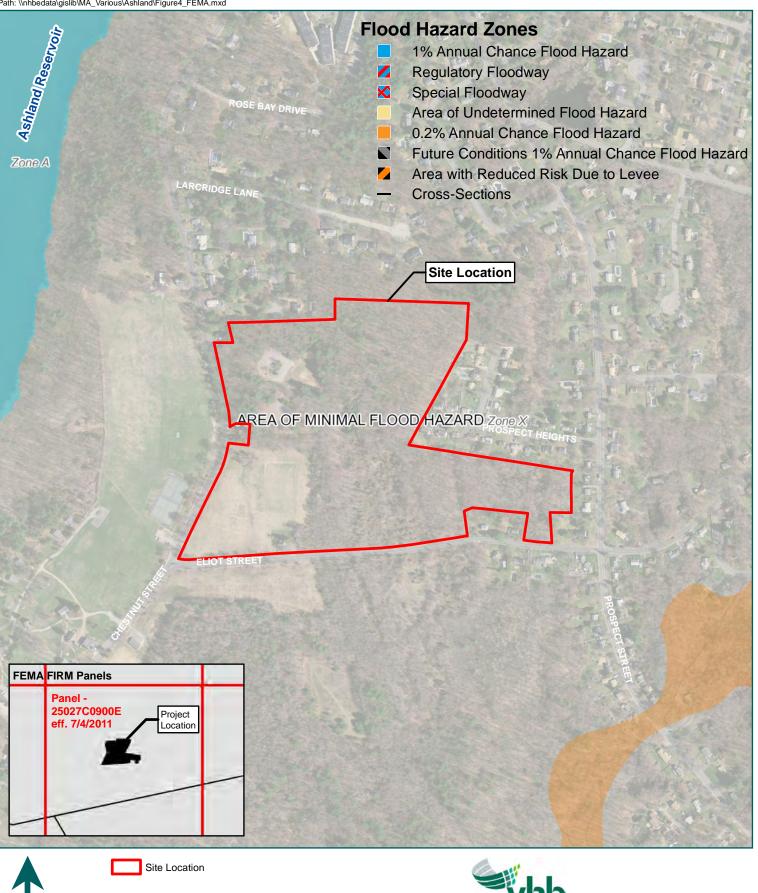

Compaction Report - ASTM D1557

		-
Method : C		
Preparation : DRY		
As received Moisture :12 %		
Rammer : Mechanical		
Zero voids line based on assumed specific gravity of 2.65		
Maximum Dry Density=	129.2 pcf	
Optimum Moisture=	6.6 %	


Client:	Northeast	Northeast Geotechnical, Inc.				
Project:	Proposed	Proposed Residential Development				
Location:	Ashland, N	٩A			Project No:	GTX-303030
Boring ID:	TP-23		Sample Type:	: bag	Tested By:	jbr
Sample ID	: S-1		Test Date:	04/15/15	Checked By:	emm
Depth :	4.5-10 ft		Test Id:	327740		
Test Comm	nent:					
Sample De	scription:	Moist, light ol	live brown silty	sand with g	ıravel	
Sample Co	mment:					

st Geotechnical,	Inc.			
Proposed Residential Development				
MA			Project No:	GTX-303030
	Sample Type:	bag	Tested By:	cwd
	Test Date:	04/14/15	Checked By:	emm
t	Test Id:	327742		
Moist, light o	live brown silty	sand with g	ravel	
,	d Residential De , MA t	, MA Sample Type: Test Date: t Test Id: 	d Residential Development , MA Sample Type: bag Test Date: 04/14/15 t Test Id: 327742	d Residential Development , MA Project No: Sample Type: bag Tested By: Test Date: 04/14/15 Checked By: t Test Id: 327742


Compaction Report - ASTM D1557



Method : C	
Preparation : DRY	
As received Moisture :11 %	
Rammer : Mechanical	
Zero voids line based on assumed specific gravity of 2.65	
Maximum Dry Density=	132.0 pcf
Optimum Moisture=	6.0 %
Oversize Correction (7.4% > 3/4	<u>4 inch Sieve)</u>
Corrected Maximum Dry Density=	133.7 pcf
Corrected Optimum Moisture=	5.5 %
Assumed Average Bulk Specific Gravity =	2.55

Client:	Northeast	Northeast Geotechnical, Inc.				
Project:	Proposed	Proposed Residential Development				
Location:	Ashland, I	MA			Project No:	GTX-303030
Boring ID:	TP-24		Sample Type	: bag	Tested By:	jbr
Sample ID:	: S-1		Test Date:	04/16/15	Checked By:	emm
Depth :	3.5-6 ft		Test Id:	327879		
Test Comm	nent:					
Sample De	scription:	Moist, yellowi	sh brown silty	sand		
Sample Co	mment:					

Source: FEMA National Flood Hazard Mapping MassGIS

Figure 4 – FEMA Map The Lanterns at Warren Woods **466 Chestnut Street** Ashland, Massachusetts

500

Appendix B: TSS Removal Worksheet TN and TP Removal

TSS Removal Calculation Worksheet

Vanasse Hangen Brustlin, Inc. Consulting Engineers and Planners 101 Walnut Street Watertown, MA 02471 (617) 924-1770	Project Name: Project Number: Location: Discharge Point: Drainage Area(s):	The Lanterns 13050.00 Ashland, MA DP-1, DP-2, DP-3 PR-11, 12, 13, 14, 21, 22, 23,	Sheet: Date: Computed by: Checked by: 24, 31, 32	1 of 1 July 2015 PTM KSS
A	В	С	D	E
BMP*	TSS Removal Rate*	Starting TSS Load**	Amount Removed (C*D)	Remaining Load (D-E)
Street Sweeping - 0%	0%	1.00	0.00	1.00
Deep Sump and Hooded Catch Basin	25%	1.00	0.25	0.75
Gravel Wetland	80%	0.75	0.60	0.15
	0%	0.15	0.00	0.15
	0%	0.15	0.00	0.15

* BMP and TSS Removal Rate Values from the MassDEP Stormwater Handbook Vol. 1. Removal rates for proprietary devices are from approved studies and/or manufacturer data (attach study or data source, or remove this sentence if not applicable).

** Equals remaining load from previous BMP (E)

XH

*** Stormceptor sizing calculation gives a TSS removal rate of 87%. To be conservative, 80% removal is used for this calculation (Change name of device and the claimed removal rate shown on the calc. sheet. Remove this sentence if not applicable.

Treatment Train TSS Removal =

85%

Subsurface Gravel Wetland

Subsurface Gravel Wetland systems continue to offer superior treatment for common stormwater pollutants and unparalleled treatment of nutrients.

About the Subsurface Gravel Wetland

The subsurface gravel wetland has been around for almost 15 years but enjoyed little implementation until the UNHSC pioneering studies. It approximates the look and function of a natural wetland, effectively removing sediments and other pollutants commonly found in runoff while enhancing the visual appeal of the landscape by adding buffers or greenscape to urban areas. The subsurface gravel wetland evaluated at UNHSC for 8 years is a horizontalflow filtration system and should not be confused with stormwater wetlands that function more like ponds. Instead, the subsurface gravel wetland includes a dense root mat, crushed stone, and an anaerobic microbe rich environment for improving water guality. Like other filtration systems, it demonstrates a tremendous capacity to reduce peak flow and improve water quality. By design, the subsurface gravel wetland by itself is not intended for infiltration of stormwater.

Implementation

Subsurface gravel wetlands can be used in many regions, with the exception of those that are too arid to support a wetland system. These systems have demonstrated exceptional water

quality treatment, in particular for nutrients, for a range of land uses including commuter parking, high density commercial use, and major transportation corridors. Subsurface gravel wetland systems can be space intensive but can be easily retro-fitted into dry ponds. Like any system that relies on infiltration or filtration, subsurface gravel wetland systems should be lined and outfitted with subdrains that discharge to the surface if they are to be used in pollution hotspots. Dissolved oxygen levels may fluctuate within biologically active subsurface systems like the subsurface gravel wetland, yet if this is a problem for local receiving waters, then it can easily be dealt with by introducing turbulence and aeration into the outlet design. While subsurface gravel wetlands are more expensive than other LID systems, they represent a dramatic performance improvement over ponds. Subsurface gravel wetlands are especially effective at removing nitrogen and have been used for some time in wastewater treatment.

Application

Subsurface gavel wetlands use is increasing, especially in areas where impaired waters exist or where higher standards are necessary. The State of New Jersey has provided loans and grants for subsurface gravel wetland

CATEGORY BMP TYPE	<i>()</i>
Stormwater Low Impact	
Developmer	

- UNIT OPERATIONS & PROCESSES Hydrologic
- (Flow Alteration)

Water Quality: Physical (Sedimentation, Filtration), Biological (Vegetative Uptake, Microbial Mediation), & Chemical (Sorption)

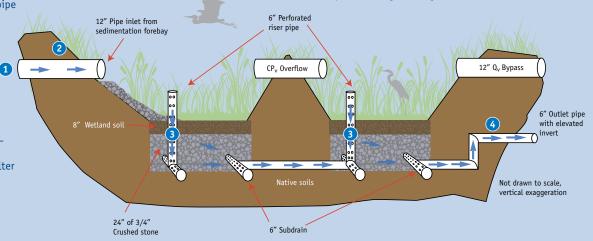
BASIC DIMENSIONS Filter Basin Footprint: 15 ft long X 32 ft wide Forebay Footprint: 10 ft long X 32 ft wide Total Area: 5,450 sf

SPECIFICATIONS Catchment Area: 1 acre Water Quality Flow: 1 cfs

Water Quality Volume: 3,300 cf

INSTALLATION COST \$22,500 per acre treated

MAINTENANCE


Maintenance Sensitivity: Medium Inspections: 1-4 times per year Sediment Removal: High

How the System Works

- 1. Runoff flows into a pretreatment forebay to remove settleables and gross solids.
- 2. Runoff exits the forebay through two stacked horizontal pipes (primary and secondary spillways). The lower pipe is a 6 inch pipe with a 1 inch orifice and the top pipe is a 12 inch pipe and into the treatment cells.
- 3. Hydraulic riser inlets conduct water to the subsurface gravel layer. There, biological treatment occurs through the uptake of pollutants by vegetation and anaerobic microbial activity within the gravel and soil. Physical and chemical treatment the trapping of contaminants occurs on and within the gravel filter media and root mat. Other UOPs

WATER QUALITY TREATMENT PROCESS 🔻

include sedimentation, transformation through reduction/oxidation, and sorption with organic matter and mineral complexes. 4. Treated runoff exits to the surface via an outlet pipe that includes an orifice control elevated four inches below the wetland surface. This insures that the soil is nearly continuously saturated—a condition that promotes vegetation growth and denitrification.

installations. In addition the New Hampshire Department of Transportation employs them at park and rides. These systems work well in retrofit applications such as the Berry Brook project in Dover, NH.

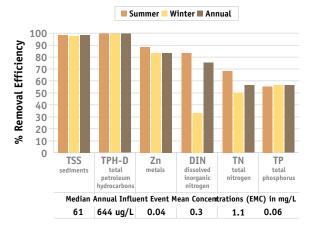
System Performance

Cost & Maintenance

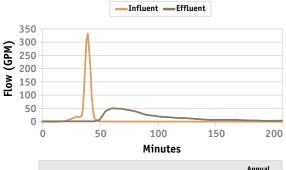
Subsurface gravel wetland installation cost was \$22,500 per impervious acre. Removal of system biomass (vegetation) should occur at least once every three growing seasons. The dense vegetation has been observed to have little problems with invasive plants. Maintenance activities include the removal of accumulated sediment biomass in the forebay and treatment cells. Research has demonstrated the value of biomass removal for long-term nutrient uptake. Without this practice, nitrogen rerelease will begin to occur. Maintenance is critical to ensure that influent (runoff) can remain well-aerated before it enters the denitrifying environment of the subsurface. Forebay maintenance of vegetation prevents the reintroduction of pollutants, particularly nitrogen and phosphorus and reduces maintenance on the treatment cells.

Cold Climate

The subsurface gravel wetland's water quality treatment and water quantity control capacity remained strong in all seasons. The gravel wetland's primary flow path is subsurface and enters the system through perferated riser pipes such that freezing of the wetland surface does not impact routing. Nitrate removal declines during the winter season while removal of other pollutants remained high in cold climates.


Water Quality Treatment

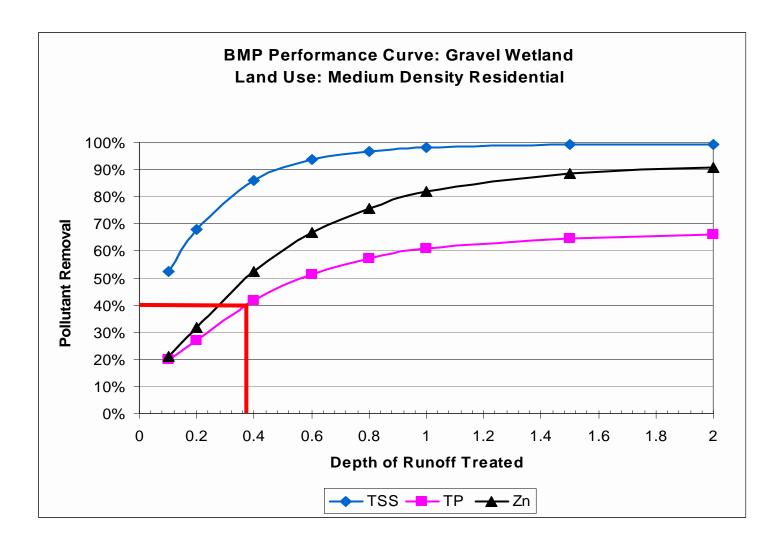
The subsurface gravel wetland does an exceptional job of removing nearly all of the pollutants commonly associated with stormwater treatment performance assessments. Subsurface gravel wetlands consistently exceed EPA's recommended level of removal for total suspended solids and meets regional ambient water quality criteria for nutrients, heavy metals, and petroleum hydrocarbons. The chart at the middle right reflects the subsurface gravel wetland's performance in removing total suspended solids, total petroleum hydrocarbons, zinc, dissolved inorganic nitrogen, total nitrogen, and total phosphorus. Values represent results recorded over 8 years, with the data further divided into summer and winter components. Additional sites are being monitored for long-term performance including high-use commercial uses. Of particular importance for coldwater fisheries, the mean July temperature of runoff leaving the system was 66.0 degrees F—12 degrees lower than the retention pond.


Water Quantity Control

Like other filtration systems, the subsurface gravel wetland exhibits tremendous capacity to reduce peak flows ~87%. The figure above illustrates effective peak flow reduction and long lag times for the range of seasons monitored.

POLLUTANT REMOVAL: 2004-2010

HYDRAULIC PERFORMANCE



WinterSummerAnnual
AverageAverage Peak Flow Reduction91%93%92%Average Lag Time (minutes)419367391

SYSTEM DESIGN 🔻

This subsurface gravel wetland was designed by UNHSC. Its rectangular footprint occupies 5,450 square feet and can accommodate runoff from up to one acre of impervious surface. It includes a pretreatment forebay, followed by two flow-through treatment basins. (Other pretreatment approaches may be used.) Each treatment basin is lined and topped with two feet of gravel and 8 inches of wetland soil. The system is designed to retain and filter the water quality volume (WQv) 10 percent in the forebay and 45 percent above each treatment cell. It can detain a channel protection volume (CPv), and release it over 24 to 48 hours. The conveyance protection volume (Q10) is bypassed. For small, frequent storms, each treatment basin filters 100 percent of the influent it receives. For larger storms that do not exceed the design volume, some stormwater bypasses the first treatment basin and is only processed by the second. When storms exceed the design volume, the first inch of rain (first flush) is treated, while the excess is routed to conveyance structures or receiving waters. The treatment cells host a diverse mix of native wetland grasses, reeds, herbaceous plants, and shrubs.

<u>Source</u>: Stormwater Best Management Practices (BMP) Performance Analysis Report - US EPA , March 2010

Appendix C:

Long Term Stormwater Operation and Maintenance Measures

Project Information

Site

Project Name:	The Lanterns at Warren Woods
Address or Locus:	466 Chestnut Street
City, State & Zip:	Ashland, MA 01721

Developer

Client Name:	Pickwick Development Corp. c/o The Green Companies
Client Address:	46 Glen Avenue
Client City, State & Zip:	Newton, MA 02459
Client Telephone No.:	(617) 696-0020
Client Cell Phone:	N/A
Client E-Mail:	dcaligaris@greencos.com

Site Supervisor

Site Manager Name:	TBD
Site Manager Address:	TBD
Site Manager City, State & Zip:	TBD
Site Manager Telephone No.:	TBD
Site Manager Cell Phone:	TBD
Site Manager E-Mail:	TBD

As part of the Notice of Intent process, a long term stormwater maintenance plan will be developed, and will include measures such as those described below.

Long Term Stormwater Maintenance Measures -

The following maintenance program is proposed to ensure the continued effectiveness of the structural water quality controls previously described.

- Inspect stormwater basins once annually, in the spring, for cracking or erosion of side slopes, embankments, and accumulated sediment. Necessary sediment removal, earth repair, and/or reseeding will be performed immediately upon identification.
- Inspect sediment traps/forebays monthly for erosion of side slopes and accumulated sediment. Necessary sediment removal, earth repair and/or reseeding shall be performed immediately upon identification. Clean traps/ forebays approximately four times per year or as needed.
- Clean all catch basins twice annually to remove accumulated sand, sediment, and floatable products or as needed based on use.
- > Paved areas will be swept, at a minimum, two times per year.
- Routinely pick up and remove litter from the parking areas, islands and perimeter landscape areas in addition to regular pavement sweeping.
- Routinely inspect all dumpster and compactor locations for spills. Remove all trash litter from the enclosure and dispose of properly.

Pavement Systems

Standard Asphalt Pavement

- Sweep or vacuum standard asphalt pavement areas at least four times per year with a commercial cleaning unit and properly dispose of removed material.
- > Recommended sweeping schedule:
 - ➢ Oct/ Nov
 - ► Feb/ Mar
 - > Apr/ May
 - > Aug/Sep
- More frequent sweeping of paved surfaces will result in less accumulation in catch basins, less cleaning of subsurface structures, and less disposal costs.

Structural Stormwater Management Devices

Catch Basins

- All catch basins shall be inspected and cleaned a minimum of at least twice per year.
- Sediment (if more than six inches deep) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations.
- Any structural damage or other indication of malfunction will be reported to the site manager and repaired as necessary
- > During colder periods, the catch basin grates must be kept free of snow and ice.
- During warmer periods, the catch basin grates must be kept free of leaves, litter, sand, and debris.

Stormwater Outfalls

- Inspect outfall locations monthly for the first three months after construction to ensure proper functioning and correct any areas that have settled or experienced washouts.
- > Inspect outfalls annually after initial three month period.
- Annual inspections should be supplemented after large storms, when washouts may occur.
- > Maintain vegetation around outfalls to prevent blockages at the outfall.
- > Maintain rip rap pad below each outfall and replace any washouts.
- > Remove and dispose of any trash or debris at the outfall.

Roof Drain Leaders

- > Perform routine roof inspections quarterly.
- Keep roofs clean and free of debris.
- > Keep roof drainage systems clear.
- > Keep roof access limited to authorized personnel.
- > Clean inlets draining to the subsurface bed twice per year as necessary.

Vegetated Stormwater Management Devices

Gravel Wetland

Initial Post-Construction Inspection

 Gravel Wetlands shall be visually inspected for a period of one year following installation, to ensure proper function and that vegetation is healthy and developing.

Long-Term Maintenance

- Inlet and outlet areas should be checked for scouring or other erosion and the sediment forebay and treatment cells should be checked for excessive sedimentation.
- Confirm that the drawdown time of the gravel wetland treatment cells is less than 72 hours.
- Vegetation shall be maintained, and accumulated trash and debris shall be removed.

Inspections and Cleanings

- Inspect the treatment cells at a minimum one time per year for sediment build up, erosion and vegetative conditions. Any sediment build up interfering with plan growth shall be removed and the vegetation restored immediately.
- Inspect the gravel wetlands for invasive species (Phragmites, Purple Loosestrife). Any invasive species encountered shall be removed immediately.
- Inspect outlet control structures every year for erosion build up and clogging. Any sediment or blockage should be removed.
- Test the pH levels of the soils within the gravel wetland bottoms at a minimum of one time per year. If the pH is below 5.2, limestone should be applied to increase it; if the pH is above 8.0, iron sulfate and sulfur should be added to reduce it.
- Plant growth within the gravel wetland should be cut back at the end of every growing season. Cuttings must be removed and properly disposed of. Gravel wetlands should not be mowed at any time.
- The use of fertilizers shall be avoided in the gravel wetlands as excessive nutrients may be discharged to adjacent wetlands and surface waters.

Detention Basin

Initial Post-Construction Inspection

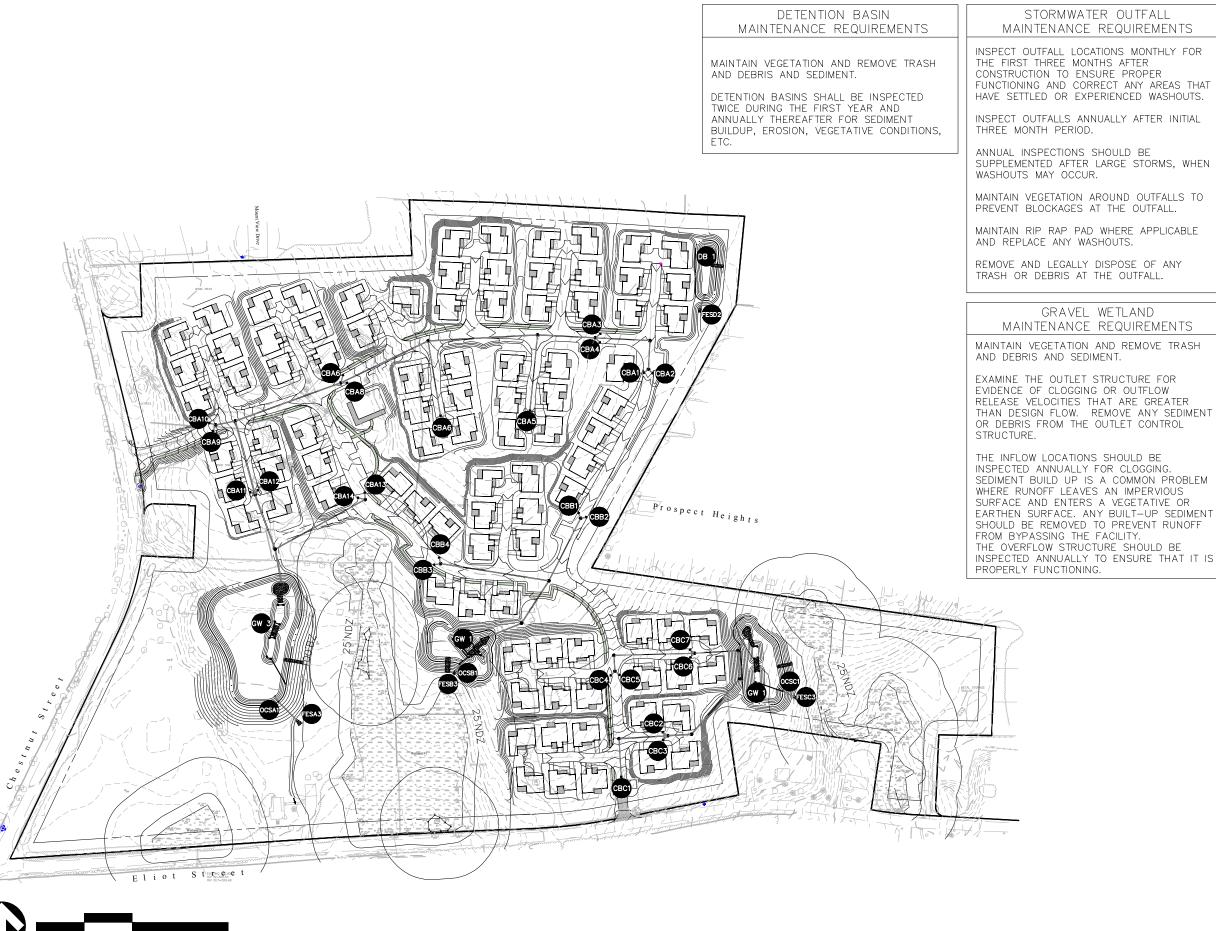
 Detention basins should be inspected after every major storm for the first few months to ensure proper stabilization and function.

Long-Term Maintenance

- The grass on the side slopes and in the buffer areas should be mowed, and grass clippings, organic matter, and accumulated trash and debris removed, at least twice during the growing season.
- Eroded or barren spots should be reseeded immediately after inspection to prevent additional erosion and accumulation of sediment.
- Sediment should be removed from the basin as necessary. Removal procedures should not take place until the floor of the basin is thoroughly dry.

Inspections and Cleaning

- Detention basins should be inspected at least twice a year to ensure proper stabilization and function.
- Light equipment, which will not compact the underlying soil, should be used to remove the top layer.


Vegetated Areas Maintenance

Although not a structural component of the drainage system, the maintenance of vegetated areas may affect the functioning of stormwater management practices. This includes the health/density of vegetative cover and activities such as the application and disposal of lawn and garden care products, disposal of leaves and yard trimmings.

- > Inspect planted areas on a semi-annual basis and remove any litter.
- > Maintain planted areas adjacent to pavement to prevent soil washout.
- > Immediately clean any soil deposited on pavement.
- Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming.
- Plant alternative mixture of grass species in the event of unsuccessful establishment.
- > The grass vegetation should be cut to a height between three and four inches.
- Pesticide/Herbicide Usage No pesticides are to be used unless a single spot treatment is required for a specific control application.
- Fertilizer usage should be avoided. If deemed necessary, slow release fertilizer should be used. Fertilizer may be used to begin the establishment of vegetation in bare or damaged areas, but should not be applied on a regular basis unless necessary.

Long Term Best Management Practices Checklist

> The Long-Term BMP Maintenance/Evaluation Checklist is attached.

200 400 Feet 0 100

DEEP SUMP CATCH BASIN MAINTENANCE REQUIREMENTS

ALL CATCH BASINS SHALL BE INSPECTED AT LEAST TWO TIMES PER YEAR AND CLEANED A MINIMUM OF AT LEAST ONCE PER YEAR.

SEDIMENT (IF MORE THAN SIX INCHES DEEP) AND/OR FLOATABLE POLLUTANTS SHALL BE PUMPED FROM THE BASIN AND DISPOSED OF AT AN APPROVED OFFSITE FACILITY IN ACCORDANCE WITH ALL APPLICABLE REGULATIONS

CARE SHOULD BE TAKEN NOT TO DISLODGE THE OUTLET HOOD WHEN CLEANING

ANY STRUCTURAL DAMAGE OR OTHER INDICATION OF MALFUNCTION WILL BE REPORTED TO THE SITE MANAGER AND REPAIRED AS NECESSARY

DURING COLDER PERIODS, THE CATCH BASIN GRATES MUST BE KEPT FREE OF SNOW AND ICE.

DURING WARMER PERIODS, THE CATCH BASIN GRATES MUST BE KEPT FREE OF LEAVES, LITTER, SAND, AND DEBRIS.

> OUTLET CONTROL STRUCTURE MAINTENANCE REQUIREMENTS

ALL OUTLET CONTROL STRUCTURES SHALL BE INSPECTED AT LEAST TWICE A YEAR BY REMOVING THE FRAMES AND GRATES AND DETERMINING THE THICKNESS OF SEDIMENT THAT HAS ACCUMULATED.

IF SEDIMENT IS MORE THAN SIX INCHES DEEP, IT MUST BE REMOVED USING A VACTOR TRUCK.

ONE INSPECTION AND CLEANOUT (IF SEDIMENT DEPTHS WARRANT) SHOULD OCCUR IN MARCH AFTER SNOWFALL EVENTS HAVE CEASED.

DURING COLDER PERIODS, THE INLET GRATES MUST BE KEPT FREE OF SNOW AND ICE.

DURING WARMER PERIODS, THE INLET GRATES MUST BE KEPT FREE OF LEAVES, LITTER, SAND, AND DEBRIS.

LEGEND

СВ DEEP SUMP CATCH BASIN WITH HOOD

OCS OUTLET CONTROL STRUCTURE

GW GRAVEL WETLAND

FES STORMWATER OUTFALL

DETENTION BASIN

DB

Vanasse Hangen Brustlin, Inc.

July 2015

Operations and Maintenance Manual BMP Location Map The Lanterns at Warren Woods Ashland, Massachusetts

The Lanterns at Warren Woods, Ashland, Massachusetts Long Term Best Management Practices – Maintenance/ Evaluation Checklist

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed ⊡yes	Date of Cleaning/Repair	Performed by
Gravel Wetland	Bi-annually			 Maintain vegetation Examine the outlet structure for evidence of clogging or outflow release velocities that are greater than design flow. Remove any sediment or debris from the outlet control structure. Remove trash and debris and sediment. The inflow locations should be inspected annually for clogging. Sediment build up is a common problem where runoff leaves an impervious surface and enters a vegetative or earthen surface. Any built-up sediment should be removed to prevent runoff from bypassing the facility. The overflow structure should be inspected annually to ensure that it is properly functioning. 	yes no		
Deep Sump and Hooded Catch basin	Bi-annually			 All catch basins shall be inspected and cleaned a minimum of at least twice per year. One clean out should occur in March after snowfall events have ceased, to remove deicing sands from the BMPs. Sediment (if more than six inches deep) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations. Any structural damage or other indication of malfunction will be reported to the site manager and repaired as necessary. During colder periods, the catch basin grates must be kept free of snow and ice. During warmer periods, the catch basin grates must be kept free of leaves, litter, sand, and debris. 	yes no		
Sedimentation Trap/Forebay	Bi-annually			 Remove and repair sediment and erosion Maintain vegetation Clear any clogging at the inlets 	⊡yes ⊡no		
Street Sweeping	Quarterly			 Sweep or vacuum pavement surfaces at least four times a year with a commercial cleaning unit and dispose of removed materials. Sweeping should be conducted in March, after the snowy season but before significant spring rain events. Vacuum regenerative air sweeping is preferred. 	yes no		
Outlet Control Structures	Bi-annually			 The outlet control structures associated with the gravel wetlands shall be inspected at least twice a year by removing the frames and grates and determining the thickness of sediment that has accumulated. If sediment is more than six inches deep, it must be removed using a vactor truck. One inspection and cleanout (if sediment depths warrant) should occur in March after snowfall events have ceased. 	∏yes ∏no		
Detention Basin	Bi-annually			 Remove and repair sediment and erosion Inspect and remove trash Maintain vegetation. Detention basins shall be inspected twice during for the first year and annually thereafter for sediment buildup, erosion, vegetative conditions, etc. 	⊡yes ⊡ no		

Stormwater Control Manager _

Catch Basins – Inspect 2 times per year, clean when sediment depth >6 inches or at least	
once per year	

Catch Basin	Inspected (Y/N)	Sediment Depth (inches)	Cleaning needed (Y/N)	Date Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damaged)
CB-A1				/ /	
CB-A2				/ /	
CB-A3				/ /	
CB-A4				/ /	
CB-A5				/ /	
CB A6				/ /	
CB A7				/ /	
CB A8				/ /	
CB A9				/ /	
CB-A10				/ /	
CB-A11				/ /	
CB-A12				/ /	
CB-A13				/ /	
CB-A14				/ /	
CB-B3				/ /	
CB-B4				/ /	
CB-C1				/ /	
CB-C2				/ /	
CB-C3				/ /	
CB-C4				/ /	
CB-C5				/ /	
CB-C6				/ /	
CB-C7				/ /	

The Lanterns at Warren Woods - Ashland, Massachusetts: Maintenance Checklist

Outfalls - Inspect 2 times per year, replace any dislodged rip-rap, remove excess vegetation, remove any debris

Outfall	Inspected (Y/N)	Sediment Depth (inches)	Cleaning needed (Y/N)	Date Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damage)
FES-A3				/ /	
FES-B3				/ /	
FES-C3				/ /	
FES-D2				/ /	

Outlet Control Structures – Inspect 2 times per year, clean when sediment depth >6 inches or at least once per year

Outlet	Inspected (Y/N)	Sediment Depth (inches)	Cleaning needed (Y/N)	Date Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damage)
OCS-A1				/ /	
OCS-B1				/ /	
OCS-C1				/ /	

Gravel Wetlands - Inspect twice per year. Remove sediment from basin. Inspect and clean sediment forebay and treatment cells associated with basins at least twice per year.

Basin	Inspected (Y/N)	Sediment Depth (inches)	Cleaning needed (Y/N)	Date Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damage)
Basin 1				/ /	
Basin 2				/ /	
Basin 3				/ /	

Detentio	on Basins	– Inspec	t twice p	er year.	Remove trash and sediment from basin.
Basin	Inspected (Y/N)	Sediment Depth (inches)	Cleaning needed (Y/N)	Date Cleaned	Comments (Trash, Oil, Pet waste, Lawn Debris, Damage)
Basin 4				/ /	

Appendix D: Hydraulic Analysis

Drainage Pipe Sizing Calculations

25-Year Storm Event

CLOSED DRAINAGE SYSTEM CALCULATIONS

Storm Drainage Computations

101 Walnut Street Post Office Box 9151 Watertown, MA 02471

P 617.924.1770

Name:	The Laterns at Warren Woods	Proj. No.:	13050.00	Desi
	Ashland, MA	Date:	6/28/2015	25
Client:	The Green Company	Computed by:	WM	
		Checked by:	РТМ	k _e =

	LOCA	TION	AREA	C	C x A	SUM	FLOW	TIME (MIN)	i*			DESIGN			CA	PACITY				PROFILE			
DESCRIPTION	FROM	TO	(AC.)			C x A	PIPE	CONC		Q	V	n	PIPE	SLOPE	Q full	V full	LENGTH	FALL	RIM	INV	INV	W.S.E.	Freeboard
								TIME		cfs	fps		SIZE		ft^3/s	ft/s	ft	ft		UPPER	LOWER	ft	ft
	CB-A1	DMH-A1	0.31	0.56	0.18	0.18	0.06	5.0	6.0	1.1	3.3	0.012	12	0.0085	3.6	4.5	12	0.10	334.0	331.8	331.7	331.7	2.3
	CB-A2	DMH-A1	0.18	0.61	0.11	0.11	0.07	5.0	6.0	0.7	2.9	0.012	12	0.0085	3.6	4.5	12	0.10	334.0	331.8	331.7	331.7	2.3
	DMH-A1	DMH-A2				0.28	0.32	5.0	6.0	1.7	3.1	0.012	12	0.0050	2.7	3.5	60	0.30	334.2	331.6	331.3	331.5	2.7
	DMH-A2	DMH-A3				0.28	0.60	5.0	6.0	1.7	3.2	0.012	12	0.0053	2.8	3.6	114	0.60	335.1	331.2	330.6	331.1	4.0
	CB-A3	DMH-A3	0.43	0.59	0.25	0.25	0.05	5.0	6.0	1.5	4.5	0.012	12	0.0151	4.7	6.0	13	0.20	336.2	332.2	332.0	331.9	4.3
	CB-A4	DMH-A3	0.09	0.59	0.05	0.05	0.08	5.0	6.0	0.3	2.6	0.012	12	0.0151	4.7	6.0	13	0.20	336.2	332.2	332.0	332.1	4.1
	DMH-A3	DMH-A4				0.59	0.53	5.0	6.0	3.5	3.8	0.012	15	0.0050	4.9	4.0	121	0.60	336.6	330.4	329.8	330.2	6.4
	CB-A5	DMH-A4	0.33	0.58	0.19	0.19	0.69	5.0	6.0	1.1	3.8	0.012	12	0.0120	4.2	5.4	158	1.90	335.9	331.9	330.0	331.7	4.2
	AD-A1	DMH-A4	0.68	0.54	0.36	0.36						0.012											
	DMH-A4	DMH-A5				1.14	0.83	5.0	6.0	6.9	4.6	0.012	18	0.0050	8.1	4.6	229	1.15	338.6	329.5	328.4	329.2	9.4
	CB-A6	DMH-A5	0.29	0.58	0.17	0.17	0.75	5.0	6.0	1.0	3.5	0.012	12	0.0105	4.0	5.0	158	1.65	334.5	330.5	328.9	330.3	4.1
	AD-A2	DMH-A5	0.47	0.52	0.25	0.25						0.012											
	DMH-A5	DMH-A6	1			1.56	0.40	5.0	6.0	9.3	8.4	0.012	18	0.0231	17.3	9.8	202	4.65	336.9	328.3	323.6	327.4	9.5
	CB-A7	DMH-A6	0.74	0.55	0.40	0.40	0.06	5.0	6.0	2.4	4.7	0.012	12	0.0122	4.3	5.4	16	0.20	328.2	324.2	324.0	323.9	4.3
	CB-A8	DMH-A6	0.15	0.60	0.09	0.09	0.06	5.0	6.0	0.6	3.3	0.012	12	0.0161	4.9	6.2	12	0.20	328.2	324.2	324.0	324.1	4.1
	AD-A3	DMH-A6	0.84	0.42	0.36	0.36						0.012									1		
	DMH-A6	DMH-A7				2.41	0.36	5.0	6.0	14.4	10.9	0.012	18	0.0323	20.4	11.6	234	7.55	328.1	323.5	316.0	322.0	6.1
	AD-A4	DMH-A7	0.55	0.61	0.34	0.34						0.012											
	CB-A9	DMH-A8	0.05	0.65	0.03	0.03	0.13	5.0	6.0	0.2	1.7	0.012	12	0.0074	3.3	4.2	14	0.10	318.2	316.0	315.9	316.0	2.2
	CB-A10	DMH-A8	0.77	0.55	0.42	0.42	0.06	5.0	6.0	2.5	4.0	0.012	12	0.0074	3.3	4.2	14	0.10	318.2	316.0	315.9	315.8	2.4
	RD	DMH-A8	0.16	0.90	0.15	0.15						0.012											
	DMH-A8	DMH-A7				0.60	0.17	5.0	6.0	3.6	4.0	0.012	15	0.0060	5.4	4.4	42	0.25	319.2	315.8	315.6	315.6	3.6
	DMH-A7	DMH-A9				3.35	0.39	5.0	6.0	20.1	6.9	0.012	24	0.0072	20.8	6.6	159	1.15	322.3	315.5	314.3	314.9	7.4
	CB-A11	DMH-A9	0.12	0.60	0.07	0.07	0.05	5.0	6.0	0.4	3.5	0.012	12	0.0268	6.3	8.0	11	0.30	319.9	315.9	315.6	315.8	4.1
	CB-A12	DMH-A9	0.24	0.62	0.15	0.15	0.04	5.0	6.0	0.9	4.5	0.012	12	0.0268	6.3	8.0	11	0.30	319.9	315.9	315.6	315.6	4.3
	DMH-A9	DMH-A10				3.56	0.28	5.0	6.0	21.4	7.2	0.012	24	0.0079	21.8	6.9	121	0.95	320.1	314.2	313.3	313.6	6.5
	CB-A13	DMH-A11	0.99	0.37	0.37	0.37	0.05	5.0	6.0	2.2	4.8	0.012	12	0.0138	4.5	5.8	15	0.20	323.3	319.3	319.1	319.0	4.3
	CB-A14	DMH-A11	0.35	0.58	0.20	0.20	0.06	5.0	6.0	1.2	4.0	0.012	12	0.0133	4.4	5.7	15	0.20	323.3	319.3	319.1	319.1	4.2
	AD-A5	DMH-A11	1.30	0.59	0.77	0.77						0.012											
	DMH-A11	DMH-A10				1.34	0.43	5.0	6.0	8.0	8.2	0.012	15	0.0227	10.5	8.6	214	4.85	323.5	318.9	314.0	318.0	5.5
	RD	DMH-A10	0.49	0.90	0.44	0.44						0.012											
	DMH-A10	FES-A1				5.34	0.10	5.0	6.0	32.0	10.6	0.012	24	0.0172	32.1	10.2	67	1.15	318.0	313.2	312.0	311.7	6.3

esign Parameters: 5 Year Storm Boston, MA

-

0.5

CLOSED DRAINAGE SYSTEM CALCULATIONS

Storm Drainage Computations

101 Walnut Street Post Office Box 9151

Watertown, MA 02471 P 617.924.1770

Name:	The Laterns at Warren Woods	Proj. No.:	13050.00	Desig
	Ashland, MA	Date:	6/28/2015	25
Client:	The Green Company	Computed by:	WM	
		Checked by:	РТМ	k _e =

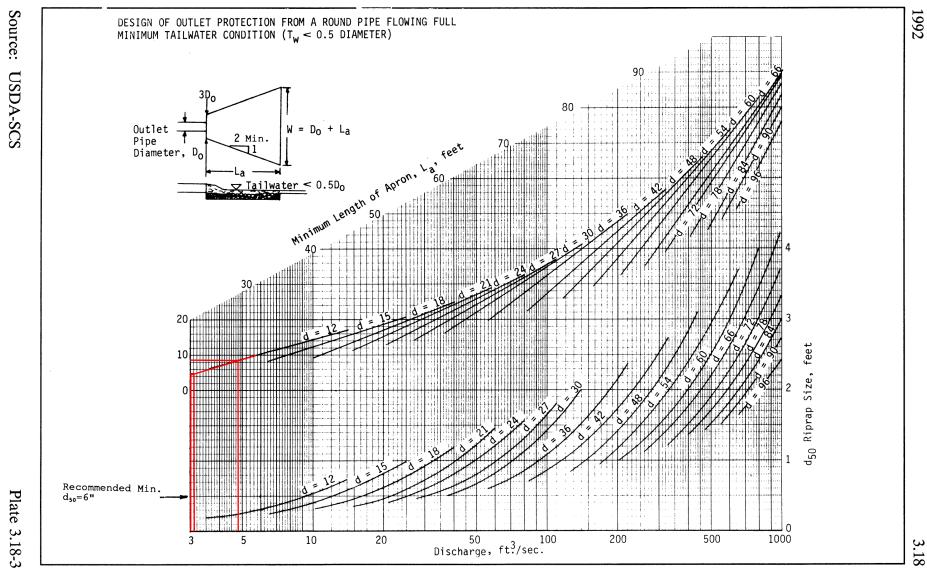
	LOCA	TION	AREA	С	C x A	SUM	FLOW	TIME (MIN)	i*			DESIGN			CA	PACITY				PROFILE			
DESCRIPTION	FROM	TO	(AC.)			C x A	PIPE	CONC		Q	V	n	PIPE	SLOPE	Q full	V full	LENGTH	FALL	RIM	INV	INV	W.S.E.	Freeboard
								TIME		cfs	fps		SIZE		ft^3/s	ft/s	ft	ft		UPPER	LOWER	ft	ft
	CB-B1	DMH-B1	0.28	0.53	0.15	0.15	0.05	5.0	6.0	0.9	3.9	0.012	12	0.0171	5.1	6.4	12	0.20	329.4	325.4	325.2	325.2	4.2
	CB-B2	DMH-B1	0.21	0.48	0.10	0.10	0.06	5.0	6.0	0.6	3.4	0.012	12	0.0171	5.1	6.4	12	0.20	329.4	325.4	325.2	325.3	4.1
	DMH-B1	DMH-B2				0.25	0.48	5.0	6.0	1.5	5.1	0.012	12	0.0212	5.6	7.2	146	3.10	329.4	325.1	322.0	324.8	4.6
	AD-B1	DMH-B2	1.29	0.53	0.69	0.69						0.012											
	CB-B3	DMH-B3	0.25	0.63	0.16	0.16	0.07	5.0	6.0	0.9	3.1	0.012	12	0.0076	3.4	4.3	13	0.10	325.3	323.1	323.0	323.0	2.3
	CB-B4	DMH-B3	0.51	0.57	0.29	0.29	0.06	5.0	6.0	1.8	3.7	0.012	12	0.0078	3.4	4.3	13	0.10	325.3	323.1	323.0	322.9	2.4
	AD-B2	DMH-B3	0.39	0.49	0.19	0.19						0.012											
	DMH-B3	DMH-B2				0.64	0.97	5.0	6.0	3.9	3.9	0.012	15	0.0050	5.0	4.0	228	1.15	325.6	322.9	321.8	322.7	2.9
	DMH-B2	DMH-B4				1.58	0.26	5.0	6.0	9.5	6.8	0.012	18	0.0124	12.6	7.2	105	1.30	327.8	321.5	320.2	320.9	6.9
	DMH-B4	FES-B1				1.58	0.17	5.0	6.0	9.5	7.3	0.012	18	0.0152	14.0	7.9	72	1.10	325.8	320.1	319.0	319.4	6.4
	CB-C1	DMH-C1	0.61	0.52	0.32	0.32	0.30	5.0	6.0	1.9	4.5	0.012	12	0.0126	4.3	5.5	79	1.00	308.8	306.5	305.5	306.3	2.5
	RD	DMH-C1	0.49	0.90	0.44	0.44						0.012											
	DMH-C1	DMH-C2				0.76	0.40	5.0	6.0	4.5	4.3	0.012	15	0.0054	5.1	4.2	102	0.55	313.0	305.3	304.7	305.0	8.0
	CB-C2	DMH-C2	0.06	0.60	0.04	0.04	0.08	5.0	6.0	0.2	2.5	0.012	12	0.0238	5.9	7.6	13	0.30	311.4	307.4	307.1	307.3	4.1
	CB-C3	DMH-C2	0.08	0.58	0.05	0.05	0.08	5.0	6.0	0.3	2.7	0.012	12	0.0238	5.9	7.6	13	0.30	311.4	307.4	307.1	307.3	4.1
	DMH-C2	DMH-C3				0.84	0.20	5.0	6.0	5.0	4.1	0.012	18	0.0050	8.1	4.6	50	0.25	311.2	304.5	304.2	304.2	7.0
	RD	DMH-C3	0.38	0.90	0.34	0.34						0.012											
	DMH-C3	DMH-C4				1.18	0.54	5.0	6.0	7.1	4.7	0.012	18	0.0052	8.2	4.6	154	0.80	308.3	304.1	303.3	303.8	4.5
	DMH-C4	DMH-C5				1.18	0.21	5.0	6.0	7.1	4.7	0.012	18	0.0051	8.2	4.6	58	0.30	307.4	303.2	302.9	302.9	4.5
	CB-C4	DMH-C6	0.71	0.45	0.32	0.32	0.04	5.0	6.0	1.9	5.0	0.012	12	0.0167	5.0	6.4	12	0.20	316.9	312.9	312.7	312.6	4.3
	CB-C5	DMH-C6	0.11	0.36	0.04	0.04	0.09	5.0	6.0	0.2	2.3	0.012	12	0.0167	5.0	6.4	12	0.20	316.9	312.9	312.7	312.8	4.1
	DMH-C6	DMH-C7				0.36	0.10	5.0	6.0	2.1	5.6	0.012	12	0.0210	5.6	7.1	33	0.70	317.1	312.6	311.9	312.2	4.9
	RD	DMH-C7	0.16	0.90	0.15	0.15						0.012											
	DMH-C7	DMH-C8				0.50	0.46	5.0	6.0	3.0	6.0	0.012	12	0.0203	5.5	7.0	168	3.40	317.7	311.8	308.4	311.4	6.3
	CB-C6	DMH-C8	0.13	0.59	0.07	0.07	0.04	5.0	6.0	0.4	4.4	0.012	12	0.0512	8.7	11.1	12	0.60	315.1	311.0	310.4	310.8	4.3
	CB-C7	DMH-C8	0.34	0.60	0.20	0.20	0.03	5.0	6.0	1.2	6.2	0.012	12	0.0512	8.7	11.1	12	0.60	315.1	311.0	310.4	310.5	4.6
	DMH-C8	DMH-C5	-			0.78	0.16	5.0	6.0	4.7	9.7	0.012	12	0.0537	8.9	11.4	91	4.90	315.2	308.3	303.4	307.1	8.1
	RD	DMH-C5	0.16	0.90	0.15	0.15						0.012											
	DMH-C5	FES-C1				2.10	0.05	5.0	6.0	12.6	9.9	0.012	18	0.0286	19.2	10.9	28	0.80	309.0	302.8	302.0	301.6	7.4

Design Parameters: 2**5 Year Storm** Boston, MA

-

0.5

Outfall Sizing Calculations


	Project Name: The Lanterns	Proj. No.:	13050.00
		Date:	July 2015
	Project Location: Ashland, MA	Calculated by: Checked by:	PTM KSS
ources:	Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas Massachusetts Department of Environmental Protection - Reprinted 2003 (pp. 118-120)		
	Erosion and Sediment Control Handbook - Third Edition 1992 (Chapter 3.18)		
	Virginia Department of Conservation and Recreation (DCR)		
ttachments:	Virginia DCR Erosion and Sediment Control Handbook Plate 3.18-3		
	Apron Length		
Apron Width @ Outlet	Apron Width @ End		
	Apron Depth		

Apron Width at Outlet (3D	_o): Width = 3 x pipe dia. (or width of channel)	
Apron Length (La):	Length = From Virginia DCR Handbook - Plate 3.18-3	if Tw depth is < 1/2 dia.
	Length = From Virginia DCR Handbook - Plate 3.18-4	if Tw dwpth is $> = 1/2$ dia.
Apron Width at End (W):	Width = dia. + apron length	if Tw depth is < 1/2 dia.
	Width = dia. + 0.4 x apron length	if Tw dwpth is $> = 1/2$ dia.
	or apron width = channel width if a well defined channel e	xists
Rock Riprap:	Median Diameter (d ₅₀) = From Virginia DCR Handbook - P	late 3.18-3 or 4
	Largest stone dia = $1.5 \times d_{50}$	
Apron Depth:	6" or 1.5 x largest stone dia	

	Outlet Descrip	otion		
Design Element				
	FES-B3 ¹	FES-C3 ²	FES-A3 ³	FES-D2 ⁴
Design Storm (yr):	100	100	100	100
Defined Channel (yes/no)	no	no	no	no
Pipe Dia (D_o), in	12.0	12.0	12.0	12.0
Tail Water (Tw), ft	0.00	0.00	0.00	0.00
Flow (Q), cfs	2.6	3.1	4.8	3.2
Apron Width (3D _o) (outlet), ft	3.0	3.0	3.0	3.0
Apron Length (La), ft	4.0	4.0	8.5	4.5
Apron Width (W) (end), ft	<u>5.0</u>	5.0	<u>9.5</u>	<u>5.5</u>
Median Stone Dia. (d ₅₀), ft	0.5	0.5	0.5	1.5
Median Stone Dia. (d ₅₀), in	6.0	6.0	6.0	18.0
Largest Stone Dia., ft	0.75	0.75	0.75	2.25
Largest Stone Dia., in	9.0	9.0	9.0	27.0
Apron Depth, ft	1.13	1.13	1.13	3.38
Apron Depth, in	13.5	13.5	13.5	40.5

Outlet Description

1.2.3.4 Flows calculated using 100- year design storm in HydroCAD. Results for 10-year design storm are included in this report.

- 111 164

3.18

Velocity Over Overflow Weirs

Project Name: The Lanterns	Proj. No.:	13050.00
	Date:	July 2015
Project Location: Ashland, MA	Calculated by:	PTM
	Checked by:	KSS

Flows and Velocities over the auxiliary spillways (weirs).

		2-year	10-year	100-yea	2-year	10-year	100-year	2-year	10-year	100-year	2-year	10-year	100-year
	Elev of	-	-	-	-	-	Ē	-	-	-	-	-	-
	Weir	Peak	Water Su	irface									
Storage Area	(feet)	Ele	evation (fe	eet)	Ove	rflows ove	r Weir	Ov	verflow Q (d	:fs)	Ov	verflow V ((ft/s)
Gravel Wetland 1	319	318.27	319.10	319.50	no	yes	yes	-	0.6	7.4	-	0.8	1.8
Gravel Wetland 2	306	303.49	304.58	305.76	no	no	no	-	-	-	-	-	-
Gravel Wetland 3	315.5	313.34	314.24	315.50	no	no	no	-	-	-	-	-	-
Detention Basin 1	334.5	332.59	332.81	333.11	no	no	no	-	-	-	-	-	-

The maximum weir overflow velocity for the gravel wetlands is 1.8 fps during the 100-year event.

This velocity is not typically erosive to vegetative cover in good condition.

The spillway of the gravel wetlands have been designed with stone material to protect down gradient areas from erosion.

Permissible Velocities for Vegetated Spillways ¹

Permissible Velocity ² (ft/s)						
	Erosion Resis	tant Soils ³	Easily Erodible Soils ⁴			
Vegetative Cover	Slope of Exi	t Channel	Slope of Exit Channel			
	0-5%	5-10%	0-5%	5-10%		
Bermuda Grass Bahiagrass	8	7	6	5		
Buffalograss Kentucky Bluegrass Smooth Bromegrass Tall Fescue Reed Canary Grass	7	6	5	4		
Sod Forming Grass-Legume Mixtures	5	4	4	3		
Lespedeza Weeping Lovegrass Yellow Bluestem Native Grass Mixtures	Weeping Lovegrass 3.5 3.5 2.5 2.5 Yellow Bluestem 3.5 3.5 2.5 2.5 2.5					
 ¹ SCS-TP-61 ² Increase values 25 percent when the anticipated average use of the spillway is not more frequent than once in 10 years. ³ Those with a high clay content and high plasticity. Typical soil textures are silty clay, sandy clay, and clay. ⁴ Those with a high content of fine sand or silty and lower plasticity or non-plastic. Typical soil textures are fine sand, silt, sandy loam, and silty loam. 						

Source - USDA-SCS Engineering Field Manual

Water Quality Volume Calculations

Water Quality Volume Calculations

Project Name: The Lanterns	Proj. No.:	13050.00
Project Location: Ashland, MA	Date:	July 2015
	Calculated by:	PTM
	Checked by:	KSS

Gravel Wetland #1

Se

Sediment Forebay WQV: 10% of Water Quality Storm			
	Water Quality Storm Run		0.5
	Total Imper	vious Area (sq.ft.) =	27,749
<u>Required*:</u>			
	Runoff Depth to	be Treated (in.)	Required Volume (cu.ft.)
	0.0	05	116
Provided:			
	Elevation	Area (s.f.)	Cumulative
	Elevation	Alea (S.I.)	Volume (cu.ft.)
	316.5	100	0
	317	191	73
	318	390	<u>363</u>

Gravel Wetland Treatment Cell:

Two Cells Treat 45% of Water Qaulity Storm Each

	Total Impe	rvious Area (sq.ft.) =	27,749
Required*:			
	Runoff Depth to	o be Treated (in.)	Required
			Volume (cu.ft.)
	0.	225	520
Daras da da			
<u>Provided:</u> (First Cell)			Cumulative
(Thist Cell)	Elevation	Area (s.f.)	Volume (cu.ft.)
	315	281	0
	316	662	472
	317	1100	<u>1353</u>
Provided:			
(Second Cell)	Elevation	Area (s.f.)	Cumulative
	Lievation	Alea (3.1.)	Volume (cu.ft.)
	315	451	0
	316	876	664
	317	1357	<u>1780</u>
Freeboard:			
	100-year WS	SE (from HydroCAD)	319.50
Required:		num Basin Elevation	320.50
		Freeboard	<u>1.00</u>

* Per 2008 Massachusetts DEP Treatment Requirement

Gravel Wetland #2

Sediment Forebay WQV: 10% of Water Quality Storr

10% of Water Quality Storm				
	Water Quality Storm Rund	0.5		
	Total Impervious Area (sq.ft.) =			
Required*:				
	Runoff Depth to		Required	
	be Treated (in.)		Volume (cu.ft.)	
	be freated (iii.)		volume (cu.n.)	
	0.05		163	
Provided:				
	Elevation	Area (s.f.)	Cumulative	
		. ,	Volume (cu.ft.)	
	200	100	0	
	300	169	0	
	301	346	<u>258</u>	
Gravel Wetland Treatment Co				
Two Cells Treat 45% of Water C				
Two Cells Treat 45% of Water C	Zaulity Storin Each			
	Total Impon	vious Area (sq.ft.) =	20 125	
Required*:	rotai imperv	nous Alea (sq.it.) –	39,125	
<u>Required</u> .				
	Runoff Depth to		Required	
	be Treated (in.)		Volume (cu.ft.)	
	0.225		734	
Provided:				
			Cumulative	
(First Cell)	Elevation	Area (s.f.)	Volume (cu.ft.)	
	299	357	0	
	300	632	495	
	301	962	<u>1292</u>	
Provided:				
	Elevation	Aroa (cf)	Cumulative	
(Second Cell)	Elevation	Area (s.f.)	Volume (cu.ft.)	
	299	357	0	
	300	632	495	
	301	962	<u>1292</u>	

Freeboard:

	100-year WSE (from HydroCAD)	305.76
Required:	Maximum Basin Elevation	306.76
	Freeboard	<u>1.00</u>

* Per 2008 Massachusetts DEP Treatment Requirement

Gravel Wetland #3

Sediment Forebay WQV:

10% of Water Quality Storm

Required*:	Water Quality Storm Runoff De Total Impervious		0.5 105,650
	Runoff Depth to be Treated (in.)		Required Volume (cu.ft.)
	0.05		440
<u>Provided:</u>	Elevation A	Area (s.f.)	Cumulative Volume (cu.ft.)
	309 310 311	244 447 707	0 346 <u>923</u>

Gravel Wetland Treatment Cell:

Two Cells Treat 45% of Water Qaulity Storm Each

	Total Impervious Area (sq.ft.) =	105,650
Required*:		
	Runoff Depth to	Required
	be Treated (in.)	Volume (cu.ft.)
	0.225	1981
Provided:		
		Cumulative
(First Cell)	Elevation Area (s.f.)	Volume (cu.ft.)
	309 850	0
	310 1242	1046
	310 1242	2513
	311 1091	2315
Provided:		
	Elevation Area (s.f.)	Cumulative
(Second Cell)	Elevation Area (s.i.)	Volume (cu.ft.)
	309 691	0
	310 1084	888
	311 1533	<u>2196</u>
Freeboard:		
	100-year WSE (from HydroCAD)	315.50
Required:	Maximum Basin Elevation	316.50
	Freeboard	<u>1.00</u>

* Per 2008 Massachusetts DEP Treatment Requirement

Water Volume Impact Analysis

Water Volume Impact Analysis

Project Name: The Lanterns	Project No:	13050.00
Project Location: Ashland, MA	Date	July 2015
	Calculated by:	PTM
	Checked by:	KSS

Discharge Location	Volume (acre-feet.)			
	2-year	10-year	25-year	100-year
DP 1 - Wetland 1				
Existing	1.626	3.061	3.944	5.319
Proposed	<u>2.679</u>	<u>4.808</u>	<u>6.076</u>	<u>8.019</u>
% increase/decrease	64.76%	57.07%	54.06%	50.76%
DP 2 - Wetland 2				
Existing	0.671	1.247	1.599	2.146
Proposed	<u>0.888</u>	<u>1.695</u>	<u>2.179</u>	<u>2.925</u>
% increase/decrease	32.34%	35.93%	36.27%	36.30%
DP 3 - Wetland 3				
Existing	0.603	1.161	1.506	2.048
Proposed	<u>0.578</u>	<u>1.074</u>	<u>1.377</u>	<u>1.848</u>
% increase/decrease	-4.15%	-7.49%	-8.57%	-9.77%
DP 4 - Eliot Street				
Existing	0.219	0.425	0.553	0.753
Proposed	<u>0.085</u>	<u>0.158</u>	<u>0.203</u>	<u>0.273</u>
% increase/decrease	-61.19%	-62.82%	-63.29%	-63.75%
DP 5 - Prospect Heights				
Existing	0.098	0.187	0.243	0.329
Proposed	<u>0.098</u>	<u>0.187</u>	<u>0.243</u>	<u>0.329</u>
% increase/decrease	0.00%	0.00%	0.00%	0.00%

Water Volume Impact Analysis

Project Name: The Lanterns	Project No:	13050.00	
Project Location: Ashland, MA	Date	July 2015	
	Calculated by:	PTM	

Discharge Location		Volume (a	acre-feet.)	
	2-year	10-year	25-year	100-year
DP 6 - Offsite Southeast				
Existing	0.492	0.953	1.240	1.690
Proposed	<u>0.295</u>	<u>0.522</u>	<u>0.658</u>	<u>0.869</u>
% increase/decrease	-40.04%	-45.23%	-46.94%	-48.58%
DP 7 - Chestnut Street				
Existing	0.691	1.302	1.678	2.264
Proposed	<u>0.263</u>	<u>0.496</u>	<u>0.639</u>	<u>0.862</u>
% increase/decrease	-61.94%	-61.90%	-61.92%	-61.93%

Peak Rate Impact Analysis

Peak Rate Attenuation Evaluation

Project Name: The Lanterns	Project No:	13050.00
Project Location: Ashland, MA	Date	July 2015
	Calculated by:	PTM
	Checked by:	KSS

Discharge Location	Peak Rate (cfs)							
	2-year	10-year	25-year	100-year				
DP 1 - Wetland 1								
Existing	10.59	20.32	26.23	35.31				
Proposed	<u>9.71</u>	<u>16.03</u>	<u>22.18</u>	<u>32.21</u>				
% increase/decrease	-8.31%	-21.11%	-15.44%	-8.78%				
DP 2 - Wetland 2								
Existing	3.94	7.80	10.16	13.80				
Proposed	<u>3.94</u>	<u>7.47</u>	<u>9.51</u>	<u>13.69</u>				
% increase/decrease	0.00%	-4.23%	-6.40%	-0.80%				
DP 3 - Wetland 3								
Existing	5.39	10.14	13.01	17.39				
Proposed	<u>4.33</u>	<u>8.18</u>	<u>10.49</u>	<u>14.03</u>				
% increase/decrease	-19.67%	-19.33%	-19.37%	-19.32%				
DP 4 - Eliot Street								
Existing	1.62	3.25	4.24	5.78				
Proposed	<u>1.09</u>	<u>2.05</u>	<u>2.63</u>	<u>3.51</u>				
% increase/decrease	-32.72%	-36.92%	-37.97%	-39.27%				
DP 5 - Prospect Heights								
Existing	0.99	1.94	2.52	3.41				
Proposed	<u>0.99</u>	<u>1.94</u>	<u>2.52</u>	<u>3.41</u>				
% increase/decrease	0.00%	0.00%	0.00%	0.00%				

Peak Rate Attenuation Evaluation

Project Name: The Lanterns	Project No:	13050.00
Project Location: Ashland, MA	Date	July 2015
	Calculated by:	PTM

Discharge Location	Peak Rate (cfs)						
	2-year	10-year	25-year	100-year			
DP 6 - Offsite Southeast							
Existing	3.76	7.51	9.81	13.37			
Proposed	<u>2.37</u>	<u>4.28</u>	<u>5.40</u>	<u>7.08</u>			
% increase/decrease	-36.97%	-43.01%	-44.95%	-47.05%			
DP 7 - Chestnut Street							
Existing	3.32	6.41	8.28	11.15			
Proposed	<u>2.41</u>	4.64	<u>5.99</u>	<u>8.06</u>			
% increase/decrease	-27.41%	-27.61%	-27.66%	-27.71%			

Recharge Calculations

Recharge Calculations

Project Name: The Lanterns	Proj. No.:	13050.05
	Date:	July 2015
Project Location: Ashland, MA	Calculated by:	PTM

Proposed Impervious Surface Summary

Subcatchment	HSG A	HSG B	HSG C	HSG D	Total Area
PR-11				4.94	4.94
PR-12				0.05	0.05
PR-13				1.58	1.58
PR-14				0.00	0.00
PR-21				2.09	2.09
PR-22				0.03	0.03
PR-23				0.00	0.00
PR-24				0.00	0.00
PR-31				0.03	0.03
PR-32				0.00	0.00
PR-41				0.06	0.06
PR-51				0.03	0.03
PR-61				0.00	0.00
PR-62				0.48	0.48
PR-71				0.11	0.11
PR-72				0.01	0.01
PR-73				0.00	0.00
TOTAL	0.00	0.00	0.00	9.41	9.41

Required Recharge Volume (Cubic Feet)

HSG	Area	Recharge Depth*	Volume
	(acres)	(in.)	(c.f.)
Α	0.0	0.60	0
В	0.0	0.35	0
С	0.0	0.25	0
D	9.4	0.10	3,417
TOTAL			3,417

Assumptions:

* Massachusetts DEP Infiltration requirement: HSG A = 0.60 in; HSG B = 0.35 in; HSG C = 0.25 in; HSG D = 0.10 in.

Capture Area Adjustment

	Adjusted Required Recharge Volume:	3,538	c.f.
Capture Area Adjustment Factor		1.04	-
Total Site Impervious Area Draining to Rec	charge Facilities	9.09	acres
Total Site Impervious Area		9.41	acres
Required Recharge Volume		3,417	c.f.

Appendix E: Erosion and Sedimentation Control Measures

As part of the Notice of Intent process, an erosion and sedimentation control plan will be developed, and will include measures such as those described below.

Erosion and Sedimentation Control Measures

The following erosion and sedimentation controls are for use during the earthwork and construction phases of the project. The following controls are provided as recommendations for the site contractor and do not constitute or replace the final Stormwater Pollution Prevention Plan that must be fully implemented by the Contractor and owner in Compliance with EPA NPDES regulations.

Straw Wattles, Compost Berms and Straw Bale Barriers

Straw bale barriers, straw wattles and compost berms will be placed to trap sediment transported by runoff before it reaches the drainage system or leaves the construction site. The bales, wattles and berms will be set at least four inches into the existing ground to minimize undercutting by runoff.

Silt Fencing

In areas where high runoff velocities or high sediment loads are expected, straw bale barriers will be backed up with silt fencing. This semi-permeable barrier made of a synthetic porous fabric will provide additional protection. The silt fences and straw bale barrier will be replaced as determined by periodic field inspections.

Catch Basin Protection

Newly constructed and existing catch basins will be protected with straw bale barriers (where appropriate) or silt sacks throughout construction.

Gravel and Construction Entrance/Exit

A temporary crushed-stone construction entrance/exit will be constructed. A cross slope will be placed in the entrance to direct runoff to a protected catch basin inlet or settling area. If deemed necessary after construction begins, a wash pad may be included to wash off vehicle wheels before leaving the project site.

Diversion Channels

Diversion channels will be used to collect runoff from construction areas and discharge to either sedimentation basins or protected catch basin inlets.

Temporary Sediment Basins

Temporary sediment basins will be designed either as excavations or bermed stormwater detention structures (depending on grading) that will retain runoff for a sufficient period of time to allow suspended soil particles to settle out prior to discharge. These temporary basins will be located based on construction needs as determined by the contractor and outlet devices will be designed to control velocity and sediment. Points of discharge from sediment basins will be stabilized to minimize erosion.

Vegetative Slope Stabilization

Stabilization of open soil surfaces will be implemented within 14 days after grading or construction activities have temporarily or permanently ceased, unless there is sufficient snow cover to prohibit implementation. Vegetative slope stabilization will be used to minimize erosion on slopes of 3:1 or flatter. Annual grasses, such as annual rye, will be used to ensure rapid germination and production of root mass. Permanent stabilization will be completed with the planting of perennial grasses or legumes. Establishment of temporary and permanent vegetative cover may be established by hydro-seeding or sodding. A suitable topsoil, good seedbed preparation, and adequate lime, fertilizer and water will be provided for effective establishment of these vegetative stabilization methods. Mulch will also be used after permanent seeding to protect soil from the impact of falling rain and to increase the capacity of the soil to absorb water.

Maintenance

- The contractor or subcontractor will be responsible for implementing each control shown on the Sedimentation and Erosion Control Plan. In accordance with EPA regulations, the contractor must sign a copy of a certification to verify that a plan has been prepared and that permit regulations are understood.
- The on-site contractor will inspect all sediment and erosion control structures periodically and after each rainfall event. Records of the inspections will be prepared and maintained on-site by the contractor.
- Silt shall be removed from behind barriers if greater than 6-inches deep or as needed.
- > Damaged or deteriorated items will be repaired immediately after identification.
- > The underside of straw bales and straw wattles should be kept in close contact with the earth and reset as necessary.

- Sediment that is collected in structures shall be disposed of properly and covered if stored on-site.
- Erosion control structures shall remain in place until all disturbed earth has been securely stabilized. After removal of structures, disturbed areas shall be regraded and stabilized as necessary.

The sedimentation and erosion control plan is included in project plan set; a reduced version and Erosion Control Maintenance checklist is included here for quick reference.

Refer to the plans for full proposed erosion and sedimentation control.

Construction Best Management Practices -Maintenance/Evaluation Checklist

The Lantern at Warren Woods, Ashland, Massachusetts Construction Best Management Practices – Maintenance/ Evaluation Checklist

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed Date of yes no (List Items) Cleaning/Repair	Performed by:
Erosion Control Barriers/Silt Fencing	Weekly and after ½" storm events or greater			Inspect for deterioration or failure. Remove sediment as necessary.	⊡yes ⊡no	
Gravel Construction Entrance	Weekly and after ½" storm events or greater			Inspect for breakdown of crushed- stone. Reapply stone if necessary to depths specified in construction documents	□yes □no	
Catch Basin Protection	Weekly and after ½" storm events or greater			Inspect for proper operation of catch basin. If clogged, dispose of sediment.	⊡yes ⊡no	
Diversion Channels	Weekly and after ½" storm events or greater			Inspect for proper function. Correct if necessary.	⊡yes ⊡no	
Temporary Sedimentation Basins	Weekly and after ½" storm events or greater			Inspect for proper function. Correct if necessary.	⊡yes ⊡no	
Vegetated Slope Stabilization	Weekly and after ½" storm events or greater			Inspect for erosion. Correct if necessary.	□yes □no	

Stormwater Control Manager _

Appendix F: Earth Removal/Fill Calculations

To: Ashland Conservation Commission

Date: July 9, 2015

Project #: 13050.00

From: Wesley Mize, EIT Curtis Quitzau, P.E. Re: Earthwork Summary

This memorandum has been prepared to summarize the estimated earthwork cut and fill quantities for the proposed 39-acre, 93 home Senior Residential Community (SRC) development proposal at 466 Chestnut Street in Ashland, Massachusetts. Supporting calculations and figure are attached.

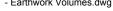
The objective of the site grading is to achieve a balanced site and not export any excess cut material from the project site. Based upon the information and recommendations contained within the Geotechnical Report prepared by Northeast Geotechnical, Inc., soils on the site are generally glacial tills overlain by approximately 6" to 18" of topsoil. Construction will require an import of approximately 12,000 cubic yards of gravel because gravel is not expected to be found/generated on the site. Gravel borrow meeting MassDOT material specification M1.03.0 is needed as base material beneath building slabs and pavements. The gravel will be obtained from a local supplier.

The following methods and adjustments were used to estimate rough earthwork quantities:

- Earthwork volumes were calculated using AutoCAD Civil 3D volume surfaces to compare the proposed finish grade surface to an adjusted existing ground surface to account for topsoil stripped and reused.
- Within the limit of work, the existing topsoil (assumed average depth of 8") is to be stripped and 6" is to be reused in proposed lawn and planted areas (assumed to be 25% of the total stripped area) located between homes, adjacent to roadways, etc.
- Excess topsoil material will be used on-site in nonstructural fill areas such as in yards and stormwater basin fill slopes.
- 10" of excavation is required at home slabs with an average footprint size of 2,047 SF.
- 15" of roadway material was accounted for (1" bituminous top course, 2" bituminous binder course and 12" compacted gravel base course).
- No adjustments made for utilities.

Using the above methods and adjustments, the calculations indicate the site is within 200 cubic yards of a balance, which is within 0.5% of the overall quantity of material being handled and is therefore considered balanced for the methods described above. It is expected that site grades in the last two phases of construction, and around the exterior of stormwater basin #3, may be refined slightly in order to achieve the no export objective.

The attached figure graphically shows cuts and fills throughout the site. Cuts are illustrated in gradations of reds, and fills in gradations of greens.

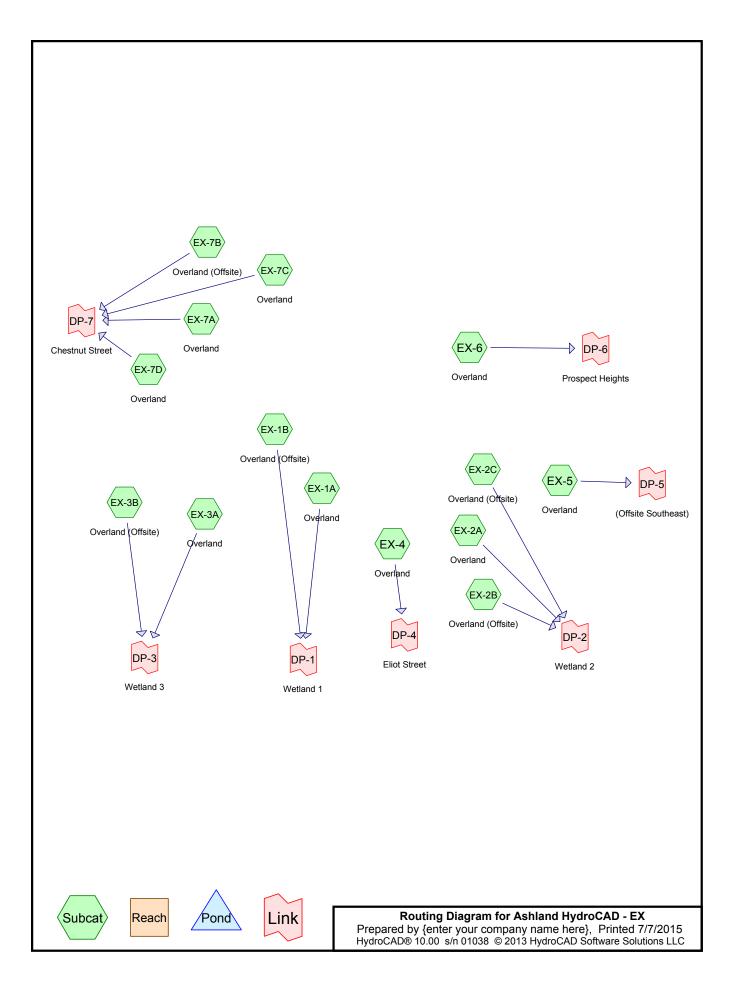


Computations

		Project: Location:	Ashland, MA		Project # Sheet	13050 1/2		
		Calculated by:			Date:		7/9/2015	
		Checked by:	CRQ			Date:		//9/2013
		Title	Earthwork Calculations			Dale.		
		Tille		alculations				
A. Site	e Grading							
					Cut Volume	-32900	CY	
					Fill Volume	48000	CY	
						15100	CY (Fill)	
B. Ho	mes							
			Aver	age Home F	ootprint Size	2047	SF	
				Excava	tion of Slabs		FT (Cut)	
						-1705.83	CF (Cut)	
						27	CF/CY	
							CY (Cut)/Home	
						93	Homes	
						-5875.65	CY (Cut)	
C. Dri	ves							
					Area	163700		
			Paver	nent and Su	bbase Depth	-1.25	-	
						-204625		
					-		CF/CY	
						-7578.70	CY (Cut)	
D 5								
D. EXC	ess Topsoil			Ctutions of		022400	C.C.	
		A 10	n novino oto		Topsoil Area	933400		
		Ар	proximate	e Proposed I	opsoil Areas	25%	-	
				Donth of Un	used Topsoil	233350 -0.17		
				Depth of On	useu ropson	-38891.7		
						-1440.43	CF/CY	
						-1440.43		
F Sur	nmary							
L. Jul	iiiiai y			Net Volum	e (A+B+C+D)	205 22	CY (Fill)	
				Net Volum	e (///b/e/b/	205.22		
					Say	200	CY (Fill)	
						200	()	

\\vhb\proj\Wat-LD\13050.00\ssheets\Earthwork Calculations

Appendix F: Earth Removal/Fill Calculations


Elevations Table					
m Elevation	Maximum Elevation	Color			
9.000	-6.000				
6.000	-3.000				
3.000	0.000				
.000	3.000				
6.000	6.000				
6.000	9.000				
.000	12.000				

Appendix G: Hydrologic Analysis

HydroCAD Analysis: Existing Conditions

Area Listing (all nodes)

Are	ea CN	Description
(acre	s)	(subcatchment-numbers)
9.8	78 80	>75% Grass cover, Good, HSG D (EX-1A, EX-2A, EX-2B, EX-2C, EX-3A, EX-3B,
		EX-4, EX-5, EX-6, EX-7A, EX-7B)
0.2	59 73	Brush, Good, HSG D (EX-1A, EX-3A, EX-4)
0.15	53 89	Dirt roads, HSG D (EX-1A, EX-5)
0.04	47 96	Gravel surface, HSG D (EX-1A, EX-7A)
0.74	48 98	Paved parking, HSG D (EX-1A, EX-7A, EX-7B)
0.29	98 98	Unconnected pavement, HSG D (EX-1A, EX-2B, EX-3A, EX-7A)
0.07	73 98	Unconnected roofs, HSG D (EX-1A, EX-2B, EX-2C, EX-3A, EX-5)
0.18	33 80	Wetland (Grass, HSG D) (EX-3A)
2.39	91 77	Wetlands (Woods, Good, HSG D) (EX-1A, EX-2A)
26.50	77 70	Woods, Good, HSG D (EX-1A, EX-1B, EX-2A, EX-2B, EX-2C, EX-3A, EX-3B,
		EX-4, EX-5, EX-6, EX-7A, EX-7B, EX-7C, EX-7D)
40.5	35 78	TOTAL AREA

Ashland HydroCAD - EX Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	Type III 24-hr 2-Year Rainfall=3.10" Printed 7/7/2015 C Page 3
Time span=0.00-36.00 hrs, dt=0.01 hrs, Runoff by SCS TR-20 method, UH=SCS, Reach routing by Stor-Ind+Trans method - Pond rc	Weighted-CN
	f 3.74% Impervious Runoff Depth=1.26" 6 min CN=79 Runoff=10.58 cfs 1.691 af
	f 0.00% Impervious Runoff Depth=1.14" .4 min CN=77 Runoff=0.03 cfs 0.003 af
	f 0.00% Impervious Runoff Depth=1.14" .1 min CN=77 Runoff=3.32 cfs 0.478 af
	f 5.37% Impervious Runoff Depth=1.26" djusted CN=79 Runoff=0.57 cfs 0.062 af
	f 0.88% Impervious Runoff Depth=1.33" 7.7 min CN=80 Runoff=0.75 cfs 0.057 af
	f 3.68% Impervious Runoff Depth=1.33" 3.3 min CN=80 Runoff=5.35 cfs 0.665 af
	f 0.00% Impervious Runoff Depth=1.26" 0.5 min CN=79 Runoff=0.08 cfs 0.007 af
	f 0.00% Impervious Runoff Depth=1.14" .5 min CN=77 Runoff=1.62 cfs 0.219 af
	of 0.32% Impervious Runoff Depth=1.20" 6.1 min CN=78 Runoff=0.99 cfs 0.098 af
	f 0.00% Impervious Runoff Depth=1.14" .1 min CN=77 Runoff=3.76 cfs 0.498 af
	f 7.62% Impervious Runoff Depth=1.26" 8.8 min CN=79 Runoff=2.90 cfs 0.336 af
	f 3.75% Impervious Runoff Depth=1.20" 9.8 min CN=78 Runoff=0.34 cfs 0.037 af
SubcatchmentEX-7C: Overland Runoff Area=3,572 s Flow Length=100' Slope=0.0350 '/' Tc=18	f 0.00% Impervious Runoff Depth=1.14" .3 min CN=77 Runoff=0.07 cfs 0.008 af
SubcatchmentEX-7D: Overland Runoff Area=1,620 s Flow Length=25' Slope=0.0120 '/' Tc=15	f 0.00% Impervious Runoff Depth=1.14" .4 min CN=77 Runoff=0.04 cfs 0.004 af
Link DP-1: Wetland 1	Inflow=10.59 cfs 1.694 af Primary=10.59 cfs 1.694 af
Link DP-2: Wetland 2	Inflow=3.94 cfs 0.597 af

Inflow=3.94 cfs 0.597 af Primary=3.94 cfs 0.597 af

Ashland HydroCAD - EX Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	<i>Type III 24-hr 2-Year Rainfall=3.10"</i> Printed 7/7/2015 C Page 4
Link DP-3: Wetland 3	Inflow=5.39 cfs 0.671 af
	Primary=5.39 cfs 0.671 af
Link DP-4: Eliot Street	Inflow=1.62 cfs 0.219 af
	Primary=1.62 cfs 0.219 af
Link DP-5: (Offsite Southeast)	Inflow=0.99 cfs 0.098 af Primary=0.99 cfs 0.098 af
Link DP-6: Prospect Heights	Inflow=3.76 cfs 0.498 af Primary=3.76 cfs 0.498 af
Link DP-7: Chestnut Street	Inflow=3.32 cfs 0.384 af Primary=3.32 cfs 0.384 af
Total Runoff Area = 40.535 ac Runoff Volume = 97.24% Pervious = 39	

Summary for Subcatchment EX-1A: Overland

Runoff = 10.58 cfs @ 12.68 hrs, Volume= 1.691 af, Depth= 1.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN D	escription				
	632	98 Unconnected roofs, HSG D					
	5,471 89 Dirt roads, HSG D						
	1,653 96 Gravel surface, HSG D						
	22,224 98 Paved parking, HSG D						
3,317 98 Unconnected pavement, HSG D							
*	77,096				od, HSG D)		
3,442 73 Brush, Good, HSG D							
	53,369				bod, HSG D		
-	33,050		,	od, HSG D			
	00,254		Veighted A				
	74,081	-		vious Area			
	26,173			ervious Are	a		
	3,949 15.09% Unconnected						
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description		
23.9	50	0.0160	0.03	(0.0)	Sheet Flow, Sheet Flow		
20.0		0.0100	0.00		Woods: Dense underbrush n= 0.800 P2= 3.10"		
7.4	172	0.0060	0.39		Shallow Concentrated Flow, Woods		
					Woodland Kv= 5.0 fps		
3.9	110	0.0090	0.47		Shallow Concentrated Flow, Woods		
					Woodland Kv= 5.0 fps		
1.1	70	0.0430	1.04		Shallow Concentrated Flow, Woods		
					Woodland Kv= 5.0 fps		
1.7	65	0.0160	0.63		Shallow Concentrated Flow, Woods		
					Woodland Kv= 5.0 fps		
8.6	580	0.0500	1.12		Shallow Concentrated Flow, Woods		
	4.047	- - - -			Woodland Kv= 5.0 fps		
46.6	1,047	Total					

Summary for Subcatchment EX-1B: Overland (Offsite)

Runoff = 0.03 cfs @ 12.23 hrs, Volume= 0.003 af, Depth= 1.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

 Area (sf)	CN	Description			
1,506	77	Woods, Good, HSG D			
1,506		100.00% Pervious Area			

				name here	
HydroCA	D® 10.00	s/n 0103	8 © 2013 H	IydroCAD S	Software Solutions LLC Page
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.9	50	0.0520	0.06		Sheet Flow, Sheet Flow
0.5	37	0.0520	1.14		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
15.4	87	Total			
		S	Summar	v for Sub	catchment EX-2A: Overland
			-		
Runoff	=	3.32 cfs	s@ 12.5	6 hrs, Volu	ime= 0.478 af, Depth= 1.14"
			nod, UH=S fall=3.10"	SCS, Weigh	nted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
	rea (sf)	CN D	escription		
ŧ	27,039				od, HSG D)
	4,000				bod, HSG D
	88,050			od, HSG D	
	19,089 19,089		Veighted A 00.00% Pe	verage ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
17.9	50	0.0330	0.05		Sheet Flow, Sheet Flow
0.6	66	0.1200	1.73		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods
2.5	120	0.0250	0.79		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods
5.3	353	0.0500	1.12		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods
2.1	185	0.0880	1.48		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
0.8	55	0.0500	1.12		Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps
0.3	30	0.1333	1.83		Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps
0.5	44	0.0800	1.41		Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps
7.1	253	0.0140	0.59		Shallow Concentrated Flow, Wetlands Woodland Kv= 5.0 fps
37.1	1,156	Total			
07.1	1,100	10101			

Ashland HydroCAD - EX

Type III 24-hr 2-Year Rainfall=3.10"

Summary for Subcatchment EX-2B: Overland (Offsite)

Runoff = 0.57 cfs @ 12.29 hrs, Volume= 0.062 af, Depth= 1.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

Ashland HydroCAD - EX

 Type III 24-hr
 2-Year Rainfall=3.10"

 Printed
 7/7/2015

 Page 7

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	A	rea (sf)	CN A	Adj Desc	cription	
		1,040	98	Unco	onnected ro	oofs, HSG D
		331	98	Unco	onnected pa	avement, HSG D
		12,989	80	>75%	% Grass co	ver, Good, HSG D
_		11,172	77	Woo	ds, Good, I	HSG D
		25,532	80	79 Weig	hted Avera	age, UI Adjusted
		24,161		94.6	3% Perviou	is Area
		1,371			% Impervio	
		1,371		100.	00% Uncor	nnected
	_					
	Тс	Length	Slope	Velocity	Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	19	0.1000	1.58		Shallow Concentrated Flow, Woods
	4.0	40-				Woodland Kv= 5.0 fps
	1.6	135	0.0430	1.45		Shallow Concentrated Flow, Woods
	0.4	50	0 4 5 0 0	0.70		Short Grass Pasture Kv= 7.0 fps
	0.4	59	0.1520	2.73		Shallow Concentrated Flow, Woods
	1 4	05	0.0440	1 0 1		Short Grass Pasture Kv= 7.0 fps
	1.4	85	0.0410	1.01		Shallow Concentrated Flow, Woods
-	20.1	348	Tatal			Woodland Kv= 5.0 fps
	20.1	348	Total			

20.1 348 Total

Summary for Subcatchment EX-2C: Overland (Offsite)

Runoff = 0.75 cfs @ 12.11 hrs, Volume=

0.057 af, Depth= 1.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN Description							
	198	98 L	98 Unconnected roofs, HSG D						
	21,719	80 >	75% Gras	s cover, Go	bod, HSG D				
	582	77 V	Voods, Go	od, HSG D					
	22,499	80 V	Veighted A	verage					
	22,301	g	9.12% Per	vious Area					
	198	C).88% Impe	ervious Are	а				
	198	100.00% Unconnected							
Та	l a caractela	01	\/_l;	O a ma aite i	Description				
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.7	50	0.0600	0.23		Sheet Flow, Sheet Flow				
					Grass: Short n= 0.150 P2= 3.10"				
4.0	405	0.0580	1.69		Shallow Concentrated Flow, Woods				
					Short Grass Pasture Kv= 7.0 fps				
7.7	455	Total							

Summary for Subcatchment EX-3A: Overland

Runoff = 5.35 cfs @ 12.42 hrs, Volume= 0.665 af, Depth= 1.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

_	Ai	ea (sf)	CN D	escription		
_		1,180	98 L	Inconnecte	ed roofs, HS	SG D
		8,460	98 L	Inconnecte	ed pavemer	nt, HSG D
*		7,956	80 V	Vetland (G	rass, HSG	D)
		3,132	73 B	Brush, Goo	d, HSG D	
	2	12,160	80 >	75% Gras	s cover, Go	bod, HSG D
		29,312	77 V	Voods, Go	od, HSG D	
_	2	62,200	80 V	Veighted A	verage	
	2	52,560	9	6.32% Pei	vious Area	
		9,640	3	.68% Impe	ervious Area	а
		9,640	1	00.00% U	nconnected	1
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.2	38	0.0150	0.12		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	2.5	12	0.0090	0.08		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	2.4	97	0.0090	0.66		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	0.1	16	0.0090	1.93		Shallow Concentrated Flow, Pavement
	0.5	400	0 00 40	0.74		Paved Kv= 20.3 fps
	0.5	106	0.0340	3.74		Shallow Concentrated Flow, Pavement
	0.0	20	0.0500	4 57		Paved Kv= 20.3 fps
	0.2	20	0.0500	1.57		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps
	2.1	92	0.0220	0.74		Shallow Concentrated Flow, Woods
	۷.۱	92	0.0220	0.74		Woodland Kv= 5.0 fps
	0.3	24	0.0910	1.51		Shallow Concentrated Flow, Woods
	0.0	27	0.0310	1.01		Woodland Kv= 5.0 fps
	0.8	100	0.1000	2.21		Shallow Concentrated Flow, Grass
	0.0		0000			Short Grass Pasture Kv= 7.0 fps
	0.5	47	0.0420	1.43		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	1.3	83	0.0240	1.08		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	8.4	224	0.0040	0.44		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	1.5	65	0.0100	0.70		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	2.5	105	0.0100	0.70		Shallow Concentrated Flow, Wetland
_						Short Grass Pasture Kv= 7.0 fps
	00.0	4 000	Tatal			

28.3 1,029 Total

.14"

Summary for Subcatchment EX-3B: Overland (Offsite)

Runoff = 0.08 cfs @ 12.15 hrs, Volume= 0.007 af, Depth= 1.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN E	Description								
	1,717		80 >75% Grass cover, Good, HSG D								
	1,021	77 V	<u>Voods, Go</u>	od, HSG D							
	2,738	79 V	Veighted A	verage							
	2,738	1	00.00% Pe	ervious Are	a						
Тс	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
10.0	48	0.1300	0.08		Sheet Flow, Sheet Flow						
					Woods: Dense underbrush n= 0.800 P2= 3.10"						
0.2	2	0.1300	0.16		Sheet Flow, Sheet Flow						
					Grass: Short n= 0.150 P2= 3.10"						
0.3	35	0.1050	2.27		Shallow Concentrated Flow, Grass						
					Short Grass Pasture Kv= 7.0 fps						
10.5	85	Total									

Summary for Subcatchment EX-4: Overland

Runoff	=	1.62 cfs @	12.47 hrs,	Volume=	0.219 af,	Depth=	1.
			· — · · · · · · • ,				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN E	Description		
	4,690	73 E	Brush, Goo	d, HSG D	
	2,570	80 >	75% Gras	s cover, Go	bod, HSG D
	93,172	77 V	Voods, Go	od, HSG D	
1	00,432	77 V	Veighted A	verage	
1	00,432	1	00.00% Pe	ervious Are	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
18.6	50	0.0300	0.04		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
7.7	515	0.0500	1.12		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
5.6	307	0.0330	0.91		Shallow Concentrated Flow, Wetland
5.6	307	0.0330	0.91		Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps

Summary for Subcatchment EX-5: Overland

Runoff = 0.99 cfs @ 12.23 hrs, Volume= 0.098 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

Are	a (sf)	CN D	escription							
	136	98 Unconnected roofs, HSG D								
	1,200	89 Dirt roads, HSG D								
4	4,534	80 >	75% Grass	s cover, Go	bod, HSG D					
30	6,872	77 V	Voods, Go	od, HSG D						
42	2,742	78 V	Veighted A	verage						
42	2,606		•	vious Area						
	136	0	.32% Impe	ervious Area	а					
	136	1	00.00% Üı	nconnected	1					
Tc l	_ength	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
1.3	10	0.0350	0.13		Sheet Flow, Sheet Flow					
					Grass: Short n= 0.150 P2= 3.10"					
8.9	40	0.1200	0.07		Sheet Flow, Sheet Flow					
					Woods: Dense underbrush n= 0.800 P2= 3.10"					
0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
4.7	180	0.0160	0.63		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
0.6	39	0.0460	1.07		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
16.1	335	Total								

Summary for Subcatchment EX-6: Overland

Runoff = 3.76 cfs @ 12.47 hrs, Volume= 0.498 af, Depth= 1.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

Area (sf)	CN	Description			
766	80	>75% Grass cover, Good, HSG D			
227,450	77	Woods, Good, HSG D			
228,216 228,216	77	Weighted Average 100.00% Pervious Area			

Prepared by {e	enter your c	company name here}	
HydroCAD® 10.0	00 s/n 01038	© 2013 HydroCAD Software Solutions L	LC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	19.1	50	0.0280	0.04		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	1.9	98	0.0300	0.87		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	3.3	206	0.0440	1.05		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	6.8	273	0.0180	0.67		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps

31.1 627 Total

Summary for Subcatchment EX-7A: Overland

Runoff	=	2.90 cfs @	12.35 hrs,	Volume=	0.336 af, Depth= 1.26"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Description							
	384	96 Gravel surface, HSG D								
	9,749	98 P	aved park	ing, HSG E)					
	854			ed paveme						
	13,258				bod, HSG D					
	114,877			od, HSG D						
	139,122		Veighted A							
	128,519	-		vious Area						
	10,603		•	ervious Are	a					
	854	8	.05% Unco	onneclea						
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	-	(ft/ft)	(ft/sec)	(cfs)	Decomption					
13.2	. ,	0.0700	0.06	(/	Sheet Flow, Sheet Flow					
					Woods: Dense underbrush n= 0.800 P2= 3.10"					
1.6	110	0.0540	1.16		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
2.9	138	0.0250	0.79		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
3.3	124	0.0160	0.63		Shallow Concentrated Flow, Woods					
0.4	4.4	0 4 4 0 0	4 00		Woodland Kv= 5.0 fps					
0.1	14	0.1430	1.89		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps					
0.8	40	0.0250	0.79		Shallow Concentrated Flow, Woods					
0.0	-0	0.0230	0.73		Woodland Kv= 5.0 fps					
0.7	67	0.1040	1.61		Shallow Concentrated Flow, Woods					
5	5.				Woodland Kv= 5.0 fps					
1.2	48	0.0180	0.67		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
23.8	501	Total								

23.8 591 Total

Summary for Subcatchment EX-7B: Overland (Offsite)

Runoff = 0.34 cfs @ 12.29 hrs, Volume= 0.037 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

_	A	rea (sf)	CN D	escription		
		606			ing, HSG D	
		3,197				ood, HSG D
_		12,376	77 V	Voods, Go	od, HSG D	
		16,179		Veighted A		
		15,573	9	6.25% Pei	vious Area	
		606	3	.75% Impe	ervious Area	а
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.1	50	0.0600	0.06		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.7	55	0.0700	1.32		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	0.6	71	0.0700	1.85		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	1.6	125	0.0640	1.26		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	0.5	23	0.0100	0.70		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	0.3	40	0.0150	2.49		Shallow Concentrated Flow, Pavement
						Paved Kv= 20.3 fps
	0.3	23	0.0330	1.27		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	1.7	102	0.0400	1.00		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps
_	40.0	400	T ()			

19.8 489 Total

Summary for Subcatchment EX-7C: Overland

Runoff = 0.07 cfs @ 12.26 hrs, Volume= 0.008 af, Depth= 1.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

 Area (sf)	CN	Description
3,572	77	Woods, Good, HSG D
3,572		100.00% Pervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	17.4	50	0.0350	0.05		Sheet Flow, Sheet Flow
	0.9	50	0.0350	0.94		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
-	18.3	100	Total			

Summary for Subcatchment EX-7D: Overland

Runoff = 0.04 cfs @ 12.23 hrs, Volume= 0.004 af, Depth= 1.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN	Description				
	1,620	77	Woods, Go	od, HSG D			
	1,620		100.00% P	ervious Are	а		
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description		
15.4	25	0.0120	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush	n= 0.800	P2= 3.10"

Summary for Link DP-1: Wetland 1

Inflow Area	a =	16.110 ac,	3.73% Impervious, Ir	nflow Depth = 1.26"	for 2-Year event
Inflow	=	10.59 cfs @	12.68 hrs, Volume=	1.694 af	
Primary	=	10.59 cfs @	12.68 hrs, Volume=	1.694 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-2: Wetland 2

Inflow Area	=	6.132 ac,	0.59% Impervious,	Inflow Depth = 1.17	7" for 2-Year event
Inflow :	=	3.94 cfs @	12.49 hrs, Volume	= 0.597 af	
Primary :	=	3.94 cfs @	12.49 hrs, Volume	= 0.597 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-3: Wetland 3

Inflow Are	a =	6.082 ac,	3.64% Impervious, Inflo	to be $Depth = 1.32"$	for 2-Year event
Inflow	=	5.39 cfs @	12.42 hrs, Volume=	0.671 af	
Primary	=	5.39 cfs @	12.42 hrs, Volume=	0.671 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-4: Eliot Street

Inflow Area =	2.306 ac,	0.00% Impervious, Inflow	Depth = 1.14"	for 2-Year event
Inflow =	1.62 cfs @	12.47 hrs, Volume=	0.219 af	
Primary =	1.62 cfs @	12.47 hrs, Volume=	0.219 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-5: (Offsite Southeast)

Inflow Area	=	0.981 ac,	0.32% Impervious,	Inflow Depth = 1.20	0" for 2-Year event
Inflow =	=	0.99 cfs @	12.23 hrs, Volume	= 0.098 af	
Primary =	=	0.99 cfs @	12.23 hrs, Volume	= 0.098 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-6: Prospect Heights

Inflow Area	ı =	5.239 ac,	0.00% Impervious,	Inflow Depth = 1.14	" for 2-Year event
Inflow	=	3.76 cfs @	12.47 hrs, Volume=	= 0.498 af	
Primary	=	3.76 cfs @	12.47 hrs, Volume=	= 0.498 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-7: Chestnut Street

Inflow Area	=	3.684 ac,	6.98% Impervious,	Inflow Depth = 1.2	25" for 2-Year event
Inflow =	=	3.32 cfs @	12.34 hrs, Volume	e= 0.384 af	
Primary =	=	3.32 cfs @	12.34 hrs, Volume	e= 0.384 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Ashland HydroCAD - EXType III 24-hr 10-Year Rainfall=4.50"Prepared by {enter your company name here}Printed 7/7/2015HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLCPage 15
Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method . Pond routing by Stor-Ind method
SubcatchmentEX-1A: OverlandRunoff Area=700,254 sf 3.74% ImperviousRunoff Depth=2.38"Flow Length=1,047'Tc=46.6 minCN=79Runoff=20.30 cfs 3.184 af
SubcatchmentEX-1B: Overland (Offsite) Flow Length=87' Slope=0.0520 '/' Tc=15.4 min CN=77 Runoff=0.07 cfs 0.006 af
SubcatchmentEX-2A: OverlandRunoff Area=219,089 sf0.00% ImperviousRunoff Depth=2.21"Flow Length=1,156'Tc=37.1 minCN=77Runoff=6.63 cfs0.927 af
SubcatchmentEX-2B: Overland (Offsite) Runoff Area=25,532 sf 5.37% Impervious Runoff Depth=2.38" Flow Length=348' Tc=20.1 min UI Adjusted CN=79 Runoff=1.10 cfs 0.116 af
SubcatchmentEX-2C: Overland (Offsite) Runoff Area=22,499 sf 0.88% Impervious Runoff Depth=2.46" Flow Length=455' Tc=7.7 min CN=80 Runoff=1.41 cfs 0.106 af
SubcatchmentEX-3A: Overland Runoff Area=262,200 sf 3.68% Impervious Runoff Depth=2.46" Flow Length=1,029' Tc=28.3 min CN=80 Runoff=10.07 cfs 1.235 af
SubcatchmentEX-3B: Overland (Offsite) Flow Length=85' Tc=10.5 min CN=79 Runoff=0.15 cfs 0.012 af
SubcatchmentEX-4: OverlandRunoff Area=100,432 sf0.00% ImperviousRunoff Depth=2.21"Flow Length=938'Tc=32.5 minCN=77Runoff=3.25 cfs0.425 af
SubcatchmentEX-5: OverlandRunoff Area=42,742 sf0.32% ImperviousRunoff Depth=2.29"Flow Length=335'Tc=16.1 minCN=78Runoff=1.94 cfs0.187 af
SubcatchmentEX-6: OverlandRunoff Area=228,216 sf0.00% ImperviousRunoff Depth=2.21"Flow Length=627'Tc=31.1 minCN=77Runoff=7.51 cfs0.965 af
SubcatchmentEX-7A: OverlandRunoff Area=139,122 sf7.62% ImperviousRunoff Depth=2.38"Flow Length=591'Tc=23.8 minCN=79Runoff=5.56 cfs0.632 af
SubcatchmentEX-7B: Overland (Offsite) Runoff Area=16,179 sf 3.75% Impervious Runoff Depth=2.29" Flow Length=489' Tc=19.8 min CN=78 Runoff=0.67 cfs 0.071 af
SubcatchmentEX-7C: Overland Runoff Area=3,572 sf 0.00% Impervious Runoff Depth=2.21" Flow Length=100' Slope=0.0350 '/' Tc=18.3 min CN=77 Runoff=0.15 cfs 0.015 af
SubcatchmentEX-7D: Overland Runoff Area=1,620 sf 0.00% Impervious Runoff Depth=2.21" Flow Length=25' Slope=0.0120 '/' Tc=15.4 min CN=77 Runoff=0.07 cfs 0.007 af
Link DP-1: Wetland 1 Inflow=20.32 cfs 3.190 af Primary=20.32 cfs 3.190 af
Link DP-2: Wetland 2 Inflow=7.80 cfs 1.149 af Primary=7.80 cfs 1.149 af

Ashland HydroCAD - EX Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions L	<i>Type III 24-hr 10-Year Rainfall=4.50"</i> Printed 7/7/2015 LC Page 16
Link DP-3: Wetland 3	Inflow=10.14 cfs 1.247 af Primary=10.14 cfs 1.247 af
Link DP-4: Eliot Street	Inflow=3.25 cfs 0.425 af Primary=3.25 cfs 0.425 af
Link DP-5: (Offsite Southeast)	Inflow=1.94 cfs 0.187 af Primary=1.94 cfs 0.187 af
Link DP-6: Prospect Heights	Inflow=7.51 cfs 0.965 af Primary=7.51 cfs 0.965 af
Link DP-7: Chestnut Street	Inflow=6.41 cfs 0.725 af Primary=6.41 cfs 0.725 af
Total Runoff Area = 40.535 ac Runoff Volume 97.24% Pervious = 3	= 7.888 af Average Runoff Depth = 2.34"

Summary for Subcatchment EX-1A: Overland

Runoff = 20.30 cfs @ 12.64 hrs, Volume= 3.184 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN D	escription		
	632	98 U	Inconnecte	ed roofs, HS	SG D
	5,471		irt roads, I		
	1,653	96 G	Fravel surfa	ace, HSG [)
	22,224			ing, HSG D	
	3,317			ed pavemer	
*	77,096				od, HSG D)
	3,442		rush, Goo		
	153,369				bod, HSG D
	433,050		,	od, HSG D	
	700,254		Veighted A	•	
	674,081	-		vious Area	
	26,173			ervious Are	a
	3,949	1	5.09% Un	connected	
Та	المعمول	Clana	Valasitu	Conseitu	Description
Tc (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
(min)	. ,		()	(015)	Chaot Flow, Chaot Flow
23.9	50	0.0160	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"
7.4	172	0.0060	0.39		Shallow Concentrated Flow, Woods
7.4		0.0000	0.59		Woodland Kv= 5.0 fps
3.9	110	0.0090	0.47		Shallow Concentrated Flow, Woods
0.0	110	0.0000	0.17		Woodland Kv= 5.0 fps
1.1	70	0.0430	1.04		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.7	65	0.0160	0.63		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
8.6	580	0.0500	1.12		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
46.6	1,047	Total			

Summary for Subcatchment EX-1B: Overland (Offsite)

Runoff = 0.07 cfs @ 12.21 hrs, Volume= 0.006 af, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

 Area (sf)	CN	Description	
1,506	77	Woods, Good, HSG D	
1,506		100.00% Pervious Area	

1,000,0	D® 10.00	ter your s/n 0103			Software Solutions LLC Page 18					
<u> </u>										
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
14.9	50	0.0520	0.06		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"					
0.5	37	0.0520	1.14		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps					
15.4	87	Total			·					
		5	Summar	y for Sub	ocatchment EX-2A: Overland					
Runoff	=	6.63 cfs	s@ 12.5	3 hrs, Volu	ume= 0.927 af, Depth= 2.21"					
Dunoff h		2 20 moti		SCS Woidt	nted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs					
			nfall=4.50		ileu-CN, Time Span- 0.00-30.00 fils, di- 0.01 fils					
rype in z										
A	rea (sf)	CN D	escription							
	27,039				od, HSG D)					
	4,000		bod, HSG D							
1	88,050	77 V	Voods Go	od, HSG D						
-										
	19,089	77 V	Veighted A	verage						
		77 V	Veighted A							
2	19,089 19,089	77 V 1	Veighted A 00.00% P	verage ervious Are	ea					
	19,089	77 V	Veighted A	verage						
2 Tc	19,089 19,089 Length	77 W 1 Slope	Veighted A 00.00% Po Velocity	verage ervious Are Capacity	ea Description Sheet Flow, Sheet Flow					
2 Tc (min) 17.9	19,089 19,089 Length (feet) 50	77 W 1 Slope (ft/ft) 0.0330	Veighted A 00.00% Po Velocity (ft/sec) 0.05	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"					
2 Tc (min)	19,089 19,089 Length (feet)	77 W 1 Slope (ft/ft)	Veighted A 00.00% Po Velocity (ft/sec)	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods					
2 Tc <u>(min)</u> 17.9 0.6	19,089 19,089 Length (feet) 50 66	77 W 1 Slope (ft/ft) 0.0330 0.1200	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps					
2 Tc (min) 17.9	19,089 19,089 Length (feet) 50	77 W 1 Slope (ft/ft) 0.0330	Veighted A 00.00% Po Velocity (ft/sec) 0.05	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods					
2 Tc <u>(min)</u> 17.9 0.6	19,089 19,089 Length (feet) 50 66 120	77 W 1 Slope (ft/ft) 0.0330 0.1200	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps					
2 Tc (min) 17.9 0.6 2.5 5.3	19,089 19,089 Length (feet) 50 66 120 353	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250 0.0500	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73 0.79 1.12	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps					
2 Tc (min) 17.9 0.6 2.5	19,089 19,089 Length (feet) 50 66 120	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73 0.79	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods					
2 Tc (min) 17.9 0.6 2.5 5.3 2.1	19,089 19,089 Length (feet) 50 66 120 353 185	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250 0.0500 0.0880	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73 0.79 1.12 1.48	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps					
2 Tc (min) 17.9 0.6 2.5 5.3	19,089 19,089 Length (feet) 50 66 120 353	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250 0.0500	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73 0.79 1.12	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods					
2 Tc (min) 17.9 0.6 2.5 5.3 2.1 0.8	19,089 19,089 Length (feet) 50 66 120 353 185 55	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250 0.0500 0.0880 0.0500	Veighted A 00.00% P Velocity (ft/sec) 0.05 1.73 0.79 1.12 1.48 1.12	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps					
2 Tc (min) 17.9 0.6 2.5 5.3 2.1	19,089 19,089 Length (feet) 50 66 120 353 185	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250 0.0500 0.0880 0.0500 0.1333	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73 0.79 1.12 1.48	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods					
2 Tc (min) 17.9 0.6 2.5 5.3 2.1 0.8	19,089 19,089 Length (feet) 50 66 120 353 185 55	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250 0.0500 0.0880 0.0500	Veighted A 00.00% P Velocity (ft/sec) 0.05 1.73 0.79 1.12 1.48 1.12	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Wetland 2 Tc (min) 17.9 0.6 2.5 5.3 2.1 0.8 0.3 0.5	19,089 19,089 Length (feet) 50 66 120 353 185 55 30 44	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250 0.0500 0.0880 0.0500 0.1333 0.0800	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73 0.79 1.12 1.48 1.12 1.83 1.41	verage ervious Are Capacity	ParameterDescriptionSheet Flow, Sheet FlowWoods: Dense underbrush $n= 0.800 P2= 3.10"$ Shallow Concentrated Flow, WoodsWoodland Kv= 5.0 fpsShallow Concentrated Flow, WetlandWoodland Kv= 5.0 fps
2 Tc (min) 17.9 0.6 2.5 5.3 2.1 0.8 0.3	19,089 19,089 Length (feet) 50 66 120 353 185 55 30	77 W 1 Slope (ft/ft) 0.0330 0.1200 0.0250 0.0500 0.0880 0.0500 0.1333	Veighted A 00.00% Po Velocity (ft/sec) 0.05 1.73 0.79 1.12 1.48 1.12 1.83	verage ervious Are Capacity	Description Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Wetland # Summary for Subcatchment EX-2B: Overland (Offsite)					

Runoff = 1.10 cfs @ 12.28 hrs, Volume= 0.116 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 7/7/2015

 .C
 Page 19

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

_	A	rea (sf)	CN /	Adj Desc	cription					
		1,040	98	Unco	Unconnected roofs, HSG D					
		331	98	Unco	onnected pa	avement, HSG D				
		12,989	80	>75%	6 Grass co	ver, Good, HSG D				
		11,172	77	Woo	Woods, Good, HSG D					
-		25,532	80	79 Weig	hted Avera	age, UI Adjusted				
		24,161			, 3% Perviou					
		1,371		5.37	% Impervio	us Area				
		1,371		100.	00% Uncor	nnected				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow				
						Woods: Dense underbrush n= 0.800 P2= 3.10"				
	0.2	19	0.1000	1.58		Shallow Concentrated Flow, Woods				
						Woodland Kv= 5.0 fps				
	1.6	135	0.0430	1.45		Shallow Concentrated Flow, Woods				
						Short Grass Pasture Kv= 7.0 fps				
	0.4	59	0.1520	2.73		Shallow Concentrated Flow, Woods				
		_				Short Grass Pasture Kv= 7.0 fps				
	1.4	85	0.0410	1.01		Shallow Concentrated Flow, Woods				
_						Woodland Kv= 5.0 fps				
	20.1	348	Total							

20.1 348 Total

Summary for Subcatchment EX-2C: Overland (Offsite)

Runoff = 1.41 cfs @ 12.11 hrs, Volume=

0.106 af, Depth= 2.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

A	rea (sf)	CN E	Description					
	198	98 L	98 Unconnected roofs, HSG D					
	21,719	80 >	75% Gras	s cover, Go	ood, HSG D			
	582	77 V	Voods, Go	od, HSG D				
	22,499	80 V	Veighted A	verage				
	22,301	g	9.12% Per	vious Area				
	198			ervious Are				
	198	1	00.00% Ui	nconnected	1			
-		~		o				
Tc	Length	Slope		Capacity	Description			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
		•			Description Sheet Flow, Sheet Flow			
(min)	(feet)	(ft/ft)	(ft/sec)					
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, Woods			
(min) 3.7	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.23		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10"			
(min) 3.7	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.23		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10"			

Summary for Subcatchment EX-3A: Overland

Runoff = 10.07 cfs @ 12.39 hrs, Volume= 1.235 af, Depth= 2.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Ar	ea (sf)	CN D	escription						
		1,180	98 L	Unconnected roofs, HSG D						
		8,460	98 L	Unconnected pavement, HSG D						
*		7,956	80 V	Wetland (Grass, HSG D)						
		3,132	73 B	Brush, Goo	d, HSG D					
	2	12,160	80 >	75% Gras	s cover, Go	bod, HSG D				
		29,312			od, HSG D					
	2	62,200	80 V	Veighted A	verage					
	2	52,560	9	6.32% Pe	vious Area					
		9,640	3	.68% Impe	ervious Area	а				
		9,640	1	.00.00% Ü	nconnected	1				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.2	38	0.0150	0.12		Sheet Flow, Sheet Flow				
						Grass: Short n= 0.150 P2= 3.10"				
	2.5	12	0.0090	0.08		Sheet Flow, Sheet Flow				
						Grass: Short n= 0.150 P2= 3.10"				
	2.4	97	0.0090	0.66		Shallow Concentrated Flow, Grass				
						Short Grass Pasture Kv= 7.0 fps				
	0.1	16	0.0090	1.93		Shallow Concentrated Flow, Pavement				
						Paved Kv= 20.3 fps				
	0.5	106	0.0340	3.74		Shallow Concentrated Flow, Pavement				
						Paved Kv= 20.3 fps				
	0.2	20	0.0500	1.57		Shallow Concentrated Flow, Grass				
				• <i>- i</i>		Short Grass Pasture Kv= 7.0 fps				
	2.1	92	0.0220	0.74		Shallow Concentrated Flow, Woods				
	~ ~					Woodland Kv= 5.0 fps				
	0.3	24	0.0910	1.51		Shallow Concentrated Flow, Woods				
	0.0	400	0 4 0 0 0	0.04		Woodland Kv= 5.0 fps				
	0.8	100	0.1000	2.21		Shallow Concentrated Flow, Grass				
	0.5	47	0.0400	4 40		Short Grass Pasture Kv= 7.0 fps				
	0.5	47	0.0420	1.43		Shallow Concentrated Flow, Grass				
	10	0.2	0 00 4 0	1 00		Short Grass Pasture Kv= 7.0 fps				
	1.3	83	0.0240	1.08		Shallow Concentrated Flow, Grass				
	0.4	004	0 00 40	0.44		Short Grass Pasture Kv= 7.0 fps				
	8.4	224	0.0040	0.44		Shallow Concentrated Flow, Grass				
	1.5	65	0.0100	0.70		Short Grass Pasture Kv= 7.0 fps				
	1.5	60	0.0100	0.70		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps				
	2.5	105	0.0100	0.70		Shallow Concentrated Flow, Wetland				
	2.0	105	0.0100	0.70		Short Grass Pasture Kv= 7.0 fps				
	20.2	1 000	Tatal			$\frac{1}{10000000000000000000000000000000000$				

28.3 1,029 Total

Summary for Subcatchment EX-3B: Overland (Offsite)

Runoff = 0.15 cfs @ 12.15 hrs, Volume= 0.012 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

A	rea (sf)	CN D	Description						
	1,717								
	1,021	V	<u>Voods, Go</u>	od, HSG D					
	2,738	79 V	Veighted A	verage					
	2,738	1	00.00% Pe	ervious Are	a				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
10.0	48	0.1300	0.08		Sheet Flow, Sheet Flow				
					Woods: Dense underbrush n= 0.800 P2= 3.10"				
0.2	2	0.1300	0.16		Sheet Flow, Sheet Flow				
					Grass: Short n= 0.150 P2= 3.10"				
0.3	35	0.1050	2.27		Shallow Concentrated Flow, Grass				
					Short Grass Pasture Kv= 7.0 fps				
10.5	85	Total							

Summary for Subcatchment EX-4: Overland

Runoff	=	3.25 cfs @	12.46 hrs,	Volume=	0.425 af,	Depth= 2.21"
--------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

A	rea (sf)	CN E	escription						
	4,690	73 Brush, Good, HSG D							
	2,570			,	bod, HSG D				
	93,172	77 V	Voods, Go	od, HSG D					
1	00,432		Veighted A						
1	00,432	1	00.00% Pe	ervious Are	a				
-				o ''					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
18.6	50	0.0300	0.04		Sheet Flow, Sheet Flow				
					Woods: Dense underbrush n= 0.800 P2= 3.10"				
0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
7.7	515	0.0500	1.12		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
5.6	307	0.0330	0.91		Shallow Concentrated Flow, Wetland				
					Woodland Kv= 5.0 fps				
32.5	938	Total							

Summary for Subcatchment EX-5: Overland

Runoff = 1.94 cfs @ 12.22 hrs, Volume= 0.187 af, Depth= 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

Are	a (sf)	CN D	escription					
	136	98 Unconnected roofs, HSG D						
	1,200	89 D						
4	4,534	80 >	75% Grass	s cover, Go	bod, HSG D			
30	6,872	77 V	Voods, Go	od, HSG D				
42	2,742	78 V	Veighted A	verage				
42	2,606		•	vious Area				
	136	0	.32% Impe	ervious Area	а			
	136	1	00.00% Üı	nconnected	1			
Tc l	_ength	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.3	10	0.0350	0.13		Sheet Flow, Sheet Flow			
					Grass: Short n= 0.150 P2= 3.10"			
8.9	40	0.1200	0.07		Sheet Flow, Sheet Flow			
					Woods: Dense underbrush n= 0.800 P2= 3.10"			
0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods			
					Woodland Kv= 5.0 fps			
4.7	180	0.0160	0.63		Shallow Concentrated Flow, Woods			
					Woodland Kv= 5.0 fps			
0.6	39	0.0460	1.07		Shallow Concentrated Flow, Woods			
					Woodland Kv= 5.0 fps			
16.1	335	Total						

Summary for Subcatchment EX-6: Overland

Runoff = 7.51 cfs @ 12.44 hrs, Volume= 0.965 af, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area (sf)	CN	Description
766	80	>75% Grass cover, Good, HSG D
227,450	77	Woods, Good, HSG D
228,216 228,216	77	Weighted Average 100.00% Pervious Area

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 7/7/2015

 _C
 Page 23

Prepared by {enter your c	ompany name here}
HydroCAD® 10.00 s/n 01038	© 2013 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.1	50	0.0280	0.04		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
1.9	98	0.0300	0.87		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
3.3	206	0.0440	1.05		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
6.8	273	0.0180	0.67		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps

31.1 627 Total

Summary for Subcatchment EX-7A: Overland

Runoff	=	5.56 cfs @	12.34 hrs,	Volume=	0.632 af, Depth= 2.38"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	A	rea (sf)	CN D	escription						
		384	96 G	96 Gravel surface, HSG D						
		9,749								
		854			ed pavemei					
		13,258				ood, HSG D				
_	1	14,877	77 V	Voods, Go	od, HSG D					
		39,122		Veighted A	•					
	1	28,519	-		vious Area					
		10,603			ervious Are	а				
		854	8	.05% Unco	onnected					
	То	Longth	Slone	Volocity	Consoity	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	(ft/sec)	Capacity (cfs)	Description				
-	13.2	<u>(1881)</u> 50	0.0700	0.06	(013)	Shoot Flow, Shoot Flow				
	13.2	50	0.0700	0.00		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"				
	1.6	110	0.0540	1.16		Shallow Concentrated Flow, Woods				
	1.0	110	0.0010	1.10		Woodland Kv= 5.0 fps				
	2.9	138	0.0250	0.79		Shallow Concentrated Flow, Woods				
						Woodland $Kv = 5.0 \text{ fps}$				
	3.3	124	0.0160	0.63		Shallow Concentrated Flow, Woods				
						Woodland Kv= 5.0 fps				
	0.1	14	0.1430	1.89		Shallow Concentrated Flow, Woods				
						Woodland Kv= 5.0 fps				
	0.8	40	0.0250	0.79		Shallow Concentrated Flow, Woods				
	o =	07	0.4040	4.04		Woodland Kv= 5.0 fps				
	0.7	67	0.1040	1.61		Shallow Concentrated Flow, Woods				
	1 0	40	0.0100	0.67		Woodland Kv= 5.0 fps				
	1.2	48	0.0180	0.67		Shallow Concentrated Flow, Woods				
_	23.8	591	Total			Woodland Kv= 5.0 fps				
	/ S X	<u>nu 1</u>	10121							

23.8 591 Total

Summary for Subcatchment EX-7B: Overland (Offsite)

Runoff = 0.67 cfs @ 12.28 hrs, Volume= 0.071 af, Depth= 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	А	rea (sf)	CN D	escription		
	606 98 Paved parking, HSG D					
		3,197				ood, HSG D
_		12,376	77 V	Voods, Go	od, HSG D	
		16,179		Veighted A	•	
		15,573			vious Area	
		606	3	.75% Impe	ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
_	14.1	<u>(1001)</u> 50	0.0600	0.06	(00)	Sheet Flow, Sheet Flow
	14.1	50	0.0000	0.00		Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.7	55	0.0700	1.32		Shallow Concentrated Flow, Woods
	0.7	55	0.0700	1.52		Woodland Kv= 5.0 fps
	0.6	71	0.0700	1.85		Shallow Concentrated Flow, Grass
	0.0		0.07.00	1.00		Short Grass Pasture Kv= 7.0 fps
	1.6	125	0.0640	1.26		Shallow Concentrated Flow, Woods
			0.0010	0		Woodland Kv= 5.0 fps
	0.5	23	0.0100	0.70		Shallow Concentrated Flow, Grass
				••••••		Short Grass Pasture Kv= 7.0 fps
	0.3	40	0.0150	2.49		Shallow Concentrated Flow, Pavement
	0.0					Paved Kv= 20.3 fps
	0.3	23	0.0330	1.27		Shallow Concentrated Flow, Grass
		-				Short Grass Pasture Kv= 7.0 fps
	1.7	102	0.0400	1.00		Shallow Concentrated Flow, Woods
						Woodland $Kv = 5.0 \text{ fps}$
	40.0	100	T ()			•

19.8 489 Total

Summary for Subcatchment EX-7C: Overland

Runoff = 0.15 cfs @ 12.26 hrs, Volume= 0.015 af, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

 Area (sf)	CN	Description
3,572	77	Woods, Good, HSG D
 3,572		100.00% Pervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	17.4	50	0.0350	0.05		Sheet Flow, Sheet Flow
	0.9	50	0.0350	0.94		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods
_	18.3	100	Total			Woodland Kv= 5.0 fps

Summary for Subcatchment EX-7D: Overland

Runoff = 0.07 cfs @ 12.21 hrs, Volume= 0.007 af, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

A	rea (sf)	CN	Description					
	1,620	77	77 Woods, Good, HSG D					
	1,620		100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
15.4	25	0.0120	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush	n= 0.800	P2= 3.10"	

Summary for Link DP-1: Wetland 1

Inflow Area	a =	16.110 ac,	3.73% Impervious, Inflow	v Depth = 2.38"	for 10-Year event
Inflow	=	20.32 cfs @	12.64 hrs, Volume=	3.190 af	
Primary	=	20.32 cfs @	12.64 hrs, Volume=	3.190 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-2: Wetland 2

Inflow Area =	6.132 ac,	0.59% Impervious,	Inflow Depth = 2.25	5" for 10-Year event
Inflow =	7.80 cfs @	12.49 hrs, Volume=	= 1.149 af	
Primary =	7.80 cfs @	12.49 hrs, Volume=	= 1.149 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-3: Wetland 3

Inflow Are	a =	6.082 ac,	3.64% Impervious,	Inflow Depth = 2.46	" for 10-Year event
Inflow	=	10.14 cfs @	12.39 hrs, Volume	= 1.247 af	
Primary	=	10.14 cfs @	12.39 hrs, Volume	= 1.247 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-4: Eliot Street

Inflow Area =	2.306 ac,	0.00% Impervious,	Inflow Depth = 2.2°	1" for 10-Year event
Inflow =	3.25 cfs @	12.46 hrs, Volume	= 0.425 af	
Primary =	3.25 cfs @	12.46 hrs, Volume	= 0.425 af, <i>I</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-5: (Offsite Southeast)

Inflow Area =	0.981 ac,	0.32% Impervious, Inflow	Depth = 2.29"	for 10-Year event
Inflow =	1.94 cfs @	12.22 hrs, Volume=	0.187 af	
Primary =	1.94 cfs @	12.22 hrs, Volume=	0.187 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-6: Prospect Heights

Inflow Are	a =	5.239 ac,	0.00% Impervious,	Inflow Depth = 2.2	21" for 10-Year event
Inflow	=	7.51 cfs @	12.44 hrs, Volume	= 0.965 af	
Primary	=	7.51 cfs @	12.44 hrs, Volume	= 0.965 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-7: Chestnut Street

Inflow Area	a =	3.684 ac,	6.98% Impervious,	Inflow Depth = 2.3	36" for 10-Year event
Inflow	=	6.41 cfs @	12.32 hrs, Volume	= 0.725 af	
Primary	=	6.41 cfs @	12.32 hrs, Volume	= 0.725 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Ashland HydroCAD - EXType III 24-hr25-Year Rainfall=5.30"Prepared by {enter your company name here}Printed7/7/2015HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLCPage 27
Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
SubcatchmentEX-1A: OverlandRunoff Area=700,254 sf 3.74% ImperviousRunoff Depth=3.06"Flow Length=1,047'Tc=46.6 minCN=79Runoff=26.20 cfs 4.101 af
SubcatchmentEX-1B: Overland (Offsite)Runoff Area=1,506 sf0.00% ImperviousRunoff Depth=2.88"Flow Length=87'Slope=0.0520 '/'Tc=15.4 minCN=77Runoff=0.09 cfs0.008 af
SubcatchmentEX-2A: OverlandRunoff Area=219,089 sf0.00% ImperviousRunoff Depth=2.88"Flow Length=1,156'Tc=37.1 minCN=77Runoff=8.66 cfs1.205 af
SubcatchmentEX-2B: Overland (Offsite) Runoff Area=25,532 sf 5.37% Impervious Runoff Depth=3.06" Flow Length=348' Tc=20.1 min UI Adjusted CN=79 Runoff=1.41 cfs 0.150 af
SubcatchmentEX-2C: Overland (Offsite) Runoff Area=22,499 sf 0.88% Impervious Runoff Depth=3.16" Flow Length=455' Tc=7.7 min CN=80 Runoff=1.80 cfs 0.136 af
SubcatchmentEX-3A: OverlandRunoff Area=262,200 sf 3.68% ImperviousRunoff Depth=3.16"Flow Length=1,029'Tc=28.3 minCN=80Runoff=12.91 cfs 1.583 af
SubcatchmentEX-3B: Overland (Offsite) Flow Length=85' Tc=10.5 min CN=79 Runoff=0.19 cfs 0.016 af
SubcatchmentEX-4: OverlandRunoff Area=100,432 sf0.00% ImperviousRunoff Depth=2.88"Flow Length=938'Tc=32.5 minCN=77Runoff=4.24 cfs0.553 af
SubcatchmentEX-5: OverlandRunoff Area=42,742 sf0.32% ImperviousRunoff Depth=2.97"Flow Length=335'Tc=16.1 minCN=78Runoff=2.52 cfs0.243 af
SubcatchmentEX-6: OverlandRunoff Area=228,216 sf0.00% ImperviousRunoff Depth=2.88"Flow Length=627'Tc=31.1 minCN=77Runoff=9.81 cfs1.256 af
SubcatchmentEX-7A: OverlandRunoff Area=139,122 sf 7.62% ImperviousRunoff Depth=3.06"Flow Length=591'Tc=23.8 minCN=79Runoff=7.17 cfs 0.815 af
SubcatchmentEX-7B: Overland (Offsite) Runoff Area=16,179 sf 3.75% Impervious Runoff Depth=2.97" Flow Length=489' Tc=19.8 min CN=78 Runoff=0.87 cfs 0.092 af
SubcatchmentEX-7C: OverlandRunoff Area=3,572 sf0.00% ImperviousRunoff Depth=2.88"Flow Length=100'Slope=0.0350 '/'Tc=18.3 minCN=77Runoff=0.19 cfs0.020 af
SubcatchmentEX-7D: OverlandRunoff Area=1,620 sf0.00% ImperviousRunoff Depth=2.88"Flow Length=25'Slope=0.0120 '/'Tc=15.4 minCN=77Runoff=0.09 cfs0.009 af
Link DP-1: Wetland 1 Inflow=26.23 cfs 4.110 af Primary=26.23 cfs 4.110 af
Link DP-2: Wetland 2 Inflow=10.16 cfs 1.491 af Primary=10.16 cfs 1.491 af

Ashland HydroCAD - EX Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions L	<i>Type III 24-hr 25-Year Rainfall=5.30"</i> Printed 7/7/2015 LC Page 28
Link DP-3: Wetland 3	Inflow=13.01 cfs 1.599 af Primary=13.01 cfs 1.599 af
Link DP-4: Eliot Street	Inflow=4.24 cfs 0.553 af Primary=4.24 cfs 0.553 af
Link DP-5: (Offsite Southeast)	Inflow=2.52 cfs 0.243 af Primary=2.52 cfs 0.243 af
Link DP-6: Prospect Heights	Inflow=9.81 cfs 1.256 af Primary=9.81 cfs 1.256 af
Link DP-7: Chestnut Street	Inflow=8.28 cfs 0.935 af Primary=8.28 cfs 0.935 af
Total Runoff Area = 40.535 ac Runoff Volume = 97.24% Pervious = 3	

Summary for Subcatchment EX-1A: Overland

Runoff = 26.20 cfs @ 12.64 hrs, Volume= 4.101 af, Depth= 3.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

A	rea (sf)	CN D	escription							
	632	98 U								
	5,471 89 Dirt roads, HSG D 1,653 96 Gravel surface, HSG D									
	22,224 98 Paved parking, HSG D									
	3,317			ed paveme						
*	77,096				od, HSG D)					
	3,442		rush, Goo							
	53,369				bod, HSG D					
-	33,050		,	od, HSG D						
	00,254		Veighted A							
	74,081	-		vious Area						
	26,173			ervious Are	a					
	3,949	1	5.09% Un	connected						
Та	المربع والمراج	01.000	Valasitu	O an a aite i	Description					
Tc (min)	Length	Slope	Velocity		Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
23.9	50	0.0160	0.03		Sheet Flow, Sheet Flow					
7 4	470	0 0000	0.00		Woods: Dense underbrush n= 0.800 P2= 3.10"					
7.4	172	0.0060	0.39		Shallow Concentrated Flow, Woods					
3.9	110	0.0090	0.47		Woodland Kv= 5.0 fps					
5.9	110	0.0090	0.47		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps					
1.1	70	0.0430	1.04		Shallow Concentrated Flow, Woods					
1.1	70	0.0430	1.04		Woodland Kv= 5.0 fps					
1.7	65	0.0160	0.63		Shallow Concentrated Flow, Woods					
1.7	00	0.0100	0.00		Woodland Kv= 5.0 fps					
8.6	580	0.0500	1.12		Shallow Concentrated Flow, Woods					
0.0		0.0000			Woodland Kv= 5.0 fps					
46.6	1,047	Total								
	.,									

Summary for Subcatchment EX-1B: Overland (Offsite)

Runoff = 0.09 cfs @ 12.21 hrs, Volume= 0.008 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

 Area (sf)	CN	Description	
1,506	77	Woods, Good, HSG D	
1,506		100.00% Pervious Area	

HydroCAD9 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC Page : Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 14.9 50 0.0520 0.06 Sheet Flow Woods: Dense underbrush n = 0.800 P2= 3.10" 0.5 37 0.0520 1.14 Shallow Concentrated Flow, Woods Woods: 15.4 87 Total Summary for Subcatchment EX-2A: Overland Runoff = 8.66 cfs @ 12.50 hrs, Volume= 1.205 af, Depth= 2.88" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30" Area (sf) CN Description -75% Grass cover, Good, HSG D 188,050 77 Woods, Good, HSG D 188,050 77 Weighted Average 219,089 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec)			oCAD -		name her	Type III 24-hr 25-Year Rainfall=5.30 Printed 7/7/2015
(min) (feet) (ft/ft) (ft/sec) (cfs) 14.9 50 0.0520 0.06 Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" 0.5 37 0.0520 1.14 Shallow Concentrated Flow, Woods Woods: Dense underbrush n= 0.800 P2= 3.10" 15.4 87 Total Summary for Subcatchment EX-2A: Overland Runoff = 8.66 cfs @ 12.50 hrs, Volume= 1.205 af, Depth= 2.88" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30" Area (sf) CN Description * 27,039 77 Wetlands (Woods, Good, HSG D) 4.000 80 >75% Grass cover, Good, HSG D 219,089 100.00% Pervious Area Tc Length Slope Velocity Capacity Description Woods: Dense underbrush n= 0.800 P2= 3.10" 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
0.5 37 0.0520 1.14 Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 15.4 87 Total Summary for Subcatchment EX-2A: Overland Runoff = 8.66 cfs @ 12.50 hrs, Volume= 1.205 af, Depth= 2.88" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30" Area (sf) CN Description * 27,039 77 Weitlands (Woods, Good, HSG D) 4.000 80 >75% Grass cover, Good, HSG D 219,089 77 Weighted Average 219,089 77 Weighted Average 219,089 100.00% Pervious Area 17.9 50 0.0330 0.05 Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 3.3 0.500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 0.3 30 0.1333		-			• •	Description
0.5 37 0.0520 1.14 Shallow Concentrated Flow, Woods Woodland 15.4 87 Total Summary for Subcatchment EX-2A: Overland Runoff summary for Subcatchment EX-2A: Overland Runoff summary for Subcatchment EX-2A: Overland Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30" Area (sf) CN Description ***********************************						
15.4 87 Total Summary for Subcatchment EX-2A: Overland Runoff = 8.66 cfs @ 12.50 hrs, Volume= 1.205 af, Depth= 2.88" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30" Area (sf) CN Description 27,039 77 Wetlands (Woods, Good, HSG D) 4,000 80 >75% Grass cover, Good, HSG D 188,050 77 Weighted Average 219,089 77 Weighted Average 219,089 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Sheet Flow, Sheet Flow 17.9 50 0.0330 0.05 Sheet Klow, Sheet Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0880 1.48 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 3.3 0.500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps <td>0.5</td> <td>37</td> <td>0.0520</td> <td>1.14</td> <td></td> <td>Shallow Concentrated Flow, Woods</td>	0.5	37	0.0520	1.14		Shallow Concentrated Flow, Woods
Runoff = 8.66 cfs @ 12.50 hrs, Volume= 1.205 af, Depth= 2.88" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30" Area (sf) CN Description 27,039 77 Wetlands (Woods, Good, HSG D) 4,000 80 >75% Grass cover, Good, HSG D 188,050 77 Woods, Good, HSG D 219,089 77 Weighted Average 219,089 77 Weighted Average 219,089 77 Weighted Average 219,089 100.00% Pervious Area Tc Length Slope Velocity 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0880 1.48 Shallow Concentrated Flow, Weods Woodland Kv= 5.0 fps Shallow Concent	15.4	87	Total			
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Area (sf) CN Description 27,039 77 Wetlands (Woods, Good, HSG D) 4,000 80 >75% Grass cover, Good, HSG D 48,050 77 Woods, Good, HSG D 219,089 77 Weighted Average 219,089 77 Weighted Average 219,089 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 5.3 353 0.0500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 0.1333 1.48 Shallow Concentrated Flow, Woods 0.3 0 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps			S	Summar	y for Sub	catchment EX-2A: Overland
Type III 24-hr 25-Year Rainfall=5.30"Area (sf)CNDescription27,03977Wetlands (Woods, Good, HSG D)4,00080>75% Grass cover, Good, HSG D188,05077Woods, Good, HSG D219,08977Weighted Average219,08977Weighted Average219,089100.00% Pervious AreaTcLengthSlopeVelocity(min)(feet)(ft/ft)(ft/sec)(rin)(feet)(ft/ft)(ft/sec)0.6660.12001.73Shallow Concentrated Flow, Woods Woodland0.6660.12001.73Shallow Concentrated Flow, Woods Woodland5.33530.05001.12Shallow Concentrated Flow, Woods Woodland0.8550.08801.48Shallow Concentrated Flow, Woods Woodland0.3300.13331.83Shallow Concentrated Flow, Wetland Woodland0.5440.8001.41Shallow Concentrated Flow, Wetland Woodland0.5440.8001.41Shallow Concentrated Flow, Wetland Woodland0.5530.1400.59Shallow Concentrated Flow, Wetland Woodland0.55440.08001.41Shallow Concentrated Flow, Wetland Woodland0.55440.08001.41Shallow Concentrated Flow, Wetland Woodland0.55440.08001.41Shallow Concentrated Flow, Wetland Woodland0.5 <td>Runoff</td> <td>=</td> <td>8.66 cfs</td> <td>s@ 12.5</td> <td>0 hrs, Volu</td> <td>ume= 1.205 af, Depth= 2.88"</td>	Runoff	=	8.66 cfs	s@ 12.5	0 hrs, Volu	ume= 1.205 af, Depth= 2.88"
Area (sf) CN Description 27,039 77 Wetlands (Woods, Good, HSG D) 4,000 80 >75% Grass cover, Good, HSG D 188,050 77 Woods, Good, HSG D 219,089 77 Weighted Average 219,089 77 Weighted Average 219,089 77 Weighted Average 219,089 100.00% Pervious Area Description (min) (feet) (ft/ft) Capacity (ff/sec) Cfs) 17.9 50 0.0330 0.05 Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0880 1.48 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps	Runoff b	y SCS TI	R-20 metl	hod, UH=S	SCS, Weigł	nted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
27,039 77 Wetlands (Woods, Good, HSG D) 4,000 80 >75% Grass cover, Good, HSG D 188,050 77 Woods, Good, HSG D 219,089 77 Weighted Average 219,089 100.00% Pervious Area Tc Length Slope Velocity Capacity 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodsland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0500 1.12 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland	Type III 2	24-hr 25	-Year Rai	nfall=5.30	"	
27,039 77 Wetlands (Woods, Good, HSG D) 4,000 80 >75% Grass cover, Good, HSG D 188,050 77 Woods, Good, HSG D 219,089 77 Weighted Average 219,089 100.00% Pervious Area Tc Length Slope Velocity Capacity 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodsland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0500 1.12 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland	A	rea (sf)	CN D	escription		
188,050 77 Woods, Good, HSG D 219,089 77 Weighted Average 100.00% Pervious Area Tc Length (min) Slope (feet) Velocity (ft/ft) Capacity (ft/sec) Description 17.9 50 0.0330 0.05 Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10" 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 5.3 353 0.0500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0880 1.48 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps						od, HSG D)
219,08977Weighted Average 100.00% Pervious AreaTcLengthSlope (ff/ft)Velocity (ff/sec)Capacity (cfs)Description17.9500.03300.05Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"0.6660.12001.73Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps2.51200.02500.79Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps5.33530.05001.12Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps2.11850.08801.48Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps0.8550.05001.12Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps0.3300.13331.83Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps0.5440.08001.41Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps7.12530.01400.59Shallow Concentrated Flow, Wetlands Woodland Kv= 5.0 fps					,	,
219,089 $100.00%$ Pervious AreaTcLengthSlopeVelocity (ft/ft)Capacity (cfs)Description 17.9 50 0.0330 0.05 Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= $3.10"$ 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 5.3 353 0.0500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0880 1.48 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps						
(min) (feet) (ft/ft) (ft/sec) (cfs) 17.9 50 0.0330 0.05 Sheet Flow, Sheet Flow 0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods 5.3 353 0.0500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps Stallow Concentrated Flow, Woods Voodland Kv= 5.0 fps Shallow Concentrated Flow, Woods 0.8 55 0.0500 1.12 Shallow Concentrated Flow, Weods Woodland Kv= 5.0 fps 0.8 55 0.0500 1.12 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 7.1 253 0.0140 0.59 Shall						a
17.950 0.0330 0.05 Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= $3.10"$ 0.666 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps2.5120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps5.3 353 0.0500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps2.1185 0.0880 1.48 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps0.855 0.0500 1.12 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps0.330 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps0.544 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps7.1253 0.0140 0.59 Shallow Concentrated Flow, Wetlands Woodland Kv= 5.0 fps		-				Description
0.6 66 0.1200 1.73 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.5 120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 5.3 353 0.0500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0880 1.48 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 0.8 55 0.0500 1.12 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.8 55 0.0500 1.12 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetlands Woodland Kv= 5.0 fps					× /	
2.5120 0.0250 0.79 WoodlandKv= 5.0 fps5.3353 0.0500 1.12Shallow Concentrated Flow, Woods WoodlandKv= 5.0 fps2.1185 0.0880 1.48Shallow Concentrated Flow, Woods WoodlandKv= 5.0 fps0.855 0.0500 1.12Shallow Concentrated Flow, Woods WoodlandKv= 5.0 fps0.330 0.1333 1.83Shallow Concentrated Flow, Wetland WoodlandKv= 5.0 fps0.544 0.0800 1.41Shallow Concentrated Flow, Wetland WoodlandKv= 5.0 fps7.1253 0.0140 0.59 Shallow Concentrated Flow, Wetlands WoodlandKv= 5.0 fps7.1253 0.0140 0.59 Shallow Concentrated Flow, Wetlands WoodlandKv= 5.0 fps	0.0	66	0 4 0 0 0	1 70		
2.5120 0.0250 0.79 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps5.3353 0.0500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps2.1185 0.0880 1.48 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 0.8 55 0.0500 1.12 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland 	0.6	00	0.1200	1.73		
5.3 353 0.0500 1.12 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 2.1 185 0.0880 1.48 Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps 0.8 55 0.0500 1.12 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetlands Woodland Kv= 5.0 fps	2.5	120	0.0250	0.79		
2.1185 0.0880 1.48WoodlandKv= 5.0 fps0.855 0.0500 1.12Shallow Concentrated Flow, Wetland WoodlandKv= 5.0 fps0.330 0.1333 1.83Shallow Concentrated Flow, Wetland WoodlandKv= 5.0 fps0.544 0.0800 1.41Shallow Concentrated Flow, Wetland WoodlandKv= 5.0 fps7.1253 0.0140 0.59 Shallow Concentrated Flow, Wetlands WoodlandKv= 5.0 fps7.1253 0.0140 0.59 Shallow Concentrated Flow, Wetlands WoodlandKv= 5.0 fps	- 0	050	0 0 5 0 0	4.40		
2.1185 0.0880 1.48Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps0.855 0.0500 1.12Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps0.330 0.1333 1.83Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps0.544 0.0800 1.41Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps7.1253 0.0140 0.59 Shallow Concentrated Flow, Wetlands Woodland Kv= 5.0 fps	5.3	353	0.0500	1.12		•
0.8 55 0.0500 1.12 Woodland $Kv = 5.0$ fps 0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland $Kv = 5.0$ fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland $Kv = 5.0$ fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland $Kv = 5.0$ fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetlands Woodland $Kv = 5.0$ fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetlands Woodland $Kv = 5.0$ fps	2.1	185	0.0880	1.48		
0.3 30 0.1333 1.83 Woodland $Kv = 5.0$ fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland $Kv = 5.0$ fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetland Woodland $Kv = 5.0$ fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetlands Woodland $Kv = 5.0$ fps						Woodland Kv= 5.0 fps
0.3 30 0.1333 1.83 Shallow Concentrated Flow, Wetland Woodland Woodland Kv= 5.0 fps 0.5 44 0.0800 1.41 Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps 7.1 253 0.0140 0.59 Shallow Concentrated Flow, Wetlands Woodland Kv= 5.0 fps	0.8	55	0.0500	1.12		
0.5440.08001.41WoodlandKv= 5.0 fps7.12530.01400.59Shallow Concentrated Flow, Wetlands WoodlandKv= 5.0 fps7.12530.01400.59Shallow Concentrated Flow, Wetlands WoodlandKv= 5.0 fps	0.3	30	0.1333	1 83		
7.12530.01400.59WoodlandKv= 5.0 fpsShallow Concentrated Flow, Wetlands WoodlandKv= 5.0 fps		00				
7.12530.01400.59Shallow Concentrated Flow, Wetlands WoodlandWoodlandKv= 5.0 fps	0.5	44	0.0800	1.41		Shallow Concentrated Flow, Wetland
	7.1	253	0.0140	0.59		Shallow Concentrated Flow, Wetlands
	37.1	1,156	Total			

Summary for Subcatchment EX-2B: Overland (Offsite)

Runoff 1.41 cfs @ 12.27 hrs, Volume= 0.150 af, Depth= 3.06" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

 Type III 24-hr
 25-Year Rainfall=5.30"

 Printed
 7/7/2015

 .C
 Page 31

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	A	rea (sf)	CN /	Adj Desc	cription	
		1,040	98	Unco	onnected ro	oofs, HSG D
		331	98	Unco	onnected pa	avement, HSG D
		12,989	80	>75%	6 Grass co	ver, Good, HSG D
_		11,172	77	Woo	ds, Good, I	HSG D
		25,532	80	79 Weig	hted Avera	age, UI Adjusted
		24,161		94.6	3% Perviou	us Area
		1,371			% Impervio	
		1,371		100.	00% Uncor	nnected
	_		~		a	
	Tc	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
		40	0 4 0 0 0	4 50		Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	19	0.1000	1.58		Shallow Concentrated Flow, Woods
	10	105	0 0 4 2 0	1 4 5		Woodland Kv= 5.0 fps
	1.6	135	0.0430	1.45		Shallow Concentrated Flow, Woods
	0.4	59	0.1520	2.73		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Woods
	0.4	09	0.1520	2.73		Short Grass Pasture Kv= 7.0 fps
	1.4	85	0.0410	1.01		Shallow Concentrated Flow, Woods
	1.7	00	0.0410	1.01		Woodland Kv= 5.0 fps
-	20.1	348	Total			

20.1 348 Total

Summary for Subcatchment EX-2C: Overland (Offsite)

Runoff = 1.80 cfs @ 12.11 hrs, Volume=

0.136 af, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

A	vrea (sf)	CN E	Description		
	198	98 L	Inconnecte	ed roofs, HS	SG D
	21,719	80 >	75% Gras	s cover, Go	bod, HSG D
	582	77 V	Voods, Go	od, HSG D	
	22,499	80 V	Veighted A	verage	
	22,301	g	9.12% Per	vious Area	
	198	0	.88% Impe	ervious Area	а
	198	1	00.00% Ui	nconnected	1
Та	l a sa astila	<u>Olana</u>) / a l a aite i	O a ma a itu i	Description
Tc	- 0-	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.7	50	0.0600	0.23		Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.10"
4.0	405	0.0580	1.69		Shallow Concentrated Flow, Woods
					Short Grass Pasture Kv= 7.0 fps
7.7					

Summary for Subcatchment EX-3A: Overland

Runoff = 12.91 cfs @ 12.39 hrs, Volume= 1.583 af, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

	Aı	rea (sf)	CN D	escription					
		1,180	98 Unconnected roofs, HSG D						
		8,460	98 L	Inconnecte	ed pavemer	nt, HSG D			
*		7,956	80 V	Vetland (G	rass, HSG	D)			
		3,132		rush, Goo					
		12,160	80 >	75% Gras	s cover, Go	ood, HSG D			
		29,312			od, HSG D				
	2	62,200	80 V	Veighted A	verage				
	2	52,560	9	6.32% Per	vious Area				
		9,640			ervious Area				
		9,640	1	00.00% U	nconnected	1			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.2	38	0.0150	0.12		Sheet Flow, Sheet Flow			
						Grass: Short n= 0.150 P2= 3.10"			
	2.5	12	0.0090	0.08		Sheet Flow, Sheet Flow			
						Grass: Short n= 0.150 P2= 3.10"			
	2.4	97	0.0090	0.66		Shallow Concentrated Flow, Grass			
		4.0		4.00		Short Grass Pasture Kv= 7.0 fps			
	0.1	16	0.0090	1.93		Shallow Concentrated Flow, Pavement			
	0 5	100	0 00 40	0.74		Paved Kv= 20.3 fps			
	0.5	106	0.0340	3.74		Shallow Concentrated Flow, Pavement			
	0.2	20	0.0500	1.57		Paved Kv= 20.3 fps Shallow Concentrated Flow, Grass			
	0.2	20	0.0500	1.57		Short Grass Pasture Kv= 7.0 fps			
	2.1	92	0.0220	0.74		Shallow Concentrated Flow, Woods			
	2.1	92	0.0220	0.74		Woodland Kv= 5.0 fps			
	0.3	24	0.0910	1.51		Shallow Concentrated Flow, Woods			
	0.0	27	0.0010	1.01		Woodland Kv= 5.0 fps			
	0.8	100	0.1000	2.21		Shallow Concentrated Flow, Grass			
	0.0		0000			Short Grass Pasture Kv= 7.0 fps			
	0.5	47	0.0420	1.43		Shallow Concentrated Flow, Grass			
				-		Short Grass Pasture Kv= 7.0 fps			
	1.3	83	0.0240	1.08		Shallow Concentrated Flow, Grass			
						Short Grass Pasture Kv= 7.0 fps			
	8.4	224	0.0040	0.44		Shallow Concentrated Flow, Grass			
						Short Grass Pasture Kv= 7.0 fps			
	1.5	65	0.0100	0.70		Shallow Concentrated Flow, Grass			
						Short Grass Pasture Kv= 7.0 fps			
	2.5	105	0.0100	0.70		Shallow Concentrated Flow, Wetland			
_						Short Grass Pasture Kv= 7.0 fps			
	20.2	1 0 0 0	Total						

28.3 1,029 Total

Summary for Subcatchment EX-3B: Overland (Offsite)

Runoff = 0.19 cfs @ 12.15 hrs, Volume= 0.016 af, Depth= 3.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

A	rea (sf)	CN D	Description		
	1,717				ood, HSG D
	1,021	V	<u>Voods, Go</u>	od, HSG D	
	2,738	79 V	Veighted A	verage	
	2,738	1	00.00% Pe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.0	48	0.1300	0.08		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
0.2	2	0.1300	0.16		Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.10"
0.3	35	0.1050	2.27		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
10.5	85	Total			

Summary for Subcatchment EX-4: Overland

Runoff	=	4.24 cfs @	12.46 hrs,	Volume=	0.553 af,	Depth= 2.88"
--------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

_	А	rea (sf)	CN E	Description		
		4,690	73 E	Brush, Goo	d, HSG D	
		2,570	80 >	75% Gras	s cover, Go	bod, HSG D
_		93,172	77 V	Voods, Go	od, HSG D	
	1	00,432		Veighted A		
	1	00,432	1	00.00% Pe	ervious Are	a
	_					
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.6	50	0.0300	0.04		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	7.7	515	0.0500	1.12		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	5.6	307	0.0330	0.91		Shallow Concentrated Flow, Wetland
_						Woodland Kv= 5.0 fps
	32.5	938	Total			

Summary for Subcatchment EX-5: Overland

Runoff = 2.52 cfs @ 12.22 hrs, Volume= 0.243 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

Are	a (sf)	CN D	escription						
	136	98 U	98 Unconnected roofs, HSG D						
	1,200	89 D	irt roads, H	HSG D					
4	4,534	80 >	75% Grass	s cover, Go	bod, HSG D				
30	6,872	77 V	Voods, Go	od, HSG D					
42	2,742	78 V	Veighted A	verage					
42	2,606		•	vious Area					
	136	0	.32% Impe	ervious Area	а				
	136	1	00.00% Üı	nconnected	1				
Tc l	_ength	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.3	10	0.0350	0.13		Sheet Flow, Sheet Flow				
					Grass: Short n= 0.150 P2= 3.10"				
8.9	40	0.1200	0.07		Sheet Flow, Sheet Flow				
					Woods: Dense underbrush n= 0.800 P2= 3.10"				
0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
4.7	180	0.0160	0.63		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
0.6	39	0.0460	1.07		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
16.1	335	Total							

Summary for Subcatchment EX-6: Overland

Runoff = 9.81 cfs @ 12.44 hrs, Volume= 1.256 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

Area (sf)	CN	Description
766	80	>75% Grass cover, Good, HSG D
227,450	77	Woods, Good, HSG D
228,216 228,216	77	Weighted Average 100.00% Pervious Area

Type III 24-hr 25-Year Rainfall=5.30" Printed 7/7/2015 Page 35

	51
Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solu	tions LLC
To Longethe Olega Malasity Oserasity Description	-

To	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
19.1	50	0.0280	0.04		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
1.9	98	0.0300	0.87		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
3.3	206	0.0440	1.05		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
6.8	273	0.0180	0.67		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps

31.1 627 Total

Summary for Subcatchment EX-7A: Overland

Runoff	=	7.17 cfs @	12.33 hrs, Volume=	0.815 af, Depth= 3.06"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

	Area (sf)	CN D	Description				
	384	96 G	Gravel surfa	ace, HSG [)		
	9,749 98 Paved parking, HSG D						
	854			ed paveme			
	13,258				bod, HSG D		
	114,877			od, HSG D			
	139,122		Veighted A				
	128,519	-		vious Area			
	10,603		•	ervious Are	a		
	854	8	.05% Unco	onneclea			
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	-	(ft/ft)	(ft/sec)	(cfs)	Decomption		
13.2	. ,	0.0700	0.06	(/	Sheet Flow, Sheet Flow		
					Woods: Dense underbrush n= 0.800 P2= 3.10"		
1.6	110	0.0540	1.16		Shallow Concentrated Flow, Woods		
					Woodland Kv= 5.0 fps		
2.9	138	0.0250	0.79		Shallow Concentrated Flow, Woods		
					Woodland Kv= 5.0 fps		
3.3	124	0.0160	0.63		Shallow Concentrated Flow, Woods		
0.4	4.4	0 4 4 0 0	4 00		Woodland Kv= 5.0 fps		
0.1	14	0.1430	1.89		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps		
0.8	40	0.0250	0.79		Shallow Concentrated Flow, Woods		
0.0	-0	0.0230	0.73		Woodland Kv= 5.0 fps		
0.7	67	0.1040	1.61		Shallow Concentrated Flow, Woods		
5	5.				Woodland Kv= 5.0 fps		
1.2	48	0.0180	0.67		Shallow Concentrated Flow, Woods		
					Woodland Kv= 5.0 fps		
23.8	501	Total					

23.8 591 Total

Summary for Subcatchment EX-7B: Overland (Offsite)

Runoff = 0.87 cfs @ 12.27 hrs, Volume= 0.092 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

_	А	rea (sf)	CN D	escription		
		606			ing, HSG D	
		3,197				ood, HSG D
_		12,376	77 V	Voods, Go	od, HSG D	
		16,179		Veighted A	•	
		15,573			vious Area	
		606	3	.75% Impe	ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
_	14.1	<u>(1001)</u> 50	0.0600	0.06	(00)	Sheet Flow, Sheet Flow
	14.1	50	0.0000	0.00		Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.7	55	0.0700	1.32		Shallow Concentrated Flow, Woods
	0.7	55	0.0700	1.52		Woodland Kv= 5.0 fps
	0.6	71	0.0700	1.85		Shallow Concentrated Flow, Grass
	0.0		0.07.00	1.00		Short Grass Pasture Kv= 7.0 fps
	1.6	125	0.0640	1.26		Shallow Concentrated Flow, Woods
			0.0010	0		Woodland Kv= 5.0 fps
	0.5	23	0.0100	0.70		Shallow Concentrated Flow, Grass
				••••••		Short Grass Pasture Kv= 7.0 fps
	0.3	40	0.0150	2.49		Shallow Concentrated Flow, Pavement
	0.0					Paved Kv= 20.3 fps
	0.3	23	0.0330	1.27		Shallow Concentrated Flow, Grass
		-				Short Grass Pasture Kv= 7.0 fps
	1.7	102	0.0400	1.00		Shallow Concentrated Flow, Woods
						Woodland $Kv = 5.0 \text{ fps}$
	40.0	100	T ()			•

19.8 489 Total

Summary for Subcatchment EX-7C: Overland

Runoff = 0.19 cfs @ 12.26 hrs, Volume= 0.020 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

 Area (sf)	CN	Description
3,572	77	Woods, Good, HSG D
3,572		100.00% Pervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	17.4	50	0.0350	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.9	50	0.0350	0.94		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps
	18.3	100	Total			

Summary for Subcatchment EX-7D: Overland

Runoff = 0.09 cfs @ 12.21 hrs, Volume= 0.009 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

A	rea (sf)	CN	Description					
	1,620	77	77 Woods, Good, HSG D					
	1,620		100.00% P	ervious Are	а			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
15.4	25	0.0120	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush	n= 0.800	P2= 3.10"	

Summary for Link DP-1: Wetland 1

Inflow Area	a =	16.110 ac,	3.73% Impervious, Int	flow Depth = 3.06"	for 25-Year event
Inflow	=	26.23 cfs @	12.64 hrs, Volume=	4.110 af	
Primary	=	26.23 cfs @	12.64 hrs, Volume=	4.110 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-2: Wetland 2

Inflow Are	a =	6.132 ac,	0.59% Impervious,	Inflow Depth = 2.92	2" for 25-Year event
Inflow	=	10.16 cfs @	12.49 hrs, Volume=	= 1.491 af	
Primary	=	10.16 cfs @	12.49 hrs, Volume=	= 1.491 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-3: Wetland 3

Inflow Are	a =	6.082 ac,	3.64% Impervious, I	nflow Depth = 3.16	for 25-Year event
Inflow	=	13.01 cfs @	12.39 hrs, Volume=	1.599 af	
Primary	=	13.01 cfs @	12.39 hrs, Volume=	: 1.599 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-4: Eliot Street

Inflow Area =	2.306 ac,	0.00% Impervious, Infl	ow Depth = $2.88"$	for 25-Year event
Inflow =	4.24 cfs @	12.46 hrs, Volume=	0.553 af	
Primary =	4.24 cfs @	12.46 hrs, Volume=	0.553 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-5: (Offsite Southeast)

Inflow Area	ı =	0.981 ac,	0.32% Impervious,	Inflow Depth = 2.9	97" for 25-Year event
Inflow	=	2.52 cfs @	12.22 hrs, Volume	e= 0.243 af	
Primary	=	2.52 cfs @	12.22 hrs, Volume	e= 0.243 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-6: Prospect Heights

Inflow Area	a =	5.239 ac,	0.00% Impervious,	Inflow Depth = 2.88	3" for 25-Year event
Inflow	=	9.81 cfs @	12.44 hrs, Volume=	= 1.256 af	
Primary	=	9.81 cfs @	12.44 hrs, Volume=	= 1.256 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-7: Chestnut Street

Inflow Area	a =	3.684 ac,	6.98% Impervious,	Inflow Depth = 3.0	05" for 25-Year event
Inflow	=	8.28 cfs @	12.32 hrs, Volume	e= 0.935 af	
Primary	=	8.28 cfs @	12.32 hrs, Volume	e= 0.935 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Ashland HydroCAD - EX Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solution		infall=6.50" d 7/7/2015 Page 39
Time span=0.00-36.00 hrs, dt=0.01 Runoff by SCS TR-20 method, UH=S Reach routing by Stor-Ind+Trans method - Por	SCS, Weighted-CN	
	54 sf 3.74% Impervious Runoff E =46.6 min CN=79 Runoff=35.27 c	
	06 sf 0.00% Impervious Runoff E c=15.4 min CN=77 Runoff=0.12 c	
	89 sf 0.00% Impervious Runoff E =37.1 min CN=77 Runoff=11.81 c	
	32 sf 5.37% Impervious Runoff D UI Adjusted CN=79 Runoff=1.90 c	
	99 sf 0.88% Impervious Runoff E Fc=7.7 min CN=80 Runoff=2.40 c	
	00 sf 3.68% Impervious Runoff E =28.3 min CN=80 Runoff=17.26 c	
	38 sf 0.00% Impervious Runoff E c=10.5 min CN=79 Runoff=0.26 c	
	32 sf 0.00% Impervious Runoff E c=32.5 min CN=77 Runoff=5.78 c	
	242 sf 0.32% Impervious Runoff E c=16.1 min CN=78 Runoff=3.41 c	
	16 sf 0.00% Impervious Runoff E =31.1 min CN=77 Runoff=13.37 c	
	22 sf 7.62% Impervious Runoff E c=23.8 min CN=79 Runoff=9.65 c	
	79 sf 3.75% Impervious Runoff E c=19.8 min CN=78 Runoff=1.18 c	
SubcatchmentEX-7C: Overland Runoff Area=3,5 Flow Length=100' Slope=0.0350 '/' To	72 sf 0.00% Impervious Runoff E =18.3 min CN=77 Runoff=0.26 c	
SubcatchmentEX-7D: Overland Runoff Area=1,6 Flow Length=25' Slope=0.0120 '/' To	20 sf 0.00% Impervious Runoff E c=15.4 min CN=77 Runoff=0.13 c	
Link DP-1: Wetland 1	Inflow=35.31 (Primary=35.31 (
Link DP-2: Wetland 2	Inflow=13.80 o Primary=13.80 o	

Ashland HydroCAD - EX Ty Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC	pe III 24-hr 100-Year Rainfall=6.50" Printed 7/7/2015 Page 40
Link DP-3: Wetland 3	Inflow=17.39 cfs 2.146 af Primary=17.39 cfs 2.146 af
Link DP-4: Eliot Street	Inflow=5.78 cfs 0.753 af Primary=5.78 cfs 0.753 af
Link DP-5: (Offsite Southeast)	Inflow=3.41 cfs 0.329 af Primary=3.41 cfs 0.329 af
Link DP-6: Prospect Heights	Inflow=13.37 cfs 1.711 af Primary=13.37 cfs 1.711 af
Link DP-7: Chestnut Street	Inflow=11.15 cfs 1.262 af Primary=11.15 cfs 1.262 af
Total Runoff Area = 40.535 ac Runoff Volume = 13 97.24% Pervious = 39.	•

Summary for Subcatchment EX-1A: Overland

Runoff = 35.27 cfs @ 12.63 hrs, Volume= 5.532 af, Depth= 4.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN D	escription						
	632	98 U							
	5,471		irt roads, I						
	1,653	96 G	Fravel surfa	ace, HSG D)				
	22,224 98 Paved parking, HSG D								
	3,317			ed pavemer					
*	77,096 77 Wetlands (Woods, Good, HSG D)								
	3,442		rush, Goo						
	153,369				bod, HSG D				
	433,050		,	od, HSG D					
	700,254		Veighted A	•					
	674,081	-		vious Area					
	26,173			ervious Are	a				
	3,949	1	5.09% Un	connected					
Та	المعمول	Clana	Valasitu	Conseitu	Description				
Tc (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
(min)	. ,		()	(015)	Chaot Flow, Chaot Flow				
23.9	50	0.0160	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"				
7.4	172	0.0060	0.39		Shallow Concentrated Flow, Woods				
7.4	112	0.0000	0.59		Woodland Kv= 5.0 fps				
3.9	110	0.0090	0.47		Shallow Concentrated Flow, Woods				
0.0	110	0.0000	0.17		Woodland Kv= 5.0 fps				
1.1	70	0.0430	1.04		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
1.7	65	0.0160	0.63		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
8.6	580	0.0500	1.12		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
46.6	1,047	Total							

Summary for Subcatchment EX-1B: Overland (Offsite)

Runoff = 0.12 cfs @ 12.21 hrs, Volume= 0.011 af, Depth= 3.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

 Area (sf)	CN	Description			
1,506	77	Woods, Good, HSG D			
 1,506		100.00% Pervious Area			

Ashlar	d Hydr	oCAD -	EX		Type III 24-hr 100-Year Rainfall=6.50
				name her	e} Printed 7/7/2015
					Software Solutions LLC Page 42
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.9	50	0.0520	0.06	(0.0)	Sheet Flow, Sheet Flow
0.5	37	0.0520	1.14		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
15.4	87	Total			
		5	Summar	y for Sub	catchment EX-2A: Overland
Runoff	=	11.81 cfs	s@ 12.5	0 hrs, Volu	ime= 1.643 af, Depth= 3.92"
			hod, UH=S ainfall=6.5		nted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
A	rea (sf)	CN D	escription		
*	27,039				od, HSG D)
1	4,000			s cover, Go od, HSG D	bod, HSG D
	88,050 19,089		Veighted A		
	19,089			ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
17.9	50	0.0330	0.05		Sheet Flow, Sheet Flow
0.6	66	0.1200	1.73		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
2.5	120	0.0250	0.79		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
5.3	353	0.0500	1.12		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
2.1	185	0.0880	1.48		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
0.8	55	0.0500	1.12		Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps
0.3	30	0.1333	1.83		Shallow Concentrated Flow, Wetland Woodland Kv= 5.0 fps
0.5	44	0.0800	1.41		Shallow Concentrated Flow, Wetland

Achland HydroCAD EV

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

Woodland Kv= 5.0 fps

Woodland Kv= 5.0 fps

Summary for Subcatchment EX-2B: Overland (Offsite)

Shallow Concentrated Flow, Wetlands

0.202 af, Depth= 4.13"

37.1 1,156 Total

=

7.1

Runoff

0.59

1.90 cfs @ 12.27 hrs, Volume=

253 0.0140

 Type III 24-hr
 100-Year Rainfall=6.50"

 Printed
 7/7/2015

 LC
 Page 43

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

_	A	rea (sf)	CN /	Adj Desc	cription	
		1,040	98	Unco	onnected ro	oofs, HSG D
		331	98	Unco	onnected pa	avement, HSG D
		12,989	80	>75%	% Grass co	ver, Good, HSG D
_		11,172	77	Woo	ds, Good, I	HSG D
		25,532	80	79 Weig	phted Avera	age, UI Adjusted
	24,161 94.63% Pervious				3% Perviou	is Area
1,371 5.37% Imperviou						
		1,371		100.	00% Uncor	nnected
	-				0	
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	19	0.1000	1.58		Shallow Concentrated Flow, Woods
	10	405	0.0400	4 45		Woodland Kv= 5.0 fps
	1.6	135	0.0430	1.45		Shallow Concentrated Flow, Woods
	0.4	E0	0 1500	0 70		Short Grass Pasture Kv= 7.0 fps
	0.4	59	0.1520	2.73		Shallow Concentrated Flow, Woods
	1.4	85	0.0410	1.01		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Woods
	1.4	00	0.0410	1.01		Woodland Kv= 5.0 fps
-	20.1	3/18	Total			

20.1 348 Total

Summary for Subcatchment EX-2C: Overland (Offsite)

Runoff = 2.40 cfs @ 12.11 hrs, Volume=

0.182 af, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

_	A	rea (sf)	CN [CN Description						
		198	98 l	,						
		21,719	80 >	80 >75% Grass cover, Good, HSG D						
_		582	77 \	77 Woods, Good, HSG D						
		22,499	80 \	80 Weighted Average						
		22,301	ę	99.12% Per	rvious Area					
		198	().88% Impe	ervious Are	a				
		198		100.00% U	nconnected	1				
	-				O					
	Тс	Length	Slope		Capacity	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	(ft/sec)	Capacity (cfs)	Description				
		•				Description Sheet Flow, Sheet Flow	-			
	(min)	(feet)	(ft/ft)	(ft/sec)			-			
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, Woods	-			
_	(min) 3.7	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.23		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10"	-			
_	(min) 3.7	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.23		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, Woods	-			

Summary for Subcatchment EX-3A: Overland

Runoff = 17.26 cfs @ 12.39 hrs, Volume= 2.124 af, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Ar	ea (sf)	CN D	escription		
		1,180	98 L	Inconnecte	ed roofs, HS	SG D
		8,460	98 L	Inconnecte	ed pavemer	nt, HSG D
*		7,956	80 V	Vetland (G	rass, HSG	D)
		3,132	73 B	Brush, Goo	d, HSG D	
	2	12,160	80 >	75% Gras	s cover, Go	ood, HSG D
		29,312	77 V	Voods, Go	od, HSG D	
	2	62,200	80 V	Veighted A	verage	
	2	52,560	9	6.32% Pei	vious Area	
		9,640	3	.68% Impe	ervious Area	а
		9,640	1	00.00% Ü	nconnected	1
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.2	38	0.0150	0.12		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	2.5	12	0.0090	0.08		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	2.4	97	0.0090	0.66		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	0.1	16	0.0090	1.93		Shallow Concentrated Flow, Pavement
						Paved Kv= 20.3 fps
	0.5	106	0.0340	3.74		Shallow Concentrated Flow, Pavement
						Paved Kv= 20.3 fps
	0.2	20	0.0500	1.57		Shallow Concentrated Flow, Grass
	0 4	00		0.74		Short Grass Pasture Kv= 7.0 fps
	2.1	92	0.0220	0.74		Shallow Concentrated Flow, Woods
	0.0	0.4	0.0040	4 54		Woodland Kv= 5.0 fps
	0.3	24	0.0910	1.51		Shallow Concentrated Flow, Woods
	0.8	100	0 1000	2.21		Woodland Kv= 5.0 fps
	0.0	100	0.1000	۲.۷۱		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps
	0.5	47	0.0420	1.43		Shallow Concentrated Flow, Grass
	0.5	41	0.0420	1.43		Short Grass Pasture Kv= 7.0 fps
	1.3	83	0.0240	1.08		Shallow Concentrated Flow, Grass
	1.5	05	0.0240	1.00		Short Grass Pasture Kv= 7.0 fps
	8.4	224	0.0040	0.44		Shallow Concentrated Flow, Grass
	0.7	<u> </u>	0.00-0	0.77		Short Grass Pasture Kv= 7.0 fps
	1.5	65	0.0100	0.70		Shallow Concentrated Flow, Grass
	1.0	00	0.0100	0.10		Short Grass Pasture Kv= 7.0 fps
	2.5	105	0.0100	0.70		Shallow Concentrated Flow, Wetland
	2.0	100	0.0100	0.10		Short Grass Pasture Kv= 7.0 fps
	00.0	1 000	Tatal			

28.3 1,029 Total

Summary for Subcatchment EX-3B: Overland (Offsite)

Runoff = 0.26 cfs @ 12.14 hrs, Volume= 0.022 af, Depth= 4.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

A	rea (sf)	CN E									
	1,717										
	1,021	77 V	<u>Voods, Go</u>	od, HSG D							
	2,738	79 V	79 Weighted Average								
	2,738	1	00.00% Pe	ervious Are	a						
Тс	Length	Slope Velocity Capacity Description									
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
10.0	48	0.1300	0.08		Sheet Flow, Sheet Flow						
					Woods: Dense underbrush n= 0.800 P2= 3.10"						
0.2	2	0.1300	0.16		Sheet Flow, Sheet Flow						
					Grass: Short n= 0.150 P2= 3.10"						
0.3	35	0.1050	50 2.27 Shallow Concentrated Flow, Grass								
					Short Grass Pasture Kv= 7.0 fps						
10.5	85	Total									

Summary for Subcatchment EX-4: Overland

Runoff	=	5.78 cfs @	12.46 hrs,	Volume=	0.753 af, Depth= 3.92	"
--------	---	------------	------------	---------	-----------------------	---

A	rea (sf)	CN E	escription						
	4,690 73 Brush, Good, HSG D								
	2,570			,	bod, HSG D				
	93,172	77 V	Voods, Go	od, HSG D					
1	00,432		Veighted A						
1	00,432	1	00.00% Pe	ervious Are	a				
-				o ''					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(min) (feet) (ft/ft) (ft/sec) (cfs)			(cfs)					
18.6	50	0.0300	0.04		Sheet Flow, Sheet Flow				
					Woods: Dense underbrush n= 0.800 P2= 3.10"				
0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
7.7	515	0.0500	1.12		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
5.6 307 0.0330 0.91 Shallow Concentrated Flow, Wetland									
					Woodland Kv= 5.0 fps				
32.5	938	Total							

Summary for Subcatchment EX-5: Overland

Runoff = 3.41 cfs @ 12.22 hrs, Volume= 0.329 af, Depth= 4.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

Are	a (sf)	CN Description									
	136	98 Unconnected roofs, HSG D									
	1,200	89 D									
4	4,534	80 >	75% Grass	s cover, Go	bod, HSG D						
30	6,872	77 V	Voods, Go	od, HSG D							
42	2,742	78 V	Veighted A	verage							
42	2,606		•	vious Area							
	136	0	.32% Impe	ervious Area	а						
	136	1	00.00% Üı	nconnected	1						
Tc l	_ength	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
1.3	10	0.0350	0.13		Sheet Flow, Sheet Flow						
					Grass: Short n= 0.150 P2= 3.10"						
8.9	40	0.1200	0.07		Sheet Flow, Sheet Flow						
					Woods: Dense underbrush n= 0.800 P2= 3.10"						
0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods						
					Woodland Kv= 5.0 fps						
4.7	180	0.0160	0.63		Shallow Concentrated Flow, Woods						
	Woodland Kv= 5.0 fps										
0.6	39	0.0460	1.07		Shallow Concentrated Flow, Woods						
					Woodland Kv= 5.0 fps						
16.1	335	Total									

Summary for Subcatchment EX-6: Overland

Runoff = 13.37 cfs @ 12.41 hrs, Volume= 1.711 af, Depth= 3.92"

Area (sf)	CN	Description
766	>75% Grass cover, Good, HSG D	
227,450	Woods, Good, HSG D	
228,216 228,216	77	Weighted Average 100.00% Pervious Area

 Type III 24-hr
 100-Year Rainfall=6.50"

 Printed
 7/7/2015

 LC
 Page 47

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC	

	Тс	Length	Slope	Velocity	Capacity	Description
(r	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1	19.1	50	0.0280	0.04		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	1.9	98	0.0300	0.87		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	3.3	206	0.0440	1.05		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	6.8	273	0.0180	0.67		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps

31.1 627 Total

Summary for Subcatchment EX-7A: Overland

Runoff = 9.65 cfs @ 12.32 hrs, Volume= 1.099 af, Depth= 4.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN D	Description							
	384	96 Gravel surface, HSG D								
	9,749 98 Paved parking, HSG D									
	854			ed paveme						
	13,258				bod, HSG D					
	114,877			od, HSG D						
	139,122		Veighted A							
	128,519	-		vious Area						
	10,603		•	ervious Are	a					
	854	8	.05% Unco	onneclea						
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	-	(ft/ft)	(ft/sec)	(cfs)	Decomption					
13.2	. ,	0.0700	0.06	(/	Sheet Flow, Sheet Flow					
					Woods: Dense underbrush n= 0.800 P2= 3.10"					
1.6	110	0.0540	1.16		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
2.9	138	0.0250	0.79		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
3.3	124	0.0160	0.63		Shallow Concentrated Flow, Woods					
0.4	4.4	0 4 4 0 0	4 00		Woodland Kv= 5.0 fps					
0.1	14	0.1430	1.89		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps					
0.8	40	0.0250	0.79		Shallow Concentrated Flow, Woods					
0.0	-0	0.0230	0.73		Woodland Kv= 5.0 fps					
0.7	67	0.1040	1.61		Shallow Concentrated Flow, Woods					
5	5.				Woodland Kv= 5.0 fps					
1.2	48	0.0180	0.67		Shallow Concentrated Flow, Woods					
					Woodland Kv= 5.0 fps					
23.8	501	Total								

23.8 591 Total

Summary for Subcatchment EX-7B: Overland (Offsite)

Runoff = 1.18 cfs @ 12.26 hrs, Volume= 0.125 af, Depth= 4.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

_	А	rea (sf)	CN D	escription				
		606			ing, HSG D			
		3,197				ood, HSG D		
_		12,376	77 V	Voods, Go	od, HSG D			
		16,179		Veighted A	•			
		15,573			vious Area			
		606	3	.75% Impe	ervious Are	а		
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description		
_	14.1	<u>(1001)</u> 50	0.0600	0.06	(00)	Sheet Flow, Sheet Flow		
	14.1	50	0.0000	0.00		Woods: Dense underbrush n= 0.800 P2= 3.10"		
	0.7	55	0.0700	1.32		Shallow Concentrated Flow, Woods		
	0.7	55	0.0700	1.52		Woodland Kv= 5.0 fps		
	0.6	71	0.0700	1.85		Shallow Concentrated Flow, Grass		
	0.0		0.07.00	1.00		Short Grass Pasture Kv= 7.0 fps		
	1.6	125	0.0640	1.26		Shallow Concentrated Flow, Woods		
			0.0010	0		Woodland Kv= 5.0 fps		
	0.5	23	0.0100	0.70		Shallow Concentrated Flow, Grass		
				••••••		Short Grass Pasture Kv= 7.0 fps		
	0.3	40	0.0150	2.49		Shallow Concentrated Flow, Pavement		
	0.0					Paved Kv= 20.3 fps		
	0.3	23	0.0330	1.27		Shallow Concentrated Flow, Grass		
		-				Short Grass Pasture Kv= 7.0 fps		
	1.7	102	0.0400	1.00		Shallow Concentrated Flow, Woods		
						Woodland $Kv = 5.0 \text{ fps}$		
						•		

19.8 489 Total

Summary for Subcatchment EX-7C: Overland

Runoff = 0.26 cfs @ 12.26 hrs, Volume= 0.027 af, Depth= 3.92"

 Area (sf)	CN	Description
3,572 77 Woods, Good		Woods, Good, HSG D
 3,572 100.00% Pervious Area		100.00% Pervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	17.4	50	0.0350	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.9	50	0.0350	0.94		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps
	18.3	100	Total			

Summary for Subcatchment EX-7D: Overland

Runoff = 0.13 cfs @ 12.21 hrs, Volume= 0.012 af, Depth= 3.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

A	rea (sf)	CN	CN Description							
	1,620	77	77 Woods, Good, HSG D							
	1,620		100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
15.4	25	0.0120	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush	n= 0.800	P2= 3.10"			

Summary for Link DP-1: Wetland 1

Inflow Area	a =	16.110 ac,	3.73% Impervious, Inflov	w Depth = 4.13 "	for 100-Year event
Inflow	=	35.31 cfs @	12.63 hrs, Volume=	5.543 af	
Primary	=	35.31 cfs @	12.63 hrs, Volume=	5.543 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-2: Wetland 2

Inflow Area =	=	6.132 ac,	0.59% Impervious,	Inflow Depth = 3.9	7" for 100-Year event
Inflow =		13.80 cfs @	12.48 hrs, Volume	= 2.027 af	
Primary =		13.80 cfs @	12.48 hrs, Volume	= 2.027 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-3: Wetland 3

Inflow Are	a =	6.082 ac,	3.64% Impervious,	Inflow Depth = 4.2	3" for 100-Year event
Inflow	=	17.39 cfs @	12.39 hrs, Volume	= 2.146 af	
Primary	=	17.39 cfs @	12.39 hrs, Volume	= 2.146 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-4: Eliot Street

Inflow Are	a =	2.306 ac,	0.00% Impervious,	Inflow Depth = 3.9	2" for 100-Year event
Inflow	=	5.78 cfs @	12.46 hrs, Volume=	= 0.753 af	
Primary	=	5.78 cfs @	12.46 hrs, Volume=	= 0.753 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-5: (Offsite Southeast)

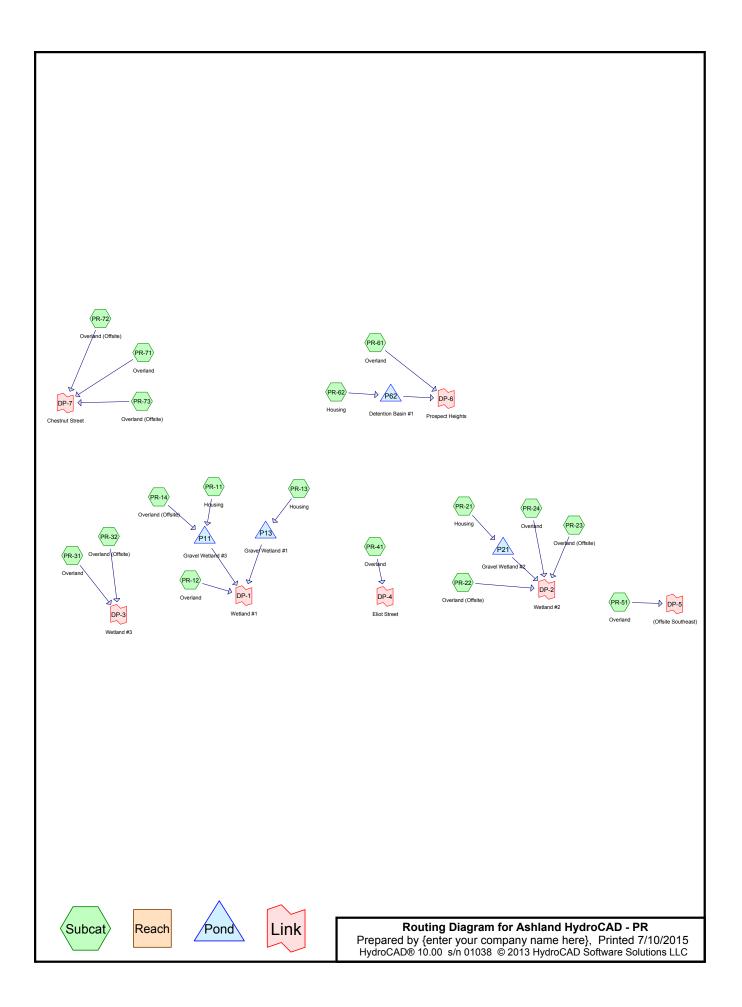
Inflow Area	=	0.981 ac,	0.32% Impervious,	Inflow Depth = 4.0	02" for 100-Year event
Inflow =	=	3.41 cfs @	12.22 hrs, Volume	= 0.329 af	
Primary =	=	3.41 cfs @	12.22 hrs, Volume	= 0.329 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link DP-6: Prospect Heights

Inflow Are	a =	5.239 ac,	0.00% Impervious,	Inflow Depth = 3.92	2" for 100-Year event
Inflow	=	13.37 cfs @	12.41 hrs, Volume=	= 1.711 af	
Primary	=	13.37 cfs @	12.41 hrs, Volume=	= 1.711 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs


Summary for Link DP-7: Chestnut Street

Inflow Are	a =	3.684 ac,	6.98% Impervious,	Inflow Depth = 4.1	1" for 100-Year event
Inflow	=	11.15 cfs @	12.30 hrs, Volume	= 1.262 af	
Primary	=	11.15 cfs @	12.30 hrs, Volume	= 1.262 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

HydroCAD Analysis: Proposed Conditions

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
15.210	80	>75% Grass cover, Good, HSG D (PR-11, PR-13, PR-21, PR-22, PR-31, PR-32,
		PR-62, PR-71)
0.055	73	Brush, Good, HSG D (PR-31, PR-41)
4.074	98	Paved parking, HSG D (PR-11, PR-13, PR-21, PR-71)
0.008	98	Unconnected pavement, HSG D (PR-22)
5.182	98	Unconnected roofs, HSG D (PR-11, PR-13, PR-21, PR-22, PR-31, PR-62)
0.183	80	Wetland (Grass, HSG D) (PR-31)
1.034	77	Woods, Good, HSG D (PR-11, PR-22, PR-31, PR-32)
0.028	89	dirt drive (PR-51)
5.109	80	grass (PR-12, PR-23, PR-24, PR-41, PR-51, PR-61, PR-72)
0.026	96	gravel drive (PR-41)
0.086	98	pavement (PR-12, PR-41, PR-72)
0.021	98	roof (PR-12, PR-23, PR-51)
2.391	77	wetland - woods (PR-12, PR-24)
7.056	77	woods (PR-12, PR-23, PR-24, PR-41, PR-51, PR-61, PR-71, PR-72, PR-73)
0.071	80	woods (PR-14)
40.535	83	TOTAL AREA

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-11: Housing	Runoff Area=475,007 sf 45.31% Impervious Runoff Depth=1.91" low Length=1,594' Tc=6.7 min CN=88 Runoff=23.74 cfs 1.733 af
SubcatchmentPR-12: Overland	Runoff Area=267,695 sf 0.89% Impervious Runoff Depth=1.26" Flow Length=701' Tc=26.3 min CN=79 Runoff=5.33 cfs 0.646 af
SubcatchmentPR-13: Housing	Runoff Area=154,430 sf 44.45% Impervious Runoff Depth=1.91" Flow Length=678' Tc=14.8 min CN=88 Runoff=6.02 cfs 0.563 af
SubcatchmentPR-14: Overland (Offsite) Flow Length=87	
SubcatchmentPR-21: Housing	Runoff Area=158,766 sf 57.34% Impervious Runoff Depth=2.08" Flow Length=556' Tc=7.4 min CN=90 Runoff=8.37 cfs 0.631 af
SubcatchmentPR-22: Overland (Offsite) Flow Length	Runoff Area=25,532 sf 5.37% Impervious Runoff Depth=1.26" a=348' Tc=20.1 min UI Adjusted CN=79 Runoff=0.57 cfs 0.062 af
SubcatchmentPR-23: Overland (Offsite)	Runoff Area=22,499 sf 0.88% Impervious Runoff Depth=1.33" Flow Length=455' Tc=7.7 min CN=80 Runoff=0.75 cfs 0.057 af
SubcatchmentPR-24: Overland	Runoff Area=144,766 sf 0.00% Impervious Runoff Depth=1.20" Flow Length=999' Tc=32.1 min CN=78 Runoff=2.49 cfs 0.332 af
SubcatchmentPR-31: Overland	Runoff Area=225,357 sf 0.52% Impervious Runoff Depth=1.33" Flow Length=760' Tc=32.6 min CN=80 Runoff=4.30 cfs 0.571 af
SubcatchmentPR-32: Overland (Offsite)	Runoff Area=2,738 sf 0.00% Impervious Runoff Depth=1.26" Flow Length=85' Tc=10.5 min CN=79 Runoff=0.08 cfs 0.007 af
SubcatchmentPR-41: Overland	Runoff Area=33,639 sf 3.96% Impervious Runoff Depth=1.33" Flow Length=105' Tc=8.4 min CN=80 Runoff=1.09 cfs 0.085 af
SubcatchmentPR-51: Overland	Runoff Area=42,742 sf 0.32% Impervious Runoff Depth=1.20" Flow Length=335' Tc=16.1 min CN=78 Runoff=0.99 cfs 0.098 af
SubcatchmentPR-61: Overland	Runoff Area=61,371 sf 0.00% Impervious Runoff Depth=1.20" Flow Length=512' Tc=26.2 min CN=78 Runoff=1.16 cfs 0.141 af
SubcatchmentPR-62: Housing	Runoff Area=38,898 sf 54.33% Impervious Runoff Depth=2.08" Flow Length=668' Tc=12.2 min CN=90 Runoff=1.76 cfs 0.154 af
SubcatchmentPR-71: Overland	Runoff Area=92,973 sf 5.33% Impervious Runoff Depth=1.26" Flow Length=503' Tc=20.7 min CN=79 Runoff=2.05 cfs 0.224 af
SubcatchmentPR-72: Overland (Offsite)	Runoff Area=14,564 sf 4.16% Impervious Runoff Depth=1.26" Flow Length=489' Tc=19.8 min CN=79 Runoff=0.33 cfs 0.035 af

Page 4

	1
Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC	;

SubcatchmentPR-73: Overland (Offsite) Flow Length=25'	Runoff Area=1,620 sf 0.00% Impervious Runoff Depth=1.14" Slope=0.0120 '/' Tc=15.4 min CN=77 Runoff=0.04 cfs 0.004 af
Pond P11: Gravel Wetland #3	Peak Elev=313.34' Storage=37,952 cf Inflow=23.79 cfs 1.741 af Outflow=2.84 cfs 1.535 af
Pond P13: Gravel Wetland #1	Peak Elev=318.27' Storage=10,238 cf Inflow=6.02 cfs 0.563 af Outflow=1.75 cfs 0.498 af
Pond P21: Gravel Wetland #2	Peak Elev=303.49' Storage=15,705 cf Inflow=8.37 cfs 0.631 af Outflow=0.79 cfs 0.437 af
Pond P62: Detention Basin #1	Peak Elev=332.59' Storage=1,211 cf Inflow=1.76 cfs 0.154 af Outflow=1.25 cfs 0.154 af
Link DP-1: Wetland #1	Inflow=9.71 cfs 2.679 af Primary=9.71 cfs 2.679 af
Link DP-2: Wetland #2	Inflow=3.94 cfs 0.888 af Primary=3.94 cfs 0.888 af
Link DP-3: Wetland #3	Inflow=4.33 cfs 0.578 af Primary=4.33 cfs 0.578 af
Link DP-4: Eliot Street	Inflow=1.09 cfs 0.085 af Primary=1.09 cfs 0.085 af
Link DP-5: (Offsite Southeast)	Inflow=0.99 cfs 0.098 af Primary=0.99 cfs 0.098 af
Link DP-6: Prospect Heights	Inflow=2.37 cfs 0.295 af Primary=2.37 cfs 0.295 af
Link DP-7: Chestnut Street	Inflow=2.41 cfs 0.263 af Primary=2.41 cfs 0.263 af
Total Runoff Area = 40.53	5 ac Runoff Volume = 5.353 af Average Runoff Depth = 1.58"

76.88% Pervious = 31.164 ac 23.12% Impervious = 9.371 ac

Summary for Subcatchment PR-11: Housing

Runoff = 23.74 cfs @ 12.10 hrs, Volume= 1.733 af, Depth= 1.91"

Ar	ea (sf)	CN D	escription		
10	05,642	98 P	98 Paved parking, HSG D		
	09,581			ed roofs, HS	
25	50,927				ood, HSG D
	8,857			od, HSG D	
	75,007		Veighted A		
	59,784			vious Area	
	15,223			pervious Ar	ea
П	09,581	5	0.92% UN	connected	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decomption
0.8	50	0.0170	1.10	(0.0)	Sheet Flow, Sheet Flow
0.0		0.0110			Smooth surfaces $n=0.011$ P2= 3.10"
1.1	150	0.0133	2.34		Shallow Concentrated Flow, pavement
					Paved Kv= 20.3 fps
0.4	62	0.0161	2.58		Shallow Concentrated Flow, pavement
					Paved Kv= 20.3 fps
0.0	12	0.0085	4.94	3.88	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
0.3	60	0.0050	3.79	2.98	n= 0.011 Concrete pipe, straight & clean Pipe Channel, pipe flow
0.5	00	0.0050	5.79	2.90	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.5	114	0.0053	3.90	3.07	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.5	120	0.0050	3.79	2.98	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
			- -		n= 0.011
1.0	228	0.0050	3.79	2.98	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.011
0.4	201	0.0266	8.74	6.87	
0.4	201	0.0200	0.74	0.07	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.4	234	0.0322	9.62	7.56	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.7	166	0.0051	3.83	3.01	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
0.4	07	0.0057	4.05	0.40	n= 0.011 Ding Channel, ning flow
0.4	87	0.0057	4.05	3.18	Pipe Channel, pipe flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					12.0 ROUHU AIEd- 0.0 SI PEHIH 3.1 I = 0.23

Prepare	d by {en		company	name here	Type III 24-hr 2-Year Rainfall=3.10"e}Printed 7/10/2015coftware Solutions LLCPage 6
n= 0.011 0.2		0.0090	8.07	25.36	Pipe Channel, pipe flow 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.011
6.7	1,594	Total			
		Ś	Summar	y for Sub	catchment PR-12: Overland
Runoff	=	5.33 cfs	s@ 12.3	8 hrs, Volu	me= 0.646 af, Depth= 1.26"
			nod, UH=S fall=3.10"	SCS, Weigh	nted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Α	rea (sf)	CN D	escription		
*	564		oof		
* 4	1,821		avement		
	19,319 68,895		rass voods		
	77,096		etland - w	oods	
	67,695		Veighted A		
	65,310			vious Area	
	2,385	0	.89% Impe	ervious Are	а
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.3	6	0.3300	0.29	(010)	Sheet Flow, Sheet Flow
0.0	Ŭ	0.0000	0.20		Grass: Short $n = 0.150$ P2= 3.10"
0.9	7	0.0450	0.14		Sheet Flow, Sheet Flow
40.4	07	0.0450	0.05		Grass: Short n= 0.150 P2= 3.10"
12.4	37	0.0450	0.05		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"
12.7	651	0.0290	0.85		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
26.3	701	Total			
		;	Summar	y for Sub	ocatchment PR-13: Housing

Runoff = 6.02 cfs @ 12.20 hrs, Volume= 0.563 af, Depth= 1.91"

Area (sf)	CN	Description
27,749	98	Paved parking, HSG D
40,892	98	Unconnected roofs, HSG D
85,789	80	>75% Grass cover, Good, HSG D
154,430	88	Weighted Average
85,789		55.55% Pervious Area
68,641		44.45% Impervious Area
40,892		59.57% Unconnected

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	4.1	50		0.20		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.2	16	0.0625	1.75		Shallow Concentrated Flow, grass
						Short Grass Pasture Kv= 7.0 fps
	0.0	6	0.3300	4.02		Shallow Concentrated Flow, grass
						Short Grass Pasture Kv= 7.0 fps
	2.3	123	0.0160	0.89		Shallow Concentrated Flow, grass
						Short Grass Pasture Kv= 7.0 fps
	0.6	52	0.0400	1.40		Shallow Concentrated Flow, grass
		-		- ·		Short Grass Pasture Kv= 7.0 fps
	0.1	8	0.1250	2.47		Shallow Concentrated Flow, grass
	0 5	400	0 0050	0.40		Short Grass Pasture Kv= 7.0 fps
	6.5	192	0.0050	0.49		Shallow Concentrated Flow, grass
	0.0	F 4	0.0050	4 5 4	0.40	Short Grass Pasture Kv= 7.0 fps
	0.6	54	0.0050	1.54	0.13	
						4.0" Round Area= 0.1 sf Perim= 1.0' r= 0.08'
	0.2	105	0.0120	7 01	9.07	n= 0.013 Corrugated PE, smooth interior
	0.2	105	0.0138	7.31	8.97	Pipe Channel, pipe flow 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.011
	0.2	72	0.0152	7.67	9.41	Pipe Channel, pipe flow
	0.2	12	0.0152	1.07	9.41	15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.011
_	44.0	070	Tatal			

14.8 678 Total

Summary for Subcatchment PR-14: Overland (Offsite)

Runoff = 0.08 cfs @ 12.22 hrs, Volume= 0.008 af, Depth= 1.33"

_	А	rea (sf)	CN E	Description		
*		3,104	80 v	voods		
		3,104	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	14.9	50	0.0520	0.06	(010)	Sheet Flow, Sheet Flow
	0.5	37	0.0520	1.14		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
_	15.4	87	Total			

Summary for Subcatchment PR-21: Housing

Runoff = 8.37 cfs @ 12.10 hrs, Volume= 0.631 af, Depth= 2.08"

A	rea (sf)	CN D	escription		
	51,916			ed roofs, H	
	39,125			ing, HSG D	
	67,725				ood, HSG D
	58,766		Veighted A		
	67,725			rvious Area	
	91,041			pervious Ar	ea
	51,916	5	7.02% Un	connected	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.0	50	0.0500	0.21	()	Sheet Flow, Sheet Flow
			•		Grass: Short n= 0.150 P2= 3.10"
0.4	46	0.0650	1.78		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.1	16	0.3333	4.04		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
1.3	75	0.0200	0.99		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.1	25	0.0200	2.87		Shallow Concentrated Flow, pavement
0.4	40	0.0050	0.70	0.00	Paved Kv= 20.3 fps
0.1	12	0.0050	3.79	2.98	Pipe Channel, pipe flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.1	33	0.0050	3.79	2.98	Pipe Channel, pipe flow
0.1	55	0.0000	5.79	2.90	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.7	168	0.0050	3.79	2.98	Pipe Channel, pipe flow
•		0.0000	0110	2.00	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.4	91	0.0051	3.83	3.01	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.2	40	0.0050	3.79	2.98	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
7.4	556	Total			

Summary for Subcatchment PR-22: Overland (Offsite)

Runoff = 0.57 cfs @ 12.29 hrs, Volume= 0.062 af, Depth= 1.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

_	A	rea (sf)	CN A	Adj Desc	cription	
		1,040	98	Unco	onnected ro	oofs, HSG D
		331	98	Unco	onnected pa	avement, HSG D
		12,989	80	>75%	% Grass co	ver, Good, HSG D
_		11,172	77	Woo	ds, Good, I	HSG D
		25,532	80	79 Weig	hted Avera	age, UI Adjusted
		24,161		94.6	3% Perviou	us Area
		1,371		5.37	% Impervio	ous Area
		1,371		100.	00% Uncor	nnected
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	19	0.1000	1.58		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	1.6	135	0.0430	1.45		Shallow Concentrated Flow, Woods
						Short Grass Pasture Kv= 7.0 fps
	0.4	59	0.1520	2.73		Shallow Concentrated Flow, Woods
						Short Grass Pasture Kv= 7.0 fps
	1.4	85	0.0410	1.01		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps
	20.1	3/18	Total			

20.1 348 Total

Summary for Subcatchment PR-23: Overland (Offsite)

Runoff = 0.75 cfs @ 12.11 hrs, Volume= 0.057 af, Depth= 1.33"

	Area (sf)	CN	Description
*	198	98	roof
*	21,719	80	grass
*	582	77	woods
	22,499	80	Weighted Average
	22,301		99.12% Pervious Area
	198		0.88% Impervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	3.7	50	0.0600	0.23		Sheet Flow, Sheet Flow	-
						Grass: Short n= 0.150 P2= 3.10"	
	4.0	405	0.0580	1.69		Shallow Concentrated Flow, Woods	
_						Short Grass Pasture Kv= 7.0 fps	_
	7.7	455	Total				_

Summary for Subcatchment PR-24: Overland

Runoff = 2.49 cfs @ 12.47 hrs, Volume= 0.332 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

_	A	rea (sf)	CN D	Description		
* *	1	34,871 82,856 <u>27,039</u> 44,766 44,766	77 w 77 w 78 V	rass /oods / <u>etland - w</u> Veighted A 00.00% Pe		a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.6	11	0.3330	0.33		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10"
	13.8	39	0.0385	0.05		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"
	1.0	60	0.0417	1.02		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	1.1	87	0.0747	1.37		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	2.7	255	0.0500	1.57		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps
	12.9	547	0.0200	0.71		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
_	32.1	999	Total			·

Summary for Subcatchment PR-31: Overland

Runoff = 4.30 cfs @ 12.47 hrs, Volume= 0.571 af, Depth= 1.33"

 Type III 24-hr
 2-Year Rainfall=3.10"

 Printed
 7/10/2015

 C
 Page 11

Prepared by {enter your c	company name here}
HydroCAD® 10.00 s/n 01038	© 2013 HydroCAD Software Solutions LLC

Α	rea (sf)	CN D	escription		
	1,180	98 U	Inconnecte	ed roofs, HS	SG D
*	7,956	80 V	Vetland (G	rass, HSG	D)
1	90,213	80 >	75% Gras	s cover, Go	bod, HSG D
	24,006			od, HSG D	
	2,002	73 B	rush, Goo	d, HSG D	
2	25,357		Veighted A		
2	24,177			vious Area	
	1,180			ervious Are	
	1,180	1	00.00% U	nconnected	1
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(Cfs)	Description
1.9	20	0.0500	0.18	(0.0)	Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.10"
14.0	30	0.0220	0.04		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
1.4	62	0.0220	0.74		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.3	24	0.0910	1.51		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.8	100	0.1000	2.21		Shallow Concentrated Flow, Grass
0.5	47	0.0400	4 40		Short Grass Pasture Kv= 7.0 fps
0.5	47	0.0420	1.43		Shallow Concentrated Flow, Grass
1.3	00	0 0 2 4 0	1.08		Short Grass Pasture Kv= 7.0 fps
1.3	83	0.0240	1.00		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps
8.4	224	0.0040	0.44		Shallow Concentrated Flow, Grass
0.4	224	0.00+0	0.44		Short Grass Pasture Kv= 7.0 fps
1.5	65	0.0100	0.70		Shallow Concentrated Flow, Grass
1.0	00	0.0100	0.70		Short Grass Pasture Kv= 7.0 fps
2.5	105	0.0100	0.70		Shallow Concentrated Flow, Wetland
					Short Grass Pasture Kv= 7.0 fps
	700	T - 4 - 1			ŀ

32.6 760 Total

Summary for Subcatchment PR-32: Overland (Offsite)

Runoff = 0.08 cfs @ 12.15 hrs, Volume= 0.007 af, Depth= 1.26"

 Area (sf)	CN	Description
1,717	80	>75% Grass cover, Good, HSG D
 1,021	77	Woods, Good, HSG D
2,738	79	Weighted Average
2,738		100.00% Pervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

 Type III 24-hr
 2-Year Rainfall=3.10"

 Printed
 7/10/2015

 C
 Page 12

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	10.0	48	0.1300	0.08		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	2	0.1300	0.16		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.3	35	0.1050	2.27		Shallow Concentrated Flow, Grass
_						Short Grass Pasture Kv= 7.0 fps
	10.5	85	Total			

Summary for Subcatchment PR-41: Overland

Runoff = 1.09 cfs @ 12.12 hrs, Volume= 0.085 af, Depth= 1.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

	A	rea (sf)	CN	Description		
*		1,149	96	gravel drive	•	
*		1,331	98	pavement		
*		14,404	80	grass		
*		16,357	77	woods		
		398	73	Brush, Goo	d, HSG D	
_		33,639	80	Weighted A	verage	
		32,308		96.04% Pei	•	
		1,331		3.96% Impe	ervious Area	а
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.1	10	0.0100	0.08		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.9	20	0.3300	0.37		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.8	9	0.0770	0.18		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	3.8	11	0.0770	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.8	55	0.0500) 1.12		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	8.4	105	Total			

Summary for Subcatchment PR-51: Overland

Runoff = 0.99 cfs @ 12.23 hrs, Volume= 0.098 af, Depth= 1.20"

 Type III 24-hr
 2-Year Rainfall=3.10"

 Printed
 7/10/2015

 C
 Page 13

Prepared by {enter your co	ompany name here}
HydroCAD® 10.00 s/n 01038	© 2013 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Description		
*		136	98	roof		
*		1,200	89	dirt drive		
*		4,534	80	grass		
*		36,872	77	woods		
		42,742	78	Weighted A	verage	
		42,606		99.68% Pei	vious Area	
		136		0.32% Impe	ervious Area	а
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	10	0.0350	0.13		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	8.9	40	0.1200	0.07		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods
	. –					Woodland Kv= 5.0 fps
	4.7	180	0.0160	0.63		Shallow Concentrated Flow, Woods
	~ ~	00	0.0400	4.07		Woodland Kv= 5.0 fps
	0.6	39	0.0460	1.07		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps

16.1 335 Total

Summary for Subcatchment PR-61: Overland

Runoff	=	1.16 cfs @	12.38 hrs,	Volume=	0.141 af, Depth= 1.20"
--------	---	------------	------------	---------	------------------------

_	A	rea (sf)	CN	Description		
*		24,517	80	grass		
*		36,854	77	woods		
		61,371	78	Weighted A		
	61,371 100.00% Pervious Area					a
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
	9.7	462	0.0250	0.79		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	26.2	512	Total			

Summary for Subcatchment PR-62: Housing

Runoff = 1.76 cfs @ 12.16 hrs, Volume= 0.154 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN D	escription								
	21,132	98 U	nconnecte	ed roofs, H	SG D						
	17,766	80 >									
	38,898	90 V	/eighted A	verage							
	17,766	-		vious Area							
	21,132			pervious Ar							
	21,132	1	00.00% Ui	nconnected	1						
То	Longth	Slong	Volocity	Capacity	Description						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
4.0	<u>(1001)</u> 50	0.0500	0.21	(00)	Sheet Flow, Sheet Flow						
ч.0	50	0.0000	0.21		Grass: Short $n = 0.150$ P2= 3.10"						
0.2	15	0.0500	1.57		Shallow Concentrated Flow, grass						
•					Short Grass Pasture Kv= 7.0 fps						
0.1	18	0.3333	4.04		Shallow Concentrated Flow, grass						
					Short Grass Pasture Kv= 7.0 fps						
3.6	185	0.0150	0.86		Shallow Concentrated Flow, grass						
					Short Grass Pasture Kv= 7.0 fps						
4.3	400	0.0050	1.54	0.13							
					4.0" Round Area= 0.1 sf Perim= 1.0' r= 0.08'						
					n= 0.013 Corrugated PE, smooth interior						
12.2	668	Total									

Summary for Subcatchment PR-71: Overland

Runoff = 2.05 cfs @ 12.30 hrs, Volume= 0.224 af, Depth= 1.26"

	Area (sf)	CN	Description
*	52,577	77	woods
	35,443	80	>75% Grass cover, Good, HSG D
	4,953	98	Paved parking, HSG D
	92,973	79	Weighted Average
	88,020		94.67% Pervious Area
	4,953		5.33% Impervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.2	50	0.0700	0.06		Sheet Flow, Sheet Flow
0.1	5	0.0700	1.32		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
0.3	24	0.0400	1.40		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
1.3	84	0.0240	1.08		Shallow Concentrated Flow, Sheet Flow
					Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0380	1.36		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
3.0	115	0.0086	0.65		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.4	31	0.0320	1.25		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.3	45	0.1110	2.33		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.2	21	0.1190	1.72		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps

20.7 503 Total

1.3

76 0.0390

Summary for Subcatchment PR-72: Overland (Offsite)

Shallow Concentrated Flow, Woods

Woodland Kv= 5.0 fps

Runoff = 0.33 cfs @ 12.29 hrs, Volume= 0.035 af, Depth= 1.26"

0.99

	Area (sf)	CN	Description
*	606	98	pavement
*	3,197	80	grass
*	10,761	77	woods
	14,564	79	Weighted Average
	13,958		95.84% Pervious Area
	606		4.16% Impervious Area

(min) 14.1

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

1
•

1.0	105	0.0040	4.00	Challow Concentrated Flow Weede
1.6	125	0.0640	1.26	Shallow Concentrated Flow, Woods
				Woodland Kv= 5.0 fps
0.5	23	0.0100	0.70	Shallow Concentrated Flow, Grass
0.0	_0	0.0100	0.1 0	
				Short Grass Pasture Kv= 7.0 fps
0.3	40	0.0150	2.49	Shallow Concentrated Flow, Pavement
				Paved Kv= 20.3 fps
0.0	00	0 0000	4.07	
0.3	23	0.0330	1.27	Shallow Concentrated Flow, Grass
				Short Grass Pasture Kv= 7.0 fps
17	100	0.0400	1 00	
1.7	102	0.0400	1.00	Shallow Concentrated Flow, Woods
				Woodland Kv= 5.0 fps

19.8 489 Total

Summary for Subcatchment PR-73: Overland (Offsite)

Runoff 0.04 cfs @ 12.23 hrs, Volume= =

0.004 af, Depth= 1.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

_	Α	rea (sf)	CN	Description				
*		1,620	77	woods				
		1,620		100.00% P	ervious Are	а		
	Тс	Length	Slope	,		Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	15.4	25	0.012	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush	n= 0.800	P2= 3.10"

Summary for Pond P11: Gravel Wetland #3

Inflow Area =	10.976 ac, 45.02% Impervious, Inflow	Depth = 1.90" for 2-Year event
Inflow =	23.79 cfs @ 12.10 hrs, Volume=	1.741 af
Outflow =	2.84 cfs @ 12.82 hrs, Volume=	1.535 af, Atten= 88%, Lag= 43.1 min
Primary =	2.84 cfs @ 12.82 hrs, Volume=	1.535 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 313.34' @ 12.82 hrs Surf.Area= 30,345 sf Storage= 37,952 cf

Plug-Flow detention time= 202.2 min calculated for 1.534 af (88% of inflow) Center-of-Mass det. time= 147.5 min (964.7 - 817.2)

 Type III 24-hr
 2-Year Rainfall=3.10"

 Printed
 7/10/2015

 C
 Page 17

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	_C

Volume	Inver	rt Avail.Sto	rage Storage	Description	
#1	309.00)' 126,29	95 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	nn S	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
309.0		1,785	0	0	
310.0		2,773	2,279	2,279	
311.0	00	3,931	3,352	5,631	
312.0	00	5,345	4,638	10,269	
313.0		29,625	17,485	27,754	
314.0		31,741	30,683	58,437	
315.0		33,915	32,828	91,265	
316.0)0	36,144	35,030	126,295	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	309.00'	12.0" Roun	d Culvert	
			L= 56.6' RC	P, mitered to cor	nform to fill, Ke= 0.700
			Inlet / Outlet	Invert= 309.00' /	308.40' S= 0.0106 '/' Cc= 0.900
					ght & clean, Flow Area= 0.79 sf
#2	Device 1	309.00'		rifice/Grate C=	
#3	Device 1	311.75'		Drifice/Grate C=	
#4	Device 2	313.00'		d Culvert X 0.00	
					onforming to fill, Ke= 0.500
					312.80' S= 0.0100 '/' Cc= 0.900
<i>щ</i> г					ght & clean, Flow Area= 0.79 sf
#5	Primary	315.50'			ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				.50 4.00 4.50 5	
					70 2.69 2.68 2.68 2.66 2.64 2.64
				.65 2.66 2.66 2	
			2.01 2.00 2.	2.00 2.00 2	
Primary	OutFlow	Max=2.84 cfs (@ 12.82 hrs H	W=313.34' (Fre	e Discharge)
		ses 2.84 cfs of			
				cfs potential flow)
		t (Controls 0.0			
		ate (Orifice Co			
∋=Br	oad-Crest	ed Rectangula	ar weir (Contro	DIS U.UU CTS)	

Summary for Pond P13: Gravel Wetland #1

Inflow Area =	3.545 ac, 44.45% Impervious, Inflow Depth = 1.91" for 2-Year event
Inflow =	6.02 cfs @ 12.20 hrs, Volume= 0.563 af
Outflow =	1.75 cfs @ 12.66 hrs, Volume= 0.498 af, Atten= 71%, Lag= 27.4 min
Primary =	1.75 cfs @ 12.66 hrs, Volume= 0.498 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 318.27' @ 12.66 hrs Surf.Area= 7,608 sf Storage= 10,238 cf

Plug-Flow detention time= 136.5 min calculated for 0.498 af (88% of inflow) Center-of-Mass det. time= 82.1 min (906.6 - 824.5)

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/10/2015 C Page 18

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	_C

Volume	Invert	Avail.Sto	orage Storage	Description		
#1	315.00'	25,3	84 cf Custon	n Stage Data (Pris	matic)Listed below (Recalc)	
Elevatio	on Si	urf.Area	Inc.Store	Cum.Store		
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)		
315.0	,	732	0	0		
316.0		1,538	1,135	1,135		
317.0		2,713	2,126	3,261		
318.0	00	7,244	4,979	8,239		
319.0	00	8,596	7,920	16,159		
320.0	00	9,854	9,225	25,384		
Device	Routing	Invert	Outlet Device			
<u>Device</u> #1	Primary	315.00'	12.0" Round			
#1	Filliary	515.00		P, groove end proje	ecting Ke= 0.200	
					4.80' S= 0.0100 '/' Cc= 0.900	
					t & clean, Flow Area= 0.79 sf	
#2	Device 1	316.00'		ifice/Grate C= 0.6		
#3 Device 1 316.85		8.0" Vert. Or	ifice/Grate C= 0.6	600		
#4	Device 2	318.00'	12.0" Round	d Culvert X 0.00		
			L= 10.0' RC	P, end-section con	forming to fill, Ke= 0.500	
					7.90' S= 0.0100 '/' Cc= 0.900	
					t & clean, Flow Area= 0.79 sf	
#5	Primary	319.00'			-Crested Rectangular Weir	
					30 1.00 1.20 1.40 1.60 1.80 2.00	
				50 4.00 4.50 5.00		
				n) 2.38 2.54 2.69 73 2.76 2.79 2.88	2.68 2.67 2.67 2.65 2.66 2.66	
			2.00 2.12 2.	13 2.10 2.19 2.80	5.07 5.32	
Primary	∕ OutFlow M	lax=1.75 cfs	@ 12.66 hrs H	W=318.27' (Free	Discharge)	
			f 7.71 cfs poten			
				cfs potential flow)		
🕇	4=Culvert (Controls 0.00 cfs)					

└──4=Culvert (Controls 0.00 cfs)

-3=Orifice/Grate (Orifice Controls 1.75 cfs @ 5.02 fps)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P21: Gravel Wetland #2

Inflow Area =	3.645 ac, 57.34% Impervious, Inflow Depth = 2.08" for 2-Year event
Inflow =	8.37 cfs @ 12.10 hrs, Volume= 0.631 af
Outflow =	0.79 cfs @ 13.06 hrs, Volume= 0.437 af, Atten= 91%, Lag= 57.1 min
Primary =	0.79 cfs @ 13.06 hrs, Volume= 0.437 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 303.49' @ 13.06 hrs Surf.Area= 8,814 sf Storage= 15,705 cf

Plug-Flow detention time= 302.6 min calculated for 0.437 af (69% of inflow) Center-of-Mass det. time= 208.5 min (1,017.9 - 809.4)

 Type III 24-hr
 2-Year Rainfall=3.10"

 Printed
 7/10/2015

 C
 Page 19

Prepared by {enter your company name here}
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Volume	Inve	rt Avail.Sto	rage Storage	Description			
#1	299.0	0' 41,84	14 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)		
Elevatio	n	Surf.Area	Inc.Store	Cum.Store			
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)			
299.0		714	0				
300.0	00	1,434	1,074	1,074			
301.0		2,271	1,853	2,927			
302.0		3,362	2,817	5,743			
303.0		8,208	5,785	11,528			
304.0		9,442	8,825	20,353			
305.0		10,731	10,087	30,440			
306.0	00	12,077	11,404	41,844			
Device	Routing	Invert	Outlet Device	es			
#1	Primary	299.00'	12.0" Round	d Culvert			
	,		L= 28.0' RC	P, groove end pi	rojecting, Ke= 0.200		
			Inlet / Outlet	Invert= 299.00' /	298.70' S= 0.0107 '/' Cc= 0.900		
			n= 0.011 Co	ncrete pipe, strai	ight & clean, Flow Area= 0.79 sf		
#2	Device 1	299.00'		ifice/Grate C=			
	#3 Device 1 302.55'			ifice/Grate C=	0.600		
#4	Device 2	305.00'	12.0" Round				
					form to fill, Ke= 0.700		
					304.90' S= 0.0167 '/' Cc= 0.900		
лг	Duine				ight & clean, Flow Area= 0.79 sf		
#5	Primary	306.00'			ad-Crested Rectangular Weir		
			· · · ·	50 4.00 4.50 5	0.80 1.00 1.20 1.40 1.60 1.80 2.00		
					70 2.69 2.68 2.68 2.66 2.64 2.64		
				65 2.66 2.66 2			
			2.04 2.05 2.	05 2.00 2.00 2	.00 2.70 2.74		
Primarv	OutFlow	Max=0.79 cfs @	⑦ 13.06 hrs H	W=303.49' (Fre	e Discharge)		
		sses 0.79 cfs of					
				cfs potential flow	/)		
€_		t (Controls 0.0		•	,		
└─3=		rate (Orifice Co		@ 4.00 fps)			
		ed Rectangula					

Summary for Pond P62: Detention Basin #1

Inflow Area	a =	0.893 ac, 54.33% Impervious, Inflow Depth = 2.08" for 2-Year event
Inflow	=	1.76 cfs @ 12.16 hrs, Volume= 0.154 af
Outflow	=	1.25 cfs @ 12.30 hrs, Volume= 0.154 af, Atten= 29%, Lag= 8.0 min
Primary	=	1.25 cfs @ 12.30 hrs, Volume= 0.154 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 332.59' @ 12.30 hrs Surf.Area= 2,265 sf Storage= 1,211 cf

Plug-Flow detention time= 40.1 min calculated for 0.154 af (100% of inflow) Center-of-Mass det. time= 40.3 min (854.2 - 813.9)

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/10/2015 C Page 20

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	C

Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	332.0	00' 8,8	90 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)	
Elevatio	et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
332.0		1,844	0	0	
333.0		2,559	2,202	2,202	
334.0 335.0		3,330	2,945	5,146	
335.0	0	4,158	3,744	8,890	
Device	Routing	Invert	Outlet Device	25	
#1	Primary	332.00'	12.0" Round	d Culvert	
			Inlet / Outlet I n= 0.011 Co	P, groove end projecting, Ke= 0.200 Invert= 332.00' / 331.75' S= 0.0100 '/' Cc= 0.900 ncrete pipe, straight & clean, Flow Area= 0.79 sf	
#2 Primary		334.50'		8.0' breadth Broad-Crested Rectangular Weir	
		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50			
				h) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.6	34
			· •	65 2.66 2.66 2.68 2.70 2.74	7
			2.0. 2.00 2.		

Primary OutFlow Max=1.25 cfs @ 12.30 hrs HW=332.59' (Free Discharge) -1=Culvert (Barrel Controls 1.25 cfs @ 3.74 fps) -2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Link DP-1: Wetland #1

Inflow Are	a =	20.667 ac, 31.8	80% Impervious, Inflow	Depth = 1.56"	for 2-Year event
Inflow	=	9.71 cfs @ 12	.41 hrs, Volume=	2.679 af	
Primary	=	9.71 cfs @ 12	.41 hrs, Volume=	2.679 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-2: Wetland #2

Inflow Area	a =	8.071 ac, 26.34% Impervious, Inflow Depth > 1.32" for 2-Year event	
Inflow	=	3.94 cfs @ 12.44 hrs, Volume= 0.888 af	
Primary	=	3.94 cfs @ 12.44 hrs, Volume= 0.888 af, Atten= 0%, Lag= 0.0 mir	n

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-3: Wetland #3

Inflow Area =	5.236 ac,	0.52% Impervious, Infl	ow Depth = 1.32"	for 2-Year event
Inflow =	4.33 cfs @	12.47 hrs, Volume=	0.578 af	
Primary =	4.33 cfs @	12.47 hrs, Volume=	0.578 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-4: Eliot Street

Inflow Area =	0.772 ac,	3.96% Impervious, Inflow	Depth = 1.33"	for 2-Year event
Inflow =	1.09 cfs @	12.12 hrs, Volume=	0.085 af	
Primary =	1.09 cfs @	12.12 hrs, Volume=	0.085 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-5: (Offsite Southeast)

Inflow Area =	0.981 ac,	0.32% Impervious, Inf	low Depth = 1.20 "	for 2-Year event
Inflow =	0.99 cfs @	12.23 hrs, Volume=	0.098 af	
Primary =	0.99 cfs @	12.23 hrs, Volume=	0.098 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-6: Prospect Heights

Inflow Area =	2.302 ac, 2	21.08% Impervious,	Inflow Depth = 1.	54" for 2-Year event
Inflow =	2.37 cfs @	12.34 hrs, Volume	= 0.295 af	
Primary =	2.37 cfs @	12.34 hrs, Volume	= 0.295 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-7: Chestnut Street

Inflow Area	a =	2.506 ac,	5.09% Impervious,	Inflow Depth = 1.2	26" for 2-Year event
Inflow	=	2.41 cfs @	12.30 hrs, Volume	e 0.263 af	
Primary	=	2.41 cfs @	12.30 hrs, Volume	e= 0.263 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-11: Housing	Runoff Area=475,007 sf 45.31% Impervious Runoff Depth=3.20" low Length=1,594' Tc=6.7 min CN=88 Runoff=39.19 cfs 2.904 af
SubcatchmentPR-12: Overland	Runoff Area=267,695 sf 0.89% Impervious Runoff Depth=2.38" Flow Length=701' Tc=26.3 min CN=79 Runoff=10.28 cfs 1.217 af
SubcatchmentPR-13: Housing	Runoff Area=154,430 sf 44.45% Impervious Runoff Depth=3.20" Flow Length=678' Tc=14.8 min CN=88 Runoff=9.96 cfs 0.944 af
SubcatchmentPR-14: Overland (Offsite) Flow Length=87	Runoff Area=3,104 sf 0.00% Impervious Runoff Depth=2.46" Slope=0.0520 '/' Tc=15.4 min CN=80 Runoff=0.15 cfs 0.015 af
SubcatchmentPR-21: Housing	Runoff Area=158,766 sf 57.34% Impervious Runoff Depth=3.40" Flow Length=556' Tc=7.4 min CN=90 Runoff=13.43 cfs 1.031 af
SubcatchmentPR-22: Overland (Offsite) Flow Length	Runoff Area=25,532 sf 5.37% Impervious Runoff Depth=2.38" a=348' Tc=20.1 min UI Adjusted CN=79 Runoff=1.10 cfs 0.116 af
SubcatchmentPR-23: Overland (Offsite)	Runoff Area=22,499 sf 0.88% Impervious Runoff Depth=2.46" Flow Length=455' Tc=7.7 min CN=80 Runoff=1.41 cfs 0.106 af
SubcatchmentPR-24: Overland	Runoff Area=144,766 sf 0.00% Impervious Runoff Depth=2.29" Flow Length=999' Tc=32.1 min CN=78 Runoff=4.89 cfs 0.635 af
SubcatchmentPR-31: Overland	Runoff Area=225,357 sf 0.52% Impervious Runoff Depth=2.46" Flow Length=760' Tc=32.6 min CN=80 Runoff=8.11 cfs 1.061 af
SubcatchmentPR-32: Overland (Offsite)	Runoff Area=2,738 sf 0.00% Impervious Runoff Depth=2.38" Flow Length=85' Tc=10.5 min CN=79 Runoff=0.15 cfs 0.012 af
SubcatchmentPR-41: Overland	Runoff Area=33,639 sf 3.96% Impervious Runoff Depth=2.46" Flow Length=105' Tc=8.4 min CN=80 Runoff=2.05 cfs 0.158 af
SubcatchmentPR-51: Overland	Runoff Area=42,742 sf 0.32% Impervious Runoff Depth=2.29" Flow Length=335' Tc=16.1 min CN=78 Runoff=1.94 cfs 0.187 af
SubcatchmentPR-61: Overland	Runoff Area=61,371 sf 0.00% Impervious Runoff Depth=2.29" Flow Length=512' Tc=26.2 min CN=78 Runoff=2.27 cfs 0.269 af
SubcatchmentPR-62: Housing	Runoff Area=38,898 sf 54.33% Impervious Runoff Depth=3.40" Flow Length=668' Tc=12.2 min CN=90 Runoff=2.83 cfs 0.253 af
SubcatchmentPR-71: Overland	Runoff Area=92,973 sf 5.33% Impervious Runoff Depth=2.38" Flow Length=503' Tc=20.7 min CN=79 Runoff=3.94 cfs 0.423 af
SubcatchmentPR-72: Overland (Offsite)	Runoff Area=14,564 sf 4.16% Impervious Runoff Depth=2.38" Flow Length=489' Tc=19.8 min CN=79 Runoff=0.63 cfs 0.066 af

Page 23

Prepared by {enter your company name	here}				
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC					
SubcatchmentPR-73: Overland (Offsite)	Runoff Area=1,620 sf 0.00% Impervious				
· · · · · ·	Slopo-0.0120 1/ To-15.4 min CN-77 Dun				

SubcatchmentPR-73: Overland (Offsite) Flow Length=25'	Runoff Area=1,620 sf 0.00% Impervious Runoff Depth=2.21" Slope=0.0120 '/' Tc=15.4 min CN=77 Runoff=0.07 cfs 0.007 af
Pond P11: Gravel Wetland #3	Peak Elev=314.24' Storage=66,095 cf Inflow=39.30 cfs 2.919 af Outflow=3.78 cfs 2.713 af
Pond P13: Gravel Wetland #1	Peak Elev=319.10' Storage=17,044 cf Inflow=9.96 cfs 0.944 af Outflow=2.95 cfs 0.878 af
Pond P21: Gravel Wetland #2	Peak Elev=304.58' Storage=26,044 cf Inflow=13.43 cfs 1.031 af Outflow=1.26 cfs 0.838 af
Pond P62: Detention Basin #1	Peak Elev=332.81' Storage=1,732 cf Inflow=2.83 cfs 0.253 af Outflow=2.08 cfs 0.253 af
Link DP-1: Wetland #1	Inflow=16.03 cfs 4.808 af Primary=16.03 cfs 4.808 af
Link DP-2: Wetland #2	Inflow=7.47 cfs 1.695 af Primary=7.47 cfs 1.695 af
Link DP-3: Wetland #3	Inflow=8.18 cfs 1.074 af Primary=8.18 cfs 1.074 af
Link DP-4: Eliot Street	Inflow=2.05 cfs 0.158 af Primary=2.05 cfs 0.158 af
Link DP-5: (Offsite Southeast)	Inflow=1.94 cfs 0.187 af Primary=1.94 cfs 0.187 af
Link DP-6: Prospect Heights	Inflow=4.28 cfs 0.522 af Primary=4.28 cfs 0.522 af
Link DP-7: Chestnut Street	Inflow=4.64 cfs 0.496 af Primary=4.64 cfs 0.496 af
Total Runoff Area = 40.53	5 ac Runoff Volume = 9.406 af Average Runoff Depth = 2.78

Total Runoff Area = 40.535 acRunoff Volume = 9.406 afAverage Runoff Depth = 2.78"76.88% Pervious = 31.164 ac23.12% Impervious = 9.371 ac

Summary for Subcatchment PR-11: Housing

Runoff = 39.19 cfs @ 12.10 hrs, Volume= 2.904 af, Depth= 3.20"

	Ar	ea (sf)	CN D	escription		
	1(05,642	98 P	Paved parking, HSG D)
	1(09,581 98 Unconnected roofs, HS			ed roofs, HS	SG D
	25	50,927				ood, HSG D
_		8,857			od, HSG D	
		75,007		Veighted A		
		59,784			vious Area	
		15,223			pervious Ar	ea
	1(09,581	5	0.92% Un	connected	
	То	Longth	Slope	Valaaity	Consoity	Description
		Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	(min)				(015)	Chaot Flow, Chaot Flow
	0.8	50	0.0170	1.10		Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 3.10"
	1.1	150	0.0133	2.34		Shallow Concentrated Flow, pavement
	1.1	150	0.0155	2.54		Paved Kv= 20.3 fps
	0.4	62	0.0161	2.58		Shallow Concentrated Flow, pavement
	0.4	02	0.0101	2.00		Paved Kv= 20.3 fps
	0.0	12	0.0085	4.94	3.88	
					0.00	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011 Concrete pipe, straight & clean
	0.3	60	0.0050	3.79	2.98	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.5	114	0.0053	3.90	3.07	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.5	120	0.0050	3.79	2.98	Pipe Channel, Pipe Flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
	10	220	0.0050	2 70	2.00	n= 0.011 Ding Channel ing flow
	1.0	228	0.0050	3.79	2.98	Pipe Channel, ipe flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.4	201	0.0266	8.74	6.87	Pipe Channel, pipe flow
	0.4	201	0.0200	0.74	0.07	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.4	234	0.0322	9.62	7.56	
	••••			0.01		12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.7	166	0.0051	3.83	3.01	Pipe Channel, pipe flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.4	87	0.0057	4.05	3.18	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'

Prepare	d by {en		company	name here	Type III 24-hr 10-Year Rainfall=4.50 e} Printed 7/10/2015 software Solutions LLC Page 25
n= 0.011 0.2		0.0090	8.07	25.36	Pipe Channel, pipe flow 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.011
6.7	1,594	Total			
		S	Summary	/ for Sub	catchment PR-12: Overland
Runoff	=	10.28 cfs	a @ 12.36	6 hrs, Volu	me= 1.217 af, Depth= 2.38"
Ar * * 1 * 2	rea (sf) 564 1,821 19,319 68,895 77,096 67,695 65,310	CN D 98 rc 98 pa 80 gr 77 w 77 w 79 W 99 95		oods verage vious Area	
Тс	2,385 Length	0. Slope	Velocity	rvious Area Capacity	Description
<u>(min)</u> 0.3	(feet) 6	(ft/ft) 0.3300	(ft/sec) 0.29	(cfs)	Sheet Flow, Sheet Flow
0.9	7	0.0450	0.14		Grass: Short n= 0.150 P2= 3.10" Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10"
12.4	37	0.0450	0.05		Sheet Flow, Sheet Flow
12.7	651	0.0290	0.85		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
26.3	701	Total			
		5	Summar	y for Sub	ocatchment PR-13: Housing
Runoff	=	9.96 cfs	@ 12.20) hrs, Volu	me= 0.944 af, Depth= 3.20"

Area (sf)	CN	Description		
27,749	49 98 Paved parking, HSG D			
40,892	98	Unconnected roofs, HSG D		
85,789	80	>75% Grass cover, Good, HSG D		
154,430	88	Weighted Average		
85,789		55.55% Pervious Area		
68,641		44.45% Impervious Area		
40,892		59.57% Unconnected		

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	4.1	50		0.20		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.2	16	0.0625	1.75		Shallow Concentrated Flow, grass
						Short Grass Pasture Kv= 7.0 fps
	0.0	6	0.3300	4.02		Shallow Concentrated Flow, grass
						Short Grass Pasture Kv= 7.0 fps
	2.3	123	0.0160	0.89		Shallow Concentrated Flow, grass
						Short Grass Pasture Kv= 7.0 fps
	0.6	52	0.0400	1.40		Shallow Concentrated Flow, grass
		_				Short Grass Pasture Kv= 7.0 fps
	0.1	8	0.1250	2.47		Shallow Concentrated Flow, grass
		400		.		Short Grass Pasture Kv= 7.0 fps
	6.5	192	0.0050	0.49		Shallow Concentrated Flow, grass
	0.0	F 4	0.0050	4 5 4	0.40	Short Grass Pasture Kv= 7.0 fps
	0.6	54	0.0050	1.54	0.13	
						4.0" Round Area= 0.1 sf Perim= 1.0' r= 0.08'
	0.0	105	0.0400	7 04	0.07	n= 0.013 Corrugated PE, smooth interior
	0.2	105	0.0138	7.31	8.97	Pipe Channel, pipe flow
						15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
	0.2	72	0.0152	7.67	0.41	n= 0.011 Pine Channel, nine flow
	0.2	12	0.0152	1.07	9.41	Pipe Channel, pipe flow 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.011
_	44.0	070	T - 4 - 1			

14.8 678 Total

Summary for Subcatchment PR-14: Overland (Offsite)

Runoff = 0.15 cfs @ 12.21 hrs, Volume= 0.015 af, Depth= 2.46"

_	A	rea (sf)	CN E	Description		
*		3,104	80 v	voods		
		3,104	1	00.00% P	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	14.9	50	0.0520	0.06	(0.0)	Sheet Flow, Sheet Flow
	0.5	37	0.0520	1.14		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
_	15.4	87	Total			

Summary for Subcatchment PR-21: Housing

Runoff = 13.43 cfs @ 12.10 hrs, Volume= 1.031 af, Depth= 3.40"

A	rea (sf)	CN D	escription		
	51,916			ed roofs, HS	
	39,125			ing, HSG D	
-	67,725				ood, HSG D
	58,766		Veighted A		
	67,725			rvious Area	
	91,041			pervious Ar	ea
	51,916	5	7.02% UN	connected	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
4.0	50	0.0500	0.21	(0.0)	Sheet Flow, Sheet Flow
		0.0000	0.2.		Grass: Short n= 0.150 P2= 3.10"
0.4	46	0.0650	1.78		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.1	16	0.3333	4.04		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
1.3	75	0.0200	0.99		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.1	25	0.0200	2.87		Shallow Concentrated Flow, pavement
0.1	12	0.0050	3.79	2.00	Paved Kv= 20.3 fps
0.1	12	0.0050	3.79	2.98	Pipe Channel, pipe flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.1	33	0.0050	3.79	2.98	Pipe Channel, pipe flow
0.1	00	0.0000	0.10	2.00	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.7	168	0.0050	3.79	2.98	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.4	91	0.0051	3.83	3.01	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
0.0	40	0.0050	0.70	0.00	n= 0.011 Ding Channel ming flow
0.2	40	0.0050	3.79	2.98	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.011
	EEG	Total			
7.4	556	Total			

Summary for Subcatchment PR-22: Overland (Offsite)

Runoff = 1.10 cfs @ 12.28 hrs, Volume= 0.116 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	A	rea (sf)	CN A	Adj Desc	ription	
		1,040	98	Unco	onnected ro	oofs, HSG D
		331	98	Unco	onnected pa	avement, HSG D
		12,989	80	>75%	6 Grass co	ver, Good, HSG D
_		11,172	77	Woo	ds, Good, I	HSG D
		25,532	80	79 Weig	hted Avera	age, UI Adjusted
		24,161		94.6	3% Perviou	is Area
		1,371		5.37	% Impervio	ous Area
		1,371		100.	00% Uncor	nnected
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	19	0.1000	1.58		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	1.6	135	0.0430	1.45		Shallow Concentrated Flow, Woods
						Short Grass Pasture Kv= 7.0 fps
	0.4	59	0.1520	2.73		Shallow Concentrated Flow, Woods
						Short Grass Pasture Kv= 7.0 fps
	1.4	85	0.0410	1.01		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps
	20.1	3/18	Total			

20.1 348 Total

Summary for Subcatchment PR-23: Overland (Offsite)

Runoff = 1.41 cfs @ 12.11 hrs, Volume= 0.106 af, Depth= 2.46"

	Area (sf)	CN	Description
*	198	98	roof
*	21,719	80	grass
*	582	77	woods
	22,499	80	Weighted Average
	22,301		99.12% Pervious Area
	198		0.88% Impervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	3.7	50	0.0600	0.23		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	4.0	405	0.0580	1.69		Shallow Concentrated Flow, Woods
_						Short Grass Pasture Kv= 7.0 fps
	7.7	455	Total			

Summary for Subcatchment PR-24: Overland

Runoff = 4.89 cfs @ 12.45 hrs, Volume= 0.635 af, Depth= 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	A	rea (sf)	CN D	Description					
* *	82,856 77 27,039 77			 80 grass 77 woods 77 wetland - woods 78 Weighted Average 					
	1	44,766	1	00.00% Pe	ervious Are	a			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	0.6	11	0.3330	0.33		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10"			
	13.8	39	0.0385	0.05		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"			
	1.0	60	0.0417	1.02		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps			
	1.1	87	0.0747	1.37		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps			
	2.7	255	0.0500	1.57		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps			
	12.9	547	0.0200	0.71		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps			
	32.1	999	Total			·			

Summary for Subcatchment PR-31: Overland

Runoff = 8.11 cfs @ 12.46 hrs, Volume= 1.061 af, Depth= 2.46"

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 7/10/2015

 _C
 Page 30

Prepared by {enter your c	ompany name here}
HydroCAD® 10.00 s/n 01038	© 2013 HydroCAD Software Solutions LLC

Α	rea (sf)	CN D	escription		
	1,180	98 U	Inconnecte	ed roofs, HS	SG D
*	7,956	80 V	Vetland (G	rass, HSG	D)
1	90,213	80 >	75% Gras	s cover, Go	bod, HSG D
	24,006			od, HSG D	
	2,002	<u>73</u> B	rush, Goo	d, HSG D	
2	25,357	80 V	Veighted A	verage	
2	24,177	-		vious Area	
	1,180			ervious Area	
	1,180	1	00.00% Ui	nconnected	1
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
1.9	20	0.0500	0.18	(0.0)	Sheet Flow, Sheet Flow
			•••••		Grass: Short n= 0.150 P2= 3.10"
14.0	30	0.0220	0.04		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
1.4	62	0.0220	0.74		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.3	24	0.0910	1.51		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.8	100	0.1000	2.21		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.5	47	0.0420	1.43		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
1.3	83	0.0240	1.08		Shallow Concentrated Flow, Grass
0.4	004	0.0040	0.44		Short Grass Pasture Kv= 7.0 fps
8.4	224	0.0040	0.44		Shallow Concentrated Flow, Grass
4 5	6F	0.0100	0.70		Short Grass Pasture Kv= 7.0 fps
1.5	65	0.0100	0.70		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps
2.5	105	0.0100	0.70		Shallow Concentrated Flow, Wetland
2.0	105	0.0100	0.70		Short Grass Pasture Kv= 7.0 fps
		T - 4 - 1			

32.6 760 Total

Summary for Subcatchment PR-32: Overland (Offsite)

0.012 af, Depth= 2.38"

Runoff = 0.15 cfs @ 12.15 hrs, Volume=

Area (sf)	CN	Description
1,717	80	>75% Grass cover, Good, HSG D
1,021	77	Woods, Good, HSG D
2,738 2,738		Weighted Average 100.00% Pervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	10.0	48	0.1300	0.08		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	2	0.1300	0.16		Sheet Flow, Sheet Flow
	0.3	35	0.1050	2.27		Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, Grass
_						Short Grass Pasture Kv= 7.0 fps
	10.5	85	Total			

Summary for Subcatchment PR-41: Overland

Runoff = 2.05 cfs @ 12.12 hrs, Volume= 0.158 af, Depth= 2.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	A	vrea (sf)	CN I	Description		
*		1,149	96 g	gravel drive	•	
*		1,331	98	pavement		
*		14,404	80	grass		
*		16,357	77 \	woods		
		398	73 I	Brush, Goo	d, HSG D	
		33,639	80 \	Weighted A	verage	
		32,308	(96.04% Pei	vious Area	
		1,331	÷	3.96% Impe	ervious Area	а
		,		•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	
	2.1	10	0.0100	0.08		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.9	20	0.3300	0.37		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.8	9	0.0770	0.18		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	3.8	11	0.0770	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.8	55	0.0500	1.12		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	8.4	105	Total			

Summary for Subcatchment PR-51: Overland

Runoff = 1.94 cfs @ 12.22 hrs, Volume= 0.187 af, Depth= 2.29"

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 7/10/2015

 _C
 Page 32

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Description		
*		136	98	roof		
*		1,200	89	dirt drive		
*		4,534	80	grass		
*		36,872	77	woods		
		42,742	78	Weighted A	verage	
		42,606		99.68% Pe	rvious Area	
		136		0.32% Impe	ervious Area	a
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	10	0.0350	0.13		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	8.9	40	0.1200	0.07		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.6	66	0.1200) 1.73		Shallow Concentrated Flow, Woods
		100				Woodland Kv= 5.0 fps
	4.7	180	0.0160	0.63		Shallow Concentrated Flow, Woods
	0.0	00	0.0400	4.07		Woodland Kv= 5.0 fps
	0.6	39	0.0460	1.07		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps

16.1 335 Total

Summary for Subcatchment PR-61: Overland

Runoff = 2.27 cfs @ 12.37 hrs, Volume= 0.269 af, Depth= 2.29"

_	A	rea (sf)	CN	Description		
*		24,517	80	grass		
*		36,854	77	woods		
	61,371 78 Weighted Average				verage	
	61,371 100.00% Pervious Are				ervious Are	а
	-				o "	
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	9.7	462	0.0250	0.79		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
_	26.2	512	Total			

Summary for Subcatchment PR-62: Housing

Runoff = 2.83 cfs @ 12.16 hrs, Volume= 0.253 af, Depth= 3.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

A	rea (sf)	CN D	escription		
	21,132			ed roofs, H	
	17,766	80 >	75% Gras	s cover, Go	ood, HSG D
	38,898		/eighted A		
	17,766			vious Area	
	21,132			pervious Ar	
	21,132	1	00.00% Ui	nconnected	1
τ.	1	01	\/_l!	0	Description
Tc (min)	Length	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.0	50	0.0500	0.21		Sheet Flow, Sheet Flow
0.0	45	0 0500	4 57		Grass: Short n= 0.150 P2= 3.10"
0.2	15	0.0500	1.57		Shallow Concentrated Flow, grass
0.1	10	0 0000	4.04		Short Grass Pasture Kv= 7.0 fps
0.1	18	0.3333	4.04		Shallow Concentrated Flow, grass
3.6	185	0.0150	0.86		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, grass
5.0	105	0.0150	0.00		Short Grass Pasture Kv= 7.0 fps
4.3	400	0.0050	1.54	0.13	•
ч.0	400	0.0000	1.04	0.15	4.0" Round Area= 0.1 sf Perim= 1.0' r= 0.08'
					n= 0.013 Corrugated PE, smooth interior
12.2	668	Total			
12.2	000	rotar			

Summary for Subcatchment PR-71: Overland

Runoff = 3.94 cfs @ 12.29 hrs, Volume= 0.423 af, Depth= 2.38"

	Area (sf)	CN	Description
*	52,577	77	woods
	35,443	80	>75% Grass cover, Good, HSG D
	4,953	98	Paved parking, HSG D
	92,973	79	Weighted Average
	88,020		94.67% Pervious Area
	4,953		5.33% Impervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.2	50	0.0700	0.06		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
0.1	5	0.0700	1.32		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.3	24	0.0400	1.40		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
1.3	84	0.0240	1.08		Shallow Concentrated Flow, Sheet Flow
					Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0380	1.36		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
3.0	115	0.0086	0.65		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.4	31	0.0320	1.25		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.3	45	0.1110	2.33		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.2	21	0.1190	1.72		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.3	76	0.0390	0.99		Shallow Concentrated Flow, Woods

20.7 503 Total

Summary for Subcatchment PR-72: Overland (Offsite)

Woodland Kv= 5.0 fps

Runoff = 0.63 cfs @ 12.28 hrs, Volume= 0.066 af, Depth= 2.38"

	Area (sf)	CN	Description
*	606	98	pavement
*	3,197	80	grass
*	10,761	77	woods
	14,564	79	Weighted Average
	13,958		95.84% Pervious Area
	606		4.16% Impervious Area

23 0.0330

102 0.0400

0.3

0.3

1.7

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

1.27

1.00

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·
14.1	50	0.0600	0.06		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
0.7	55	0.0700	1.32		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.6	71	0.0700	1.85		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
1.6	125	0.0640	1.26		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.5	23	0.0100	0.70		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.2	40	0 0150	2 40		Shallow Concentrated Flow Bayement

Shallow Concentrated Flow, Grass

Shallow Concentrated Flow, Woods

Short Grass Pasture Kv= 7.0 fps

40 0.0150	2.49	Shallow Concentrated Flow, Pavement
		Paved Kv= 20.3 fps

		Woodland Kv= 5.0 fps
19.8	489	Total
		Summary for Subcatchment PR-73: Overland (Offsite)

Runoff 0.07 cfs @ 12.21 hrs, Volume= 0.007 af, Depth= 2.21" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	A	rea (sf)	CN	Description				
*		1,620	77	woods				
		1,620		100.00% P	ervious Are	а		
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description		
_	15.4		0.0120	/ \ /	(00)	Sheet Flow, Sheet Flow Woods: Dense underbrush	n= 0.800	P2= 3.10"

Summary for Pond P11: Gravel Wetland #3

Inflow Area =	10.976 ac, 45.02% Impervious, Inflow	Depth = 3.19" for 10-Year event
Inflow =	39.30 cfs @ 12.10 hrs, Volume=	2.919 af
Outflow =	3.78 cfs @ 12.99 hrs, Volume=	2.713 af, Atten= 90%, Lag= 53.4 min
Primary =	3.78 cfs @ 12.99 hrs, Volume=	2.713 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 314.24' @ 12.99 hrs Surf.Area= 32,261 sf Storage= 66,095 cf

Plug-Flow detention time= 233.8 min calculated for 2.713 af (93% of inflow) Center-of-Mass det. time= 196.6 min (999.1 - 802.6)

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 7/10/2015

 C
 Page 36

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	_C

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	309.00)' 126,29	95 cf Custon	n Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation Surf.Area		Inc.Store	Cum.Store		
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
309.0		1,785	0	0	
310.0		2,773	2,279	2,279	
311.0		3,931	3,352	5,631	
312.0	00	5,345	4,638	10,269	
313.0	00	29,625	17,485	27,754	
314.0		31,741	30,683	58,437	
315.0		33,915	32,828	91,265	
316.0)0	36,144	35,030	126,295	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	309.00'	12.0" Round		
	,		L= 56.6' RC	P, mitered to cor	nform to fill, Ke= 0.700
			Inlet / Outlet	Invert= 309.00' /	308.40' S= 0.0106 '/' Cc= 0.900
			n= 0.011 Co	ncrete pipe, strai	ght & clean, Flow Area= 0.79 sf
#2	Device 1	309.00'		rifice/Grate C=	
#3	Device 1	311.75'		Drifice/Grate C=	
#4	Device 2	313.00'		d Culvert X 0.00	
					onforming to fill, Ke= 0.500
					312.80' S= 0.0100 '/' Cc= 0.900
					ght & clean, Flow Area= 0.79 sf
#5	Primary	315.50'			ad-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60 1.80 2.00
				50 4.00 4.50 5	
				65 2.66 2.66 2	70 2.69 2.68 2.68 2.66 2.64 2.64
			2.04 2.05 2.	05 2.00 2.00 2	.00 2.70 2.74
Primarv	OutFlow	Max=3.78 cfs @	@ 12.99 hrs H	W=314.24' (Fre	e Discharge)
		ses 3.78 cfs of			
				cfs potential flow)
		t (Controls 0.0		•	,
		ate (Orifice Co			
└──5=Br	oad-Crest	ed Rectangula	ar Weir (Contro	ols 0.00 cfs)	

Summary for Pond P13: Gravel Wetland #1

Inflow Area	a =	3.545 ac, 44.45% Impervious, Inflow Depth = 3.20" for 10-Year event
Inflow	=	9.96 cfs @ 12.20 hrs, Volume= 0.944 af
Outflow	=	2.95 cfs @ 12.64 hrs, Volume= 0.878 af, Atten= 70%, Lag= 26.6 min
Primary	=	2.95 cfs @ 12.64 hrs, Volume= 0.878 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 319.10' @ 12.64 hrs Surf.Area= 8,725 sf Storage= 17,044 cf

Plug-Flow detention time= 124.8 min calculated for 0.878 af (93% of inflow) Center-of-Mass det. time= 88.0 min (897.9 - 809.9)

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/10/2015 Page 37 2

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	LC

Volume	Inver	t Avail.Sto	rage Storage	e Description
#1	315.00)' 25,38	84 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)
315.0	00	732	0	0
316.0	00	1,538	1,135	1,135
317.0	00	2,713	2,126	3,261
318.0	00	7,244	4,979	8,239
319.0	00	8,596	7,920	16,159
320.0	00	9,854	9,225	25,384
Device	Routing	Invert	Outlet Devic	es
#1	Primary	315.00'	12.0" Roun	
	i minary	010.00		CP, groove end projecting, Ke= 0.200
				Invert= 315.00' / 314.80' S= 0.0100 '/' Cc= 0.900
				oncrete pipe, straight & clean, Flow Area= 0.79 sf
#2	Device 1	316.00'		rifice/Grate C= 0.600
#3	Device 1	316.85'	8.0" Vert. O	rifice/Grate C= 0.600
#4	Device 2	318.00'	12.0" Roun	nd Culvert X 0.00
			L= 10.0' R0	CP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet	Invert= 318.00' / 317.90' S= 0.0100 '/' Cc= 0.900
			n= 0.011 Co	oncrete pipe, straight & clean, Flow Area= 0.79 sf
#5	Primary	319.00'	8.0' long x	4.0' breadth Broad-Crested Rectangular Weir
			Head (feet)	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				3.50 4.00 4.50 5.00 5.50
				sh) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66
			2.68 2.72 2	2.73 2.76 2.79 2.88 3.07 3.32
Drimary		Max-2.05 ofe	@ 12.64 bre -	HW=319.10' (Free Discharge)
		ses 2.33 cfs of		
				cfs potential flow)
		: (Controls 0.0		
		ate (Orifice Co		s @ 6 67 fps)
				Controls 0.62 cfs @ 0.76 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 0.62 cfs @ 0.76 fps)

Summary for Pond P21: Gravel Wetland #2

Inflow Area =	3.645 ac, 57.34% Impervious, Inflow Depth = 3.40" for 10-Year event
Inflow =	13.43 cfs @ 12.10 hrs, Volume= 1.031 af
Outflow =	1.26 cfs @ 13.02 hrs, Volume= 0.838 af, Atten= 91%, Lag= 54.8 min
Primary =	1.26 cfs @ 13.02 hrs, Volume= 0.838 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 304.58' @ 13.02 hrs Surf.Area= 10,189 sf Storage= 26,044 cf

Plug-Flow detention time= 301.4 min calculated for 0.838 af (81% of inflow) Center-of-Mass det. time= 228.8 min (1,024.5 - 795.7)

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 7/10/2015

 _C
 Page 38

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	.С

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	299.0	0' 41,84	14 cf Custom	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	n	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
299.0		714	0	0	
300.0	00	1,434	1,074	1,074	
301.0		2,271	1,853	2,927	
302.0		3,362	2,817	5,743	
303.0		8,208	5,785	11,528	
304.0		9,442	8,825	20,353	
305.0		10,731	10,087	30,440	
306.0	00	12,077	11,404	41,844	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	299.00'	12.0" Round	d Culvert	
	,		L= 28.0' RC	P, groove end pr	ojecting, Ke= 0.200
					298.70' S= 0.0107 '/' Cc= 0.900
					ght & clean, Flow Area= 0.79 sf
#2	Device 1	299.00'		ifice/Grate C=	
#3	Device 1			ifice/Grate C=	0.600
#4	Device 2	305.00'	12.0" Round		
					form to fill, Ke= 0.700
					304.90' S= 0.0167 '/' Cc= 0.900
45		206.001			ght & clean, Flow Area= 0.79 sf
#5	Primary	306.00'			ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				50 4.00 4.50 5	
					70 2.69 2.68 2.68 2.66 2.64 2.64
				65 2.66 2.66 2	
			2.01 2.00 2.	00 2.00 2.00 2	
Primarv	OutFlow	Max=1.26 cfs @	2) 13.02 hrs H	W=304.58' (Fre	ee Discharge)
		sses 1.26 cfs of			3 ,
				cfs potential flow	')
		rt (Controls 0.0			
		rate (Orifice Co			
└──5=Br	oad-Crest	ted Rectangula	r Weir (Contro	ols 0.00 cfs)	
		_			

Summary for Pond P62: Detention Basin #1

Inflow Area	=	0.893 ac, 54.33% Impervious, Inflow Depth = 3.40" for 10-Year event	
Inflow =	=	2.83 cfs @ 12.16 hrs, Volume= 0.253 af	
Outflow =	=	2.08 cfs @ 12.28 hrs, Volume= 0.253 af, Atten= 27%, Lag= 7.2 r	min
Primary =	=	2.08 cfs @ 12.28 hrs, Volume= 0.253 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 332.81' @ 12.28 hrs Surf.Area= 2,424 sf Storage= 1,732 cf

Plug-Flow detention time= 32.8 min calculated for 0.253 af (100% of inflow) Center-of-Mass det. time= 33.0 min (833.1 - 800.1)

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 7/10/2015

 .C
 Page 39

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	<u>.</u> C

Volume	Inv	ert Avail.Sto	rage Storage	e Description	
#1	332.0	00' 8,8	90 cf Custon	n Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (fee 332.0 333.0 334.0	et) 00 00 00	Surf.Area (sq-ft) 1,844 2,559 3,330	Inc.Store (cubic-feet) 0 2,202 2,945 2,744	Cum.Store (cubic-feet) 0 2,202 5,146	
335.0	00	4,158	3,744	8,890	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	332.00'	Inlet / Outlet	d Culvert CP, groove end projecting, Ke= 0.200 Invert= 332.00' / 331.75' S= 0.0100 '/' Cc= 0.900 oncrete pipe, straight & clean, Flow Area= 0.79 sf	
#2	Primary	334.50'	Head (feet) (2.50 3.00 3. Coef. (Englis	B.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .50 4.00 4.50 5.00 5.50 5.00 5.20 5.68 2.68 2.66 2.64 2.64 .65 2.66 2.68 2.70 2.74	

Primary OutFlow Max=2.08 cfs @ 12.28 hrs HW=332.81' (Free Discharge) 1=Culvert (Barrel Controls 2.08 cfs @ 4.16 fps) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Link DP-1: Wetland #1

Inflow Are	a =	20.667 ac, 31.80% Impervious, Inflow Depth = 2.79" for 10-Year event	
Inflow	=	6.03 cfs @ 12.38 hrs, Volume= 4.808 af	
Primary	=	6.03 cfs @ 12.38 hrs, Volume= 4.808 af, Atten= 0%, Lag= 0.0 m	nin

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-2: Wetland #2

Inflow Are	ea =	8.071 ac, 26.34% Impervious, Inflow Depth > 2.52" for 10-Year event	
Inflow	=	7.47 cfs @ 12.41 hrs, Volume= 1.695 af	
Primary	=	7.47 cfs @ 12.41 hrs, Volume= 1.695 af, Atten= 0%, Lag= 0.0 min	۱

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-3: Wetland #3

Inflow Area	=	5.236 ac,	0.52% Impervious,	Inflow Depth = 2	2.46" for 10-Year event
Inflow	=	8.18 cfs @	12.46 hrs, Volume	e= 1.074 a	f
Primary	=	8.18 cfs @	12.46 hrs, Volume	e= 1.074 at	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-4: Eliot Street

Inflow Area	=	0.772 ac,	3.96% Impervious,	Inflow Depth = 2.4	6" for 10-Year event
Inflow =	=	2.05 cfs @	12.12 hrs, Volume	e= 0.158 af	
Primary =	=	2.05 cfs @	12.12 hrs, Volume	e= 0.158 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-5: (Offsite Southeast)

Inflow Area =	0.981 ac,	0.32% Impervious, In	nflow Depth = 2.29"	for 10-Year event
Inflow =	1.94 cfs @	12.22 hrs, Volume=	0.187 af	
Primary =	1.94 cfs @	12.22 hrs, Volume=	0.187 af, At	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-6: Prospect Heights

Inflow Area =	2.302 ac, 21.08% Impervious, Inflow	Depth = 2.72" for 10-Year event	
Inflow =	4.28 cfs @ 12.33 hrs, Volume=	0.522 af	
Primary =	4.28 cfs @ 12.33 hrs, Volume=	0.522 af, Atten= 0%, Lag= 0.0 min	۱

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-7: Chestnut Street

Inflow Area	a =	2.506 ac,	5.09% Impervious,	Inflow Depth = 2.3	37" for 10-Year event
Inflow	=	4.64 cfs @	12.28 hrs, Volume	= 0.496 af	
Primary	=	4.64 cfs @	12.28 hrs, Volume	= 0.496 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-11: Housing	Runoff Area=475,007 sf 45.31% Impervious Runoff Depth=3.95" low Length=1,594' Tc=6.7 min CN=88 Runoff=48.04 cfs 3.594 af
SubcatchmentPR-12: Overland	Runoff Area=267,695 sf 0.89% Impervious Runoff Depth=3.06" Flow Length=701' Tc=26.3 min CN=79 Runoff=13.26 cfs 1.568 af
SubcatchmentPR-13: Housing	Runoff Area=154,430 sf 44.45% Impervious Runoff Depth=3.95" Flow Length=678' Tc=14.8 min CN=88 Runoff=12.23 cfs 1.168 af
SubcatchmentPR-14: Overland (Offsite) Flow Length=87	
SubcatchmentPR-21: Housing	Runoff Area=158,766 sf 57.34% Impervious Runoff Depth=4.17" Flow Length=556' Tc=7.4 min CN=90 Runoff=16.31 cfs 1.265 af
SubcatchmentPR-22: Overland (Offsite) Flow Length	Runoff Area=25,532 sf 5.37% Impervious Runoff Depth=3.06" n=348' Tc=20.1 min UI Adjusted CN=79 Runoff=1.41 cfs 0.150 af
SubcatchmentPR-23: Overland (Offsite)	Runoff Area=22,499 sf 0.88% Impervious Runoff Depth=3.16" Flow Length=455' Tc=7.7 min CN=80 Runoff=1.80 cfs 0.136 af
SubcatchmentPR-24: Overland	Runoff Area=144,766 sf 0.00% Impervious Runoff Depth=2.97" Flow Length=999' Tc=32.1 min CN=78 Runoff=6.35 cfs 0.822 af
SubcatchmentPR-31: Overland	Runoff Area=225,357 sf 0.52% Impervious Runoff Depth=3.16" Flow Length=760' Tc=32.6 min CN=80 Runoff=10.40 cfs 1.361 af
SubcatchmentPR-32: Overland (Offsite)	Runoff Area=2,738 sf 0.00% Impervious Runoff Depth=3.06" Flow Length=85' Tc=10.5 min CN=79 Runoff=0.19 cfs 0.016 af
SubcatchmentPR-41: Overland	Runoff Area=33,639 sf 3.96% Impervious Runoff Depth=3.16" Flow Length=105' Tc=8.4 min CN=80 Runoff=2.63 cfs 0.203 af
SubcatchmentPR-51: Overland	Runoff Area=42,742 sf 0.32% Impervious Runoff Depth=2.97" Flow Length=335' Tc=16.1 min CN=78 Runoff=2.52 cfs 0.243 af
SubcatchmentPR-61: Overland	Runoff Area=61,371 sf 0.00% Impervious Runoff Depth=2.97" Flow Length=512' Tc=26.2 min CN=78 Runoff=2.95 cfs 0.348 af
SubcatchmentPR-62: Housing	Runoff Area=38,898 sf 54.33% Impervious Runoff Depth=4.17" Flow Length=668' Tc=12.2 min CN=90 Runoff=3.44 cfs 0.310 af
SubcatchmentPR-71: Overland	Runoff Area=92,973 sf 5.33% Impervious Runoff Depth=3.06" Flow Length=503' Tc=20.7 min CN=79 Runoff=5.09 cfs 0.545 af
SubcatchmentPR-72: Overland (Offsite)	Runoff Area=14,564 sf 4.16% Impervious Runoff Depth=3.06" Flow Length=489' Tc=19.8 min CN=79 Runoff=0.81 cfs 0.085 af

Ashland HydroCAD - PR Prepared by {enter your company name here}

Type III 24-hr 25-Year Rainfall=5.30" Printed 7/10/2015

Page 42

HydroCAD® 10.00	s/n 01038	© 2013 HydroCAD Software Solutions LLC

SubcatchmentPR-73: Overland (Offsite) Flow Length=25'	Runoff Area=1,620 sf 0.00% Impervious Runoff Depth=2.88" Slope=0.0120 '/' Tc=15.4 min CN=77 Runoff=0.09 cfs 0.009 af
Pond P11: Gravel Wetland #3	Peak Elev=314.74' Storage=82,672 cf Inflow=48.17 cfs 3.612 af Outflow=4.22 cfs 3.406 af
Pond P13: Gravel Wetland #1	Peak Elev=319.30' Storage=18,803 cf Inflow=12.23 cfs 1.168 af Outflow=5.70 cfs 1.103 af
Pond P21: Gravel Wetland #2	Peak Elev=305.15' Storage=32,105 cf Inflow=16.31 cfs 1.265 af Outflow=1.54 cfs 1.072 af
Pond P62: Detention Basin #1	Peak Elev=332.93' Storage=2,025 cf Inflow=3.44 cfs 0.310 af Outflow=2.54 cfs 0.310 af
Link DP-1: Wetland #1	Inflow=22.18 cfs 6.076 af Primary=22.18 cfs 6.076 af
Link DP-2: Wetland #2	Inflow=9.51 cfs 2.179 af Primary=9.51 cfs 2.179 af
Link DP-3: Wetland #3	Inflow=10.49 cfs 1.377 af Primary=10.49 cfs 1.377 af
Link DP-4: Eliot Street	Inflow=2.63 cfs 0.203 af Primary=2.63 cfs 0.203 af
Link DP-5: (Offsite Southeast)	Inflow=2.52 cfs 0.243 af Primary=2.52 cfs 0.243 af
Link DP-6: Prospect Heights	Inflow=5.40 cfs 0.658 af Primary=5.40 cfs 0.658 af
Link DP-7: Chestnut Street	Inflow=5.99 cfs 0.639 af Primary=5.99 cfs 0.639 af
Total Runoff Area = 40.535	ac Runoff Volume = 11.841 af Average Runoff Depth = 3.51

Fotal Runoff Area = 40.535 ac Runoff Volume = 11.841 af Average Runoff Depth = 3.51" 76.88% Pervious = 31.164 ac 23.12% Impervious = 9.371 ac

Summary for Subcatchment PR-11: Housing

Runoff = 48.04 cfs @ 12.09 hrs, Volume= 3.594 af, Depth= 3.95"

	Ar	ea (sf)	CN D	escription		
	1(05,642	98 P	aved park	ing, HSG D)
	1(09,581	98 L	Inconnecte	ed roofs, HS	SG D
	25	50,927				ood, HSG D
_		8,857			od, HSG D	
		75,007		Veighted A		
		59,784			vious Area	
		15,223			pervious Ar	ea
	1(09,581	5	0.92% Un	connected	
	То	Longth	Slope	Valaaity	Conocity	Description
		Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	(min)				(015)	Chaot Flow, Chaot Flow
	0.8	50	0.0170	1.10		Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 3.10"
	1.1	150	0.0133	2.34		Shallow Concentrated Flow, pavement
	1.1	150	0.0155	2.54		Paved Kv= 20.3 fps
	0.4	62	0.0161	2.58		Shallow Concentrated Flow, pavement
	0.4	02	0.0101	2.00		Paved Kv= 20.3 fps
	0.0	12	0.0085	4.94	3.88	
					0.00	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011 Concrete pipe, straight & clean
	0.3	60	0.0050	3.79	2.98	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.5	114	0.0053	3.90	3.07	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.5	120	0.0050	3.79	2.98	Pipe Channel, Pipe Flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
	10	220	0.0050	2 70	2.00	n= 0.011 Ding Channel ing flow
	1.0	228	0.0050	3.79	2.98	Pipe Channel, ipe flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.4	201	0.0266	8.74	6.87	Pipe Channel, pipe flow
	0.4	201	0.0200	0.74	0.07	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.4	234	0.0322	9.62	7.56	
	••••			0.01		12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.7	166	0.0051	3.83	3.01	Pipe Channel, pipe flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.4	87	0.0057	4.05	3.18	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'

Prepare		ter your	company	Type III 24-hr 25-Year Rainfall=5.30"e}Printed 7/10/2015coftware Solutions LLCPage 44	
n= 0.01 0.2		0.0090	8.07	25.36	Pipe Channel, pipe flow 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.011
6.7	1,594	Total			
		:	Summar	y for Sub	catchment PR-12: Overland
Runoff	=	13.26 cf	s @ 12.3	6 hrs, Volu	me= 1.568 af, Depth= 3.06"
			hod, UH=S infall=5.30		nted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
	vrea (sf)		Description		
*	564		oof		
	1,821 119,319	•	avement		
*	68,895		jrass voods		
*	77,096		vetland - w	oods	
	267,695	79 V	Veighted A	verage	
2	265,310	ç	9.11% Pei	vious Area	
	2,385	C).89% Impe	ervious Area	а
Та	Longth	Clana	Volocity	Constitu	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.3	6	0.3300	0.29	(00)	Sheet Flow, Sheet Flow
0.0	Ŭ	0.0000	0.20		Grass: Short $n = 0.150$ P2= 3.10"
0.9	7	0.0450	0.14		Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.10"
12.4	37	0.0450	0.05		Sheet Flow, Sheet Flow
12.7	651	0.0290	0.85		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
26.3	701	Total			
– "			Summar	y for Sub	ocatchment PR-13: Housing

Runoff = 12.23 cfs @ 12.19 hrs, Volume= 1.168 af, Depth= 3.95"

Area (sf)	CN	Description
27,749	98	Paved parking, HSG D
40,892	98	Unconnected roofs, HSG D
85,789	80	>75% Grass cover, Good, HSG D
154,430	88	Weighted Average
85,789		55.55% Pervious Area
68,641		44.45% Impervious Area
40,892		59.57% Unconnected

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.1	<u>(1001)</u> 50	0.0466	0.20	(00)	Sheet Flow, Sheet Flow
			•-=•		Grass: Short n= 0.150 P2= 3.10"
0.2	16	0.0625	1.75		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.0	6	0.3300	4.02		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
2.3	123	0.0160	0.89		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0400	1.40		Shallow Concentrated Flow, grass
- ·	-		- ·		Short Grass Pasture Kv= 7.0 fps
0.1	8	0.1250	2.47		Shallow Concentrated Flow, grass
	400		• • •		Short Grass Pasture Kv= 7.0 fps
6.5	192	0.0050	0.49		Shallow Concentrated Flow, grass
0.0	F 4	0.0050	4 5 4	0.40	Short Grass Pasture Kv= 7.0 fps
0.6	54	0.0050	1.54	0.13	
					4.0" Round Area= 0.1 sf Perim= 1.0' r= 0.08'
0.2	105	0.0120	7.31	9.07	n= 0.013 Corrugated PE, smooth interior
0.2	105	0.0138	1.51	8.97	Pipe Channel, pipe flow 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.011
0.2	72	0.0152	7.67	9.41	Pipe Channel, pipe flow
0.2	12	0.0102	1.07	3.41	15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.011
	070	T - 4 - 1			

14.8 678 Total

Summary for Subcatchment PR-14: Overland (Offsite)

Runoff = 0.20 cfs @ 12.21 hrs, Volume= 0.019 af, Depth= 3.16"

_	A	rea (sf)	CN E	Description		
*		3,104	80 v	voods		
		3,104	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	14.9	50	0.0520	0.06		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.5	37	0.0520	1.14		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	15.4	87	Total			

Summary for Subcatchment PR-21: Housing

Runoff = 16.31 cfs @ 12.10 hrs, Volume= 1.265 af, Depth= 4.17"

A	rea (sf)	CN D	escription		
	51,916			ed roofs, HS	
	39,125			ing, HSG D	
-	67,725				ood, HSG D
	58,766		Veighted A		
	67,725			rvious Area	
	91,041 51,916			pervious Ar	ea
	51,910	5	7.02 % OII	connecteu	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
4.0	50	0.0500	0.21		Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.10"
0.4	46	0.0650	1.78		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.1	16	0.3333	4.04		Shallow Concentrated Flow, grass
1.3	75	0.0200	0.99		Short Grass Pasture Kv= 7.0 fps
1.3	75	0.0200	0.99		Shallow Concentrated Flow, grass Short Grass Pasture Kv= 7.0 fps
0.1	25	0.0200	2.87		Shallow Concentrated Flow, pavement
0.1	20	0.0200	2.07		Paved Kv= 20.3 fps
0.1	12	0.0050	3.79	2.98	•
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.1	33	0.0050	3.79	2.98	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
0.7	400	0.0050	0.70	0.00	n= 0.011
0.7	168	0.0050	3.79	2.98	Pipe Channel, pipe flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.4	91	0.0051	3.83	3.01	
0.4	01	0.0001	0.00	0.01	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.2	40	0.0050	3.79	2.98	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
7.4	556	Total			

Summary for Subcatchment PR-22: Overland (Offsite)

Runoff = 1.41 cfs @ 12.27 hrs, Volume= 0.150 af, Depth= 3.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

A	rea (sf)	CN A	Adj Desc	ription	
	1,040	98	Unco	nnected ro	oofs, HSG D
	331	98	Unco	nnected pa	avement, HSG D
	12,989	80	>75%	6 Grass co	ver, Good, HSG D
	11,172	77	Woo	ds, Good, I	HSG D
	25,532	80	79 Weig	hted Avera	age, UI Adjusted
	24,161		94.6	3% Perviou	is Area
	1,371		5.379	% Impervio	us Area
	1,371		100.0	00% Uncor	nnected
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
0.2	19	0.1000	1.58		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.6	135	0.0430	1.45		Shallow Concentrated Flow, Woods
					Short Grass Pasture Kv= 7.0 fps
0.4	59	0.1520	2.73		Shallow Concentrated Flow, Woods
					Short Grass Pasture Kv= 7.0 fps
1.4	85	0.0410	1.01		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
20.1	348	Total			

Summary for Subcatchment PR-23: Overland (Offsite)

Runoff = 1.80 cfs @ 12.11 hrs, Volume= 0.136 af, Depth= 3.16"

	Area (sf)	CN	Description
*	198	98	roof
*	21,719	80	grass
*	582	77	woods
	22,499	80	Weighted Average
	22,301		99.12% Pervious Area
	198		0.88% Impervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	3.7	50	0.0600	0.23		Sheet Flow, Sheet Flow	-
						Grass: Short n= 0.150 P2= 3.10"	
	4.0	405	0.0580	1.69		Shallow Concentrated Flow, Woods	
_						Short Grass Pasture Kv= 7.0 fps	_
	7.7	455	Total				-

Summary for Subcatchment PR-24: Overland

Runoff = 6.35 cfs @ 12.45 hrs, Volume= 0.822 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

	А	rea (sf)	CN D	Description		
*	* 34,871		 80 grass 77 woods 77 wetland - woods 78 Weighted Average 100.00% Pervious Area 		verage	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.6	11	0.3330	0.33		Sheet Flow, Sheet Flow Grass: Short n= 0.150 P2= 3.10"
	13.8	39	0.0385	0.05		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"
	1.0	60	0.0417	1.02		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	1.1	87	0.0747	1.37		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	2.7	255	0.0500	1.57		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps
	12.9	547	0.0200	0.71		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	32.1	999	Total			

Summary for Subcatchment PR-31: Overland

Runoff = 10.40 cfs @ 12.45 hrs, Volume= 1.361 af, Depth= 3.16"

 Type III 24-hr
 25-Year Rainfall=5.30"

 Printed
 7/10/2015

 _C
 Page 49

Prepared by {enter your c	company name here}
HydroCAD® 10.00 s/n 01038	© 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN D	escription					
	1,180 98 Unconnected roofs, HSG D							
*	7,956	80 W	/etland (G	rass, HSG	D)			
1	90,213	80 >	75% Gras	s cover, Go	ood, HSG D			
	24,006	77 V	/oods, Go	od, HSG D				
	2,002	73 B	rush, Goo	d, HSG D				
2	25,357	80 W	/eighted A	verage				
2	24,177	9	9.48% Per	vious Area				
	1,180			ervious Are				
	1,180	1	00.00% U	nconnected	1			
-				0				
Tc	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)				
1.9	20	0.0500	0.18		Sheet Flow, Sheet Flow			
44.0	20	0 0000	0.04		Grass: Short n= 0.150 P2= 3.10"			
14.0	30	0.0220	0.04		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"			
1.4	62	0.0220	0.74		Shallow Concentrated Flow, Woods			
1.4	02	0.0220	0.74		Woodland Kv= 5.0 fps			
0.3	24	0.0910	1.51		Shallow Concentrated Flow, Woods			
0.0	21	0.0010	1.01		Woodland Kv= 5.0 fps			
0.8	100	0.1000	2.21		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
0.5	47	0.0420	1.43		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
1.3	83	0.0240	1.08		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
8.4	224	0.0040	0.44		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
1.5	65	0.0100	0.70		Shallow Concentrated Flow, Grass			
• -	(a =				Short Grass Pasture Kv= 7.0 fps			
2.5	105	0.0100	0.70		Shallow Concentrated Flow, Wetland			
					Short Grass Pasture Kv= 7.0 fps			

32.6 760 Total

Summary for Subcatchment PR-32: Overland (Offsite)

Runoff = 0.19 cfs @ 12.15 hrs, Volume=

0.016 af, Depth= 3.06"

 Area (sf)	CN	Description			
1,717	80	>75% Grass cover, Good, HSG D			
 1,021	77	Woods, Good, HSG D			
 2,738	79	Weighted Average			
2,738		100.00% Pervious Area			

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0	48	0.1300	0.08		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	2	0.1300	0.16		Sheet Flow, Sheet Flow
				o o -		Grass: Short n= 0.150 P2= 3.10"
	0.3	35	0.1050	2.27		Shallow Concentrated Flow, Grass
_						Short Grass Pasture Kv= 7.0 fps
	10.5	85	Total			

Summary for Subcatchment PR-41: Overland

2.63 cfs @ 12.12 hrs, Volume= 0.203 af, Depth= 3.16" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

	Α	vrea (sf)	CN	Description		
*		1,149	96	gravel drive	;	
*		1,331	98	pavement		
*		14,404	80	grass		
*		16,357	77	woods		
		398	73	Brush, Goo	d, HSG D	
		33,639	80	Weighted A	verage	
		32,308		96.04% Pe	rvious Area	
		1,331		3.96% Impe	ervious Are	а
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.1	10	0.0100	0.08		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.9	20	0.3300	0.37		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.8	9	0.0770	0.18		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	3.8	11	0.0770	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.8	55	0.0500	1.12		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	8.4	105	Total			

Summary for Subcatchment PR-51: Overland

Runoff = 2.52 cfs @ 12.22 hrs, Volume= 0.243 af, Depth=	= 2.97"	
---	---------	--

 Type III 24-hr
 25-Year Rainfall=5.30"

 Printed
 7/10/2015

 .C
 Page 51

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Description		
*		136	98	roof		
*		1,200	89	dirt drive		
*		4,534	80	grass		
*		36,872	77	woods		
		42,742	78	Weighted A	verage	
		42,606		99.68% Pe	rvious Area	
		136		0.32% Impe	ervious Area	a
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	10	0.0350	0.13		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	8.9	40	0.1200	0.07		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.6	66	0.1200) 1.73		Shallow Concentrated Flow, Woods
		100				Woodland Kv= 5.0 fps
	4.7	180	0.0160	0.63		Shallow Concentrated Flow, Woods
	0.0	00	0.0400	4.07		Woodland Kv= 5.0 fps
	0.6	39	0.0460	1.07		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps

16.1 335 Total

Summary for Subcatchment PR-61: Overland

Runoff = 2.95 cfs @ 12.37 hrs, Volume= 0.348 af, Depth= 2.97"

_	A	rea (sf)	CN	Description		
*		24,517	80	grass		
*		36,854	77	woods		
61,371 78 Weighted Average					verage	
	61,371 100.00% Pervious Area					а
	Та	المربع مرالم	Clara	Valasitu	O a ma aite i	Description
	Tc (min)	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	9.7	462	0.0250	0.79		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
_	26.2	512	Total			

Summary for Subcatchment PR-62: Housing

Runoff = 3.44 cfs @ 12.16 hrs, Volume= 0.310 af, Depth= 4.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

A	rea (sf)	CN D	escription							
	21,132									
	17,766	80 >	80 >75% Grass cover, Good, HSG D							
	38,898	90 V	/eighted A	verage						
	17,766	4	5.67% Per	vious Area						
	21,132	5	4.33% Imp	ervious Ar	ea					
	21,132	1	00.00% Ui	nconnected	1					
т.	1	01	\/_l!t_	0	Description					
Tc (min)	Length	Slope	Velocity		Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
4.0	50	0.0500	0.21		Sheet Flow, Sheet Flow					
					Grass: Short n= 0.150 P2= 3.10"					
0.2	15	0.0500	1.57		Shallow Concentrated Flow, grass					
• •					Short Grass Pasture Kv= 7.0 fps					
0.1	18	0.3333	4.04		Shallow Concentrated Flow, grass					
	40-				Short Grass Pasture Kv= 7.0 fps					
3.6	185	0.0150	0.86		Shallow Concentrated Flow, grass					
					Short Grass Pasture Kv= 7.0 fps					
4.3	400	0.0050	1.54	0.13						
					4.0" Round Area= 0.1 sf Perim= 1.0' r= 0.08'					
					n= 0.013 Corrugated PE, smooth interior					
12.2	668	Total								

Summary for Subcatchment PR-71: Overland

Runoff = 5.09 cfs @ 12.28 hrs, Volume= 0.545 af, Depth= 3.06"

	Area (sf)	CN	Description
*	52,577	77	woods
	35,443	80	>75% Grass cover, Good, HSG D
	4,953	98	Paved parking, HSG D
	92,973	79	Weighted Average
	88,020		94.67% Pervious Area
	4,953		5.33% Impervious Area

_

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.2	50	0.0700	0.06		Sheet Flow, Sheet Flow
0.1	5	0.0700	1.32		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods
••••	·				Woodland Kv= 5.0 fps
0.3	24	0.0400	1.40		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
1.3	84	0.0240	1.08		Shallow Concentrated Flow, Sheet Flow
					Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0380	1.36		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
3.0	115	0.0086	0.65		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.4	31	0.0320	1.25		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.3	45	0.1110	2.33		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.2	21	0.1190	1.72		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.3	76	0.0390	0.99		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps

20.7 503 Total

Summary for Subcatchment PR-72: Overland (Offsite)

Runoff = 0.81 cfs @ 12.27 hrs, Volume= 0.085 af, Depth= 3.06"

	Area (sf)	CN	Description
*	606	98	pavement
*	3,197	80	grass
*	10,761	77	woods
	14,564	79	Weighted Average
	13,958		95.84% Pervious Area
	606		4.16% Impervious Area

23 0.0330

102 0.0400

Total

489

=

0.3

1.7

19.8

Runoff

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

1.27

1.00

0.09 cfs @ 12.21 hrs, Volume=

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.1	50	0.0600	0.06		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
0.7	55	0.0700	1.32		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.6	71	0.0700	1.85		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
1.6	125	0.0640	1.26		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.5	23	0.0100	0.70		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.3	40	0.0150	2.49		Shallow Concentrated Flow, Pavement
					Paved Kv= 20.3 fps

Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps

Shallow Concentrated Flow, Woods

0.009 af, Depth= 2.88"

Woodland Kv= 5.0 fps

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.30"

	A	rea (sf)	CN	Description				
*		1,620	77	woods				
		1,620		100.00% P	ervious Are	a		
	Тс	Length	Slope	e Velocity	Capacity	Description		
1)	min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	15.4	25	0.0120	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush	n= 0.800	P2= 3.10"

Summary for Subcatchment PR-73: Overland (Offsite)

Summary for Pond P11: Gravel Wetland #3

Inflow Area =	10.976 ac, 45.02% Impervious, Inflow	Depth = 3.95" for 25-Year event
Inflow =	48.17 cfs @ 12.09 hrs, Volume=	3.612 af
Outflow =	4.22 cfs @ 13.06 hrs, Volume=	3.406 af, Atten= 91%, Lag= 57.7 min
Primary =	4.22 cfs @ 13.06 hrs, Volume=	3.406 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 314.74' @ 13.06 hrs Surf.Area= 33,360 sf Storage= 82,672 cf

Plug-Flow detention time= 253.3 min calculated for 3.405 af (94% of inflow) Center-of-Mass det. time= 222.2 min (1,018.8 - 796.6)

 Type III 24-hr
 25-Year Rainfall=5.30"

 Printed
 7/10/2015

 C
 Page 55

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	C

Volume	Inve	rt Avail.Sto	rage Storage	Description			
#1	309.00)' 126,29	95 cf Custom	n Stage Data (Pi	rismatic)Listed below (Recalc)		
Elevatio	nn S	Surf.Area	Inc.Store	Cum.Store			
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)			
309.0)0	1,785	0	0			
310.0	00	2,773	2,279	2,279			
311.0		3,931	3,352	5,631			
312.0		5,345	4,638	10,269			
313.0		29,625	17,485	27,754			
314.0		31,741	30,683	58,437			
315.0		33,915	32,828	91,265			
316.0	00	36,144	35,030	126,295			
Device	Routing	Invert	Outlet Device	es			
#1	Primary	309.00'	12.0" Round	d Culvert			
	5		L= 56.6' RC	P, mitered to cor	nform to fill, Ke= 0.700		
			Inlet / Outlet I	Invert= 309.00' /	308.40' S= 0.0106 '/' Cc= 0.900		
					ight & clean, Flow Area= 0.79 sf		
#2	Device 1	309.00'	8.0" Vert. Orifice/Grate C= 0.600				
#3	Device 1	311.75'		Prifice/Grate C=			
#4	Device 2	313.00'		d Culvert X 0.00			
	L= 20.0' RCP, end-section conforming to fill, Ke= 0.500						
					312.80' S= 0.0100 '/' Cc= 0.900		
	D :				ight & clean, Flow Area= 0.79 sf		
#5	Primary	315.50'			ad-Crested Rectangular Weir		
				50 4.00 4.50 5	0.80 1.00 1.20 1.40 1.60 1.80 2.00		
					70 2.69 2.68 2.68 2.66 2.64 2.64		
				65 2.66 2.66 2			
			2.04 2.05 2.	05 2.00 2.00 2	.08 2.70 2.74		
Primarv	OutFlow	Max=4.22 cfs (@ 13.06 hrs H	W=314.74' (Fre	e Discharge)		
		ses 4.22 cfs of			ö ,		
	Orifice/Gr	ate (Passes 0.	00 cfs of 3.91	cfs potential flow	()		
		t (Controls 0.0		-			
		ate (Orifice Co					
└──5=Br	oad-Crest	ed Rectangula	ar Weir (Contro	ols 0.00 cfs)			

Summary for Pond P13: Gravel Wetland #1

Inflow Are	a =	3.545 ac, 44.45% Impervious, Inflow Depth = 3.95" for 25-Year event
Inflow	=	12.23 cfs @ 12.19 hrs, Volume= 1.168 af
Outflow	=	5.70 cfs @ 12.50 hrs, Volume= 1.103 af, Atten= 53%, Lag= 18.5 min
Primary	=	5.70 cfs @ 12.50 hrs, Volume= 1.103 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 319.30' @ 12.50 hrs Surf.Area= 8,975 sf Storage= 18,803 cf

Plug-Flow detention time= 112.1 min calculated for 1.102 af (94% of inflow) Center-of-Mass det. time= 81.4 min (885.4 - 804.0)

 Type III 24-hr
 25-Year Rainfall=5.30"

 Printed
 7/10/2015

 .C
 Page 56

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	LC

Volume	Invert	Avail.Sto	rage Storage	e Description		
#1	315.00'	25,38	34 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)		
Elevatio	on Si	urf.Area	Inc.Store	Cum.Store		
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)		
315.0		732	0	0		
316.0		1,538	1,135	1,135		
317.0	00	2,713	2,126	3,261		
318.0	00	7,244	4,979	8,239		
319.0	00	8,596	7,920	16,159		
320.0	00	9,854	9,225	25,384		
Device	Routing	Invert	Outlet Devic	es		
#1	Primary	315.00'	12.0" Roun	nd Culvert		
	- 5			CP, groove end projecting, Ke= 0.200		
				Invert= 315.00' / 314.80' S= 0.0100 '/' Cc= 0.900		
			n= 0.011 Co	oncrete pipe, straight & clean, Flow Area= 0.79 sf		
#2	Device 1	316.00'	6.0" Vert. O	rifice/Grate C= 0.600		
#3	Device 1	316.85'		rifice/Grate C= 0.600		
#4	Device 2	318.00'		id Culvert X 0.00		
				CP, end-section conforming to fill, Ke= 0.500		
				Invert= 318.00' / 317.90' S= 0.0100 '/' Cc= 0.900		
				oncrete pipe, straight & clean, Flow Area= 0.79 sf		
#5	Primary	319.00'		4.0' breadth Broad-Crested Rectangular Weir		
				0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00		
				8.50 4.00 4.50 5.00 5.50		
				sh) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66		
			2.68 2.72 2	2.73 2.76 2.79 2.88 3.07 3.32		
Driman		lax=5 60 cfc (@ 12.50 bre ⊢	HW=319.30' (Free Discharge)		
			9.18 cfs poter			
				cfs potential flow)		
		(Controls 0.0				

-3=Orifice/Grate (Orifice Controls 2.45 cfs @ 7.01 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 3.25 cfs @ 1.35 fps)

Summary for Pond P21: Gravel Wetland #2

Inflow Area =	3.645 ac, 57.34% Impervious, Inflow	v Depth = 4.17" for 25-Year event
Inflow =	16.31 cfs @ 12.10 hrs, Volume=	1.265 af
Outflow =	1.54 cfs @ 13.00 hrs, Volume=	1.072 af, Atten= 91%, Lag= 53.8 min
Primary =	1.54 cfs @ 13.00 hrs, Volume=	1.072 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 305.15' @ 13.00 hrs Surf.Area= 10,938 sf Storage= 32,105 cf

Plug-Flow detention time= 312.0 min calculated for 1.072 af (85% of inflow) Center-of-Mass det. time= 247.5 min (1,037.5 - 790.1)

 Type III 24-hr
 25-Year Rainfall=5.30"

 Printed
 7/10/2015

 C
 Page 57

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	.C

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	299.00	0' 41,84	14 cf Custom	ı Stage Data (Pı	rismatic)Listed below (Recalc)
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
299.0)0	714	0	0	
300.0	00	1,434	1,074	1,074	
301.0	00	2,271	1,853	2,927	
302.0		3,362	2,817	5,743	
303.0		8,208	5,785	11,528	
304.0		9,442	8,825	20,353	
305.0		10,731	10,087	30,440	
306.0	00	12,077	11,404	41,844	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	299.00'	12.0" Round	l Culvert	
	-		L= 28.0' RCI	P, groove end pr	rojecting, Ke= 0.200
			Inlet / Outlet I	nvert= 299.00' /	298.70' S= 0.0107 '/' Cc= 0.900
					ight & clean, Flow Area= 0.79 sf
#2	Device 1	299.00'		ifice/Grate C=	
#3	Device 1	302.55'		ifice/Grate C=	0.600
#4	Device 2	305.00'	12.0" Round		
L= 6.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 305.00' / 304.90' S= 0.0167 '/' Cc= 0.900					
#5	Drimon	306.00'			ght & clean, Flow Area= 0.79 sf
#5	Primary	300.00			ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				50 4.00 4.50 5	
					70 2.69 2.68 2.68 2.66 2.64 2.64
				65 2.66 2.66 2	
			2.04 2.00 2.0	00 2.00 2.00 Z	
Primary	OutFlow	Max=1.54 cfs (@ 13.00 hrs H\	W=305.15' (Fre	ee Discharge)
			10.88 cfs pote		
				cfs potential flow	')
			s 0.09 cfs @ 1.		
			ntrols 1.45 cfs		
└──5=Br	oad-Crest	ed Rectangula	r Weir (Contro	ols 0.00 cfs)	

Summary for Pond P62: Detention Basin #1

Inflow Area	a =	0.893 ac, 54.33% Impervious, Inflow Depth =	4.17" for 25-Year event
Inflow	=	3.44 cfs @ 12.16 hrs, Volume= 0.310 a	ıf
Outflow	=	2.54 cfs @ 12.28 hrs, Volume= 0.310 a	If, Atten= 26%, Lag= 7.1 min
Primary	=	2.54 cfs @ 12.28 hrs, Volume= 0.310 a	ıf

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 332.93' @ 12.28 hrs Surf.Area= 2,509 sf Storage= 2,025 cf

Plug-Flow detention time= 30.2 min calculated for 0.310 af (100% of inflow) Center-of-Mass det. time= 30.4 min (824.9 - 794.5)

Type III 24-hr 25-Year Rainfall=5.30" Printed 7/10/2015 Page 58

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions L	LC.

Volume	Inv	ert Avail.Sto	rage Storage	e Description	
#1	332.0	00' 8,8	90 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (fee 332.0 333.0 334.0 335.0	et) 00 00 00	Surf.Area (sq-ft) 1,844 2,559 3,330 4,158	Inc.Store (cubic-feet) 0 2,202 2,945 3,744	Cum.Store (cubic-feet) 0 2,202 5,146 8,890	
Device	Routing	Invert	Outlet Device		
#1	Primary	332.00'	L= 25.0' RC Inlet / Outlet I	d Culvert CP, groove end projecting, Ke= 0.200 Invert= 332.00' / 331.75' S= 0.0100 '/' Cc= 0.900 oncrete pipe, straight & clean, Flow Area= 0.79 sf	
#2	Primary	334.50'			

Primary OutFlow Max=2.54 cfs @ 12.28 hrs HW=332.93' (Free Discharge) -1=Culvert (Barrel Controls 2.54 cfs @ 4.34 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: Wetland #1

Inflow Are	ea =	20.667 ac, 31.80% Impervious, Inflow Depth = 3.53" for 25-Year	revent
Inflow	=	22.18 cfs @ 12.43 hrs, Volume= 6.076 af	
Primary	=	22.18 cfs @ 12.43 hrs, Volume= 6.076 af, Atten= 0%, Lag	= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-2: Wetland #2

Inflow Are	a =	8.071 ac, 26.34% Impervious, Inflow Depth > 3.24	for 25-Year event
Inflow	=	9.51 cfs @ 12.39 hrs, Volume= 2.179 af	
Primary	=	9.51 cfs @ 12.39 hrs, Volume= 2.179 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-3: Wetland #3

Inflow Area	a =	5.236 ac,	0.52% Impervious,	Inflow Depth = 3.1	6" for 25-Year event
Inflow	=	10.49 cfs @	12.43 hrs, Volume	= 1.377 af	
Primary	=	10.49 cfs @	12.43 hrs, Volume	= 1.377 af, .	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-4: Eliot Street

Inflow Area	=	0.772 ac,	3.96% Impervious,	Inflow Depth = 3.1	16" for 25-Year event
Inflow =	=	2.63 cfs @	12.12 hrs, Volume	e= 0.203 af	
Primary =	=	2.63 cfs @	12.12 hrs, Volume	e= 0.203 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-5: (Offsite Southeast)

Inflow Area	=	0.981 ac,	0.32% Impervious, Int	flow Depth = 2.97"	for 25-Year event
Inflow =	=	2.52 cfs @	12.22 hrs, Volume=	0.243 af	
Primary =	=	2.52 cfs @	12.22 hrs, Volume=	0.243 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-6: Prospect Heights

Inflow Are	a =	2.302 ac, 21.	08% Impervious,	Inflow Depth = 3.4	43" for 25-Year event
Inflow	=	5.40 cfs @ 12	2.32 hrs, Volume	= 0.658 af	
Primary	=	5.40 cfs @ 12	2.32 hrs, Volume	= 0.658 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-7: Chestnut Street

Inflow Area	a =	2.506 ac,	5.09% Impervious,	Inflow Depth = 3.0	06" for 25-Year event
Inflow	=	5.99 cfs @	12.28 hrs, Volume	e= 0.639 af	
Primary	=	5.99 cfs @	12.28 hrs, Volume	e= 0.639 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-11: Housing	Runoff Area=475,007 sf 45.31% Impervious Runoff Depth=5.11" low Length=1,594' Tc=6.7 min CN=88 Runoff=61.26 cfs 4.642 af
SubcatchmentPR-12: Overland	Runoff Area=267,695 sf 0.89% Impervious Runoff Depth=4.13" Flow Length=701' Tc=26.3 min CN=79 Runoff=17.84 cfs 2.115 af
SubcatchmentPR-13: Housing	Runoff Area=154,430 sf 44.45% Impervious Runoff Depth=5.11" Flow Length=678' Tc=14.8 min CN=88 Runoff=15.62 cfs 1.509 af
SubcatchmentPR-14: Overland (Offsite) Flow Length=87	
SubcatchmentPR-21: Housing	Runoff Area=158,766 sf 57.34% Impervious Runoff Depth=5.33" Flow Length=556' Tc=7.4 min CN=90 Runoff=20.60 cfs 1.620 af
SubcatchmentPR-22: Overland (Offsite) Flow Length	Runoff Area=25,532 sf 5.37% Impervious Runoff Depth=4.13" a=348' Tc=20.1 min UI Adjusted CN=79 Runoff=1.90 cfs 0.202 af
SubcatchmentPR-23: Overland (Offsite)	Runoff Area=22,499 sf 0.88% Impervious Runoff Depth=4.24" Flow Length=455' Tc=7.7 min CN=80 Runoff=2.40 cfs 0.182 af
SubcatchmentPR-24: Overland	Runoff Area=144,766 sf 0.00% Impervious Runoff Depth=4.02" Flow Length=999' Tc=32.1 min CN=78 Runoff=8.60 cfs 1.114 af
SubcatchmentPR-31: Overland	Runoff Area=225,357 sf 0.52% Impervious Runoff Depth=4.24" Flow Length=760' Tc=32.6 min CN=80 Runoff=13.92 cfs 1.826 af
SubcatchmentPR-32: Overland (Offsite)	Runoff Area=2,738 sf 0.00% Impervious Runoff Depth=4.13" Flow Length=85' Tc=10.5 min CN=79 Runoff=0.26 cfs 0.022 af
SubcatchmentPR-41: Overland	Runoff Area=33,639 sf 3.96% Impervious Runoff Depth=4.24" Flow Length=105' Tc=8.4 min CN=80 Runoff=3.51 cfs 0.273 af
SubcatchmentPR-51: Overland	Runoff Area=42,742 sf 0.32% Impervious Runoff Depth=4.02" Flow Length=335' Tc=16.1 min CN=78 Runoff=3.41 cfs 0.329 af
SubcatchmentPR-61: Overland	Runoff Area=61,371 sf 0.00% Impervious Runoff Depth=4.02" Flow Length=512' Tc=26.2 min CN=78 Runoff=3.99 cfs 0.472 af
SubcatchmentPR-62: Housing	Runoff Area=38,898 sf 54.33% Impervious Runoff Depth=5.33" Flow Length=668' Tc=12.2 min CN=90 Runoff=4.35 cfs 0.397 af
SubcatchmentPR-71: Overland	Runoff Area=92,973 sf 5.33% Impervious Runoff Depth=4.13" Flow Length=503' Tc=20.7 min CN=79 Runoff=6.85 cfs 0.734 af
SubcatchmentPR-72: Overland (Offsite)	Runoff Area=14,564 sf 4.16% Impervious Runoff Depth=4.13" Flow Length=489' Tc=19.8 min CN=79 Runoff=1.09 cfs 0.115 af

shland	Hvdro	CAD -	PR

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

 Printed
 7/10/2015

 LLC
 Page 61

SubcatchmentPR-73: Overland (Offsite) Flow Length=25	
Pond P11: Gravel Wetland #3	Peak Elev=315.50' Storage=108,495 cf Inflow=61.45 cfs 4.667 af Outflow=4.79 cfs 4.461 af
Pond P13: Gravel Wetland #1	Peak Elev=319.50' Storage=20,603 cf Inflow=15.62 cfs 1.509 af Outflow=9.93 cfs 1.443 af
Pond P21: Gravel Wetland #2	Peak Elev=305.76' Storage=38,965 cf Inflow=20.60 cfs 1.620 af Outflow=3.10 cfs 1.426 af
Pond P62: Detention Basin #1	Peak Elev=333.11' Storage=2,475 cf Inflow=4.35 cfs 0.397 af Outflow=3.17 cfs 0.397 af
Link DP-1: Wetland #1	Inflow=32.21 cfs 8.019 af Primary=32.21 cfs 8.019 af
Link DP-2: Wetland #2	Inflow=13.69 cfs 2.925 af Primary=13.69 cfs 2.925 af
Link DP-3: Wetland #3	Inflow=14.03 cfs 1.848 af Primary=14.03 cfs 1.848 af
Link DP-4: Eliot Street	Inflow=3.51 cfs 0.273 af Primary=3.51 cfs 0.273 af
Link DP-5: (Offsite Southeast)	Inflow=3.41 cfs 0.329 af Primary=3.41 cfs 0.329 af
Link DP-6: Prospect Heights	Inflow=7.08 cfs 0.869 af Primary=7.08 cfs 0.869 af
Link DP-7: Chestnut Street	Inflow=8.06 cfs 0.862 af Primary=8.06 cfs 0.862 af
Total Runoff Area = 40.535	ac Runoff Volume = 15.590 af Average Runoff Depth = 4.62"

76.88% Pervious = 31.164 ac 23.12% Impervious = 9.371 ac

Summary for Subcatchment PR-11: Housing

Runoff = 61.26 cfs @ 12.09 hrs, Volume= 4.642 af, Depth= 5.11"

_	Ar	ea (sf)	CN D	escription		
	1(05,642	98 P	aved park	ing, HSG D)
		09,581			ed roofs, HS	
	25	50,927				ood, HSG D
_		8,857			od, HSG D	
		75,007		Veighted A		
		59,784			vious Area	
		15,223			pervious Ar	ea
	П	09,581	c	0.92% 00	connected	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
-	0.8	50	0.0170	1.10	(0.0)	Sheet Flow, Sheet Flow
	0.0		0.0110			Smooth surfaces $n=0.011$ P2= 3.10"
	1.1	150	0.0133	2.34		Shallow Concentrated Flow, pavement
						Paved Kv= 20.3 fps
	0.4	62	0.0161	2.58		Shallow Concentrated Flow, pavement
						Paved Kv= 20.3 fps
	0.0	12	0.0085	4.94	3.88	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
	0.2	60	0.0050	2 70	2.00	n= 0.011 Concrete pipe, straight & clean
	0.3	60	0.0050	3.79	2.98	Pipe Channel, pipe flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.5	114	0.0053	3.90	3.07	
	0.0		0.0000	0.00	0.01	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.5	120	0.0050	3.79	2.98	Pipe Channel, Pipe Flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	1.0	228	0.0050	3.79	2.98	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
	0.4	201	0.0066	0 74	6 07	n= 0.011 Dine Channel, nine flow
	0.4	201	0.0266	8.74	6.87	Pipe Channel, pipe flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.4	234	0.0322	9.62	7.56	
	0.1		0.0022	0.02	1.00	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011
	0.7	166	0.0051	3.83	3.01	Pipe Channel, pipe flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
	_					n= 0.011
	0.4	87	0.0057	4.05	3.18	Pipe Channel, pipe flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'

Ashland HydroCAD - PRType III 24-hr100-Year Rainfall=6.50Prepared by {enter your company name here}Printed 7/10/2015HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLCPage 63							
n= 0.011 0.2		0.0090	8.07	25.36	Pipe Channel, pipe flow 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.011		
6.7	1,594	Total					
		5	Summary	y for Sub	catchment PR-12: Overland		
Runoff	=	17.84 cfs	s@ 12.3	6 hrs, Volu	me= 2.115 af, Depth= 4.13"		
			nod, UH=S ainfall=6.5		nted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs		
A	rea (sf)	CN D	escription				
* * 1 *	564 1,821 19,319 68,895	98 pa 80 gi 77 w	oof avement rass roods				
*	77,096		etland - w				
267,695 79 Weighted Average 265,310 99.11% Pervious Area 2,385 0.89% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
0.3	6	0.3300	0.29	(0.0)	Sheet Flow, Sheet Flow		
0.9	7	0.0450	0.14		Grass: Short n= 0.150 P2= 3.10" Sheet Flow, Sheet Flow		
12.4	37	0.0450	0.05		Grass: Short n= 0.150 P2= 3.10" Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"		
12.7	651	0.0290	0.85		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps		
26.3	701	Total			•		
		ę	Summar	y for Sub	ocatchment PR-13: Housing		
Runoff	=	15.62 cfs	s@ 12.1	9 hrs, Volu	me= 1.509 af, Depth= 5.11"		

Area (sf)	CN	Description			
27,749	98	Paved parking, HSG D			
40,892	98	Unconnected roofs, HSG D >75% Grass cover, Good, HSG D			
85,789	80				
154,430	88	Weighted Average			
85,789		55.55% Pervious Area			
68,641		44.45% Impervious Area			
40,892		59.57% Unconnected			

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

- (mi	Tc n)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4	.1	50		0.20		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
0	.2	16	0.0625	1.75		Shallow Concentrated Flow, grass
						Short Grass Pasture Kv= 7.0 fps
0	0.0	6	0.3300	4.02		Shallow Concentrated Flow, grass
						Short Grass Pasture Kv= 7.0 fps
2	2.3	123	0.0160	0.89		Shallow Concentrated Flow, grass
-	-					Short Grass Pasture Kv= 7.0 fps
0	.6	52	0.0400	1.40		Shallow Concentrated Flow, grass
		•	0 4050	0.47		Short Grass Pasture Kv= 7.0 fps
0).1	8	0.1250	2.47		Shallow Concentrated Flow, grass
~	F	100	0.0050	0.40		Short Grass Pasture Kv= 7.0 fps
0	5.5	192	0.0050	0.49		Shallow Concentrated Flow, grass
0	.6	54	0.0050	1.54	0.13	Short Grass Pasture Kv= 7.0 fps Pipe Channel, pipe flow
0	.0	54	0.0050	1.04	0.15	4.0" Round Area= 0.1 sf Perim= 1.0' r= 0.08'
						n= 0.013 Corrugated PE, smooth interior
0	.2	105	0.0138	7.31	8.97	Pipe Channel, pipe flow
0		100	0.0100	7.01	0.07	15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.011
0	.2	72	0.0152	7.67	9.41	Pipe Channel, pipe flow
· ·	_	. –				15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.011
4.4	0	670	Tatal			

14.8 678 Total

Summary for Subcatchment PR-14: Overland (Offsite)

Runoff = 0.26 cfs @ 12.20 hrs, Volume= 0.025 af, Depth= 4.24"

_	A	rea (sf)	CN E	Description		
*		3,104	80 v	voods		
		3,104	1	00.00% P	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	14.9	50	0.0520	0.06	(010)	Sheet Flow, Sheet Flow
_	0.5	37	0.0520	1.14		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	15.4	87	Total			

Summary for Subcatchment PR-21: Housing

Runoff = 20.60 cfs @ 12.10 hrs, Volume= 1.620 af, Depth= 5.33"

A	rea (sf)	CN D	escription		
	51,916			ed roofs, HS	
	39,125 98 Paved parking, HSG I				
-	67,725				ood, HSG D
	58,766		Veighted A		
	67,725			vious Area	
	91,041			pervious Ar	ea
	51,916	5	7.02% Un	connected	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.0	50	0.0500	0.21		Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.10"
0.4	46	0.0650	1.78		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.1	16	0.3333	4.04		Shallow Concentrated Flow, grass
4.0		0 0000	0.00		Short Grass Pasture Kv= 7.0 fps
1.3	75	0.0200	0.99		Shallow Concentrated Flow, grass
0.1	25	0.0200	2.87		Short Grass Pasture Kv= 7.0 fps
0.1	25	0.0200	2.07		Shallow Concentrated Flow, pavement Paved Kv= 20.3 fps
0.1	12	0.0050	3.79	2.98	· · · · · · · · · · · · · · · · · · ·
0.1	12	0.0000	0.75	2.50	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.1	33	0.0050	3.79	2.98	Pipe Channel, pipe flow
••••			••		12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.7	168	0.0050	3.79	2.98	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.4	91	0.0051	3.83	3.01	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011
0.2	40	0.0050	3.79	2.98	Pipe Channel, pipe flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
		- · ·			n= 0.011
7.4	556	Total			

Summary for Subcatchment PR-22: Overland (Offsite)

Runoff = 1.90 cfs @ 12.27 hrs, Volume= 0.202 af, Depth= 4.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

A	rea (sf)	CN A	Adj Desc	cription	
	1,040	98	Unco	onnected ro	oofs, HSG D
	331	98	Unco	onnected pa	avement, HSG D
	12,989	80	>75%	6 Grass co	ver, Good, HSG D
	11,172	77	Woo	ds, Good, I	HSG D
	25,532	80	79 Weig	hted Avera	age, UI Adjusted
	24,161		94.6	3% Perviou	us Área
	1,371		5.37	% Impervio	bus Area
	1,371		100.0	00% Uncor	nnected
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
0.2	19	0.1000	1.58		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.6	135	0.0430	1.45		Shallow Concentrated Flow, Woods
					Short Grass Pasture Kv= 7.0 fps
0.4	59	0.1520	2.73		Shallow Concentrated Flow, Woods
					Short Grass Pasture Kv= 7.0 fps
1.4	85	0.0410	1.01		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
20.1	348	Total			

20.1 348 Total

Summary for Subcatchment PR-23: Overland (Offsite)

Runoff = 2.40 cfs @ 12.11 hrs, Volume= 0.182 af, Depth= 4.24"

	Area (sf)	CN	Description
*	198	98	roof
*	21,719	80	grass
*	582	77	woods
	22,499 22,301 198	80	Weighted Average 99.12% Pervious Area 0.88% Impervious Area

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	3.7	50	0.0600	0.23		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	4.0	405	0.0580	1.69		Shallow Concentrated Flow, Woods
_						Short Grass Pasture Kv= 7.0 fps
	7.7	455	Total			

Summary for Subcatchment PR-24: Overland

Runoff = 8.60 cfs @ 12.45 hrs, Volume= 1.114 af, Depth= 4.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

	А	rea (sf)	CN D	Description		
* *	1	34,871 82,856 27,039 44,766 44,766	77 w 77 w 78 V	rass /oods /etland - w Veighted A 00.00% Pe		a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	0.6	11	0.3330	0.33		Sheet Flow, Sheet Flow
	13.8	39	0.0385	0.05		Grass: Short n= 0.150 P2= 3.10" Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"
	1.0	60	0.0417	1.02		Shallow Concentrated Flow, Woods
	1.1	87	0.0747	1.37		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	2.7	255	0.0500	1.57		Shallow Concentrated Flow, Grass
	12.9	547	0.0200	0.71		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	32.1	999	Total			

Summary for Subcatchment PR-31: Overland

Runoff = 13.92 cfs @ 12.43 hrs, Volume= 1.826 af, Depth= 4.24"

 Type III 24-hr
 100-Year Rainfall=6.50"

 Printed
 7/10/2015

 LC
 Page 68

Prepared by {ent	ter your comp	any name here	e}
HydroCAD® 10.00	s/n 01038 © 2	013 HydroCAD So	oftware Solutions LLC

Α	rea (sf)	CN D	escription					
	1,180	98 U	98 Unconnected roofs, HSG D					
*	* 7,956 80 Wetland (Grass, HSG D)							
1	90,213				bod, HSG D			
	24,006			od, HSG D				
	2,002	73 B	rush, Goo	d, HSG D				
2	25,357		Veighted A					
2	24,177	-		vious Area				
	1,180			ervious Are				
	1,180	1	00.00% Ui	nconnected	1			
τ.	1	01		0	Description			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.9	20	0.0500	0.18		Sheet Flow, Sheet Flow			
14.0	30	0.0220	0.04		Grass: Short n= 0.150 P2= 3.10"			
14.0	30	0.0220	0.04		Sheet Flow, Sheet Flow Woods: Dense underbrush n= 0.800 P2= 3.10"			
1.4	62	0.0220	0.74		Shallow Concentrated Flow, Woods			
1.7	02	0.0220	0.74		Woodland Kv= 5.0 fps			
0.3	24	0.0910	1.51		Shallow Concentrated Flow, Woods			
					Woodland Kv= 5.0 fps			
0.8	100	0.1000	2.21		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
0.5	47	0.0420	1.43		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
1.3	83	0.0240	1.08		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
8.4	224	0.0040	0.44		Shallow Concentrated Flow, Grass			
	<u> </u>				Short Grass Pasture Kv= 7.0 fps			
1.5	65	0.0100	0.70		Shallow Concentrated Flow, Grass			
0 5	105	0.0400	0.70		Short Grass Pasture Kv= 7.0 fps			
2.5	105	0.0100	0.70		Shallow Concentrated Flow, Wetland			
	700	Tatal			Short Grass Pasture Kv= 7.0 fps			

32.6 760 Total

Summary for Subcatchment PR-32: Overland (Offsite)

0.022 af, Depth= 4.13"

Runoff = 0.26 cfs @ 12.14 hrs, Volume=

Are	a (sf)	CN	Description			
-	1,717	80	>75% Grass cover, Good, HSG D			
	1,021	77	Woods, Good, HSG D			
	2,738	79	Weighted Average			
2	2,738		100.00% Pervious Area			

Prepared by {enter your company name here}

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/10/2015 HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC Page 69

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0	48	0.1300	0.08		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.2	2	0.1300	0.16		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.3	35	0.1050	2.27		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	10.5	85	Total			

Summary for Subcatchment PR-41: Overland

3.51 cfs @ 12.12 hrs, Volume= 0.273 af, Depth= 4.24" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

_	A	rea (sf)	CN I	Description		
*		1,149	96	gravel drive	;	
*		1,331	98	pavement		
*		14,404	80	grass		
*		16,357	77	woods		
_		398	73	Brush, Goo	d, HSG D	
		33,639	80	Weighted A	verage	
		32,308	9	96.04% Per	rvious Area	
		1,331	4	3.96% Impe	ervious Area	a
				-		
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.1	10	0.0100	0.08		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.9	20	0.3300	0.37		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	0.8	9	0.0770	0.18		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	3.8	11	0.0770	0.05		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.8	55	0.0500	1.12		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
_	8.4	105	Total			

Summary for Subcatchment PR-51: Overland

Runoff	=	3.41 cfs @	12.22 hrs, Volu	me= 0.329 af,	Depth= 4.02"
--------	---	------------	-----------------	---------------	--------------

 Type III 24-hr
 100-Year Rainfall=6.50"

 Printed
 7/10/2015

 LC
 Page 70

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Description		
*		136	98	roof		
*		1,200	89	dirt drive		
*		4,534	80	grass		
*		36,872	77	woods		
		42,742	78	Weighted A	verage	
		42,606	1	99.68% Pe	rvious Area	
		136		0.32% Impe	ervious Area	а
	Тс	Length	Slope	· Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	10	0.0350	0.13		Sheet Flow, Sheet Flow
						Grass: Short n= 0.150 P2= 3.10"
	8.9	40	0.1200	0.07		Sheet Flow, Sheet Flow
						Woods: Dense underbrush n= 0.800 P2= 3.10"
	0.6	66	0.1200	1.73		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	4.7	180	0.0160	0.63		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	0.6	39	0.0460	1.07		Shallow Concentrated Flow, Woods
_						Woodland Kv= 5.0 fps
	40.4	005	T - 4 - 1			

16.1 335 Total

Summary for Subcatchment PR-61: Overland

Runoff = 3.99 cfs @ 12.37 hrs, Volume= 0.472 af, Depth= 4.0	Runoff
---	--------

_	A	rea (sf)	CN	Description		
*		24,517	80	grass		
*		36,854	77	woods		
		61,371		Weighted A		
		61,371		100.00% P	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description
	16.5	50	0.0400	0.05		Sheet Flow, Sheet Flow
	9.7	462	0.0250	0.79		Woods: Dense underbrush n= 0.800 P2= 3.10" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
	26.2	512	Total			

Summary for Subcatchment PR-62: Housing

Runoff = 4.35 cfs @ 12.16 hrs, Volume= 0.397 af, Depth= 5.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

A	rea (sf)	CN D	escription						
	21,132			ed roofs, H					
	17,766	80 >	75% Gras	s cover, Go	ood, HSG D				
	38,898		/eighted A						
	17,766		45.67% Pervious Area						
	21,132		54.33% Impervious Area						
	21,132	1	100.00% Unconnected						
τ.	1	0	\/_l!	0	Description				
Tc (min)	Length	Slope	Velocity		Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.0	50	0.0500	0.21		Sheet Flow, Sheet Flow				
0.0	45	0 0500	4 57		Grass: Short n= 0.150 P2= 3.10"				
0.2	15	0.0500	1.57		Shallow Concentrated Flow, grass				
0.1	10	0 0000	4.04		Short Grass Pasture Kv= 7.0 fps				
0.1	18	0.3333	4.04		Shallow Concentrated Flow, grass				
3.6	185	0.0150	0.86		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, grass				
5.0	105	0.0150	0.00		Short Grass Pasture Kv= 7.0 fps				
4.3	400	0.0050	1.54	0.13	•				
ч.0	400	0.0000	1.04	0.15	4.0" Round Area= 0.1 sf Perim= 1.0' r= 0.08'				
					n= 0.013 Corrugated PE, smooth interior				
12.2	668	Total							
12.2	000	rotar							

Summary for Subcatchment PR-71: Overland

Runoff = 6.85 cfs @ 12.28 hrs, Volume= 0.734 af, Depth= 4.13"

	Area (sf)	CN	Description
*	52,577	77	woods
	35,443	80	>75% Grass cover, Good, HSG D
	4,953	98	Paved parking, HSG D
	92,973	79	Weighted Average
	88,020		94.67% Pervious Area
	4,953		5.33% Impervious Area

Ashland HydroCAD - PR Prepared by {enter your company name here}

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/10/2015 HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC Page 72

Tc	Length	Slope	Velocity		Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.2	50	0.0700	0.06		Sheet Flow, Sheet Flow
					Woods: Dense underbrush n= 0.800 P2= 3.10"
0.1	5	0.0700	1.32		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.3	24	0.0400	1.40		Shallow Concentrated Flow, Grass
			-		Short Grass Pasture Kv= 7.0 fps
1.3	84	0.0240	1.08		Shallow Concentrated Flow, Sheet Flow
	•				Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0380	1.36		Shallow Concentrated Flow, Grass
0.0		0.0000			Short Grass Pasture Kv= 7.0 fps
3.0	115	0.0086	0.65		Shallow Concentrated Flow, Grass
0.0	110	0.0000	0.00		Short Grass Pasture Kv= 7.0 fps
0.4	31	0.0320	1.25		Shallow Concentrated Flow, Grass
0.4	01	0.0020	1.20		Short Grass Pasture Kv= 7.0 fps
0.3	45	0.1110	2.33		Shallow Concentrated Flow, Grass
0.0	-5	0.1110	2.00		Short Grass Pasture Kv= 7.0 fps
0.2	21	0.1190	1.72		Shallow Concentrated Flow, Woods
0.2	21	0.1190	1.72		•
1 2	76	0 0200	0.00		Woodland Kv= 5.0 fps
1.3	76	0.0390	0.99		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps

20.7 503 Total

Summary for Subcatchment PR-72: Overland (Offsite)

Runoff = 1.09 cfs @ 12.26 hrs, Volume= 0.115 af, Depth= 4.13"

	Area (sf)	CN	Description
*	606	98	pavement
*	3,197	80	grass
*	10,761	77	woods
	14,564	79	Weighted Average
	13,958		95.84% Pervious Area
	606		4.16% Impervious Area

Prepared by {enter your company name here}

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/10/2015 HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC Page 73

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.1	50	0.0600	0.06		Sheet Flow, Sheet Flow
0.7	55	0.0700	1.32		Woods: Dense underbrush n= 0.800 P2= 3.10"
0.7	55	0.0700	1.52		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
0.6	71	0.0700	1.85		Shallow Concentrated Flow, Grass
4.0	405		4.00		Short Grass Pasture Kv= 7.0 fps
1.6	125	0.0640	1.26		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
0.5	23	0.0100	0.70		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.3	40	0.0150	2.49		Shallow Concentrated Flow, Pavement
0.0	00	0 0000	4.07		Paved Kv= 20.3 fps
0.3	23	0.0330	1.27		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps
1.7	102	0.0400	1.00		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps

19.8 489 Total

Summary for Subcatchment PR-73: Overland (Offsite)

Runoff 0.13 cfs @ 12.21 hrs, Volume= =

0.012 af, Depth= 3.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=6.50"

_	A	rea (sf)	CN	Description				
*		1,620	77	woods				
		1,620		100.00% P	ervious Are	а		
	Tc	Length	Slope	,		Description		
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)			
	15.4	25	0.0120	0.03		Sheet Flow, Sheet Flow Woods: Dense underbrush	n= 0.800	P2= 3.10"

Summary for Pond P11: Gravel Wetland #3

Inflow Area =	10.976 ac, 45.02% Impervious, Inflow	Depth = 5.10" for 100-Year event
Inflow =	61.45 cfs @ 12.09 hrs, Volume=	4.667 af
Outflow =	4.79 cfs @ 13.22 hrs, Volume=	4.461 af, Atten= 92%, Lag= 67.6 min
Primary =	4.79 cfs @ 13.22 hrs, Volume=	4.461 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 315.50' @ 13.22 hrs Surf.Area= 35,029 sf Storage= 108,495 cf

Plug-Flow detention time= 283.6 min calculated for 4.460 af (96% of inflow) Center-of-Mass det. time= 258.6 min (1,048.2 - 789.6)

 Type III 24-hr
 100-Year Rainfall=6.50"

 Printed
 7/10/2015

 LC
 Page 74

Prepared by {enter your co	ompany name here}	
HydroCAD® 10.00 s/n 01038	© 2013 HydroCAD Software Solutions LL	C

Volume	Inver	t Avail.Sto	rage Storage	e Description	
#1	309.00)' 126,29	95 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
309.0		1,785	0	0	
310.0		2,773	2,279	2,279	
311.0	00	3,931	3,352	5,631	
312.0		5,345	4,638	10,269	
313.0		29,625	17,485	27,754	
314.0		31,741	30,683	58,437	
315.0		33,915	32,828	91,265	
316.0	00	36,144	35,030	126,295	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	309.00'	12.0" Roun	d Culvert	
	,		L= 56.6' RC	P, mitered to cor	nform to fill, Ke= 0.700
			Inlet / Outlet	Invert= 309.00' /	308.40' S= 0.0106 '/' Cc= 0.900
					ght & clean, Flow Area= 0.79 sf
#2	Device 1	309.00'		rifice/Grate C=	
#3	Device 1	311.75'		Drifice/Grate C=	
#4	Device 2	313.00'		d Culvert X 0.00	
					onforming to fill, Ke= 0.500
					312.80' S= 0.0100 '/' Cc= 0.900
45					ght & clean, Flow Area= 0.79 sf
#5	Primary	315.50'			ad-Crested Rectangular Weir
				0.20 0.40 0.80 .50 4.00 4.50 5	0.80 1.00 1.20 1.40 1.60 1.80 2.00
					70 2.69 2.68 2.68 2.66 2.64 2.64
				.65 2.66 2.66 2	
			2.04 2.00 2	.00 2.00 2.00 2	
Primary	OutFlow	Max=4.79 cfs (@ 13.22 hrs H	W=315.50' (Fre	ee Discharge)
		ses 4.79 cfs of			- <i>i</i>
				cfs potential flow	')
		t (Controls 0.0			
		ate (Orifice Co			
└──5=Br	oad-Creste	ed Rectangula	ar Weir (Contro	ois 0.00 cfs)	

Summary for Pond P13: Gravel Wetland #1

Inflow Area =	3.545 ac, 44.45% Impervious, Inflov	w Depth = 5.11" for 100-Year event
Inflow =	15.62 cfs @ 12.19 hrs, Volume=	1.509 af
Outflow =	9.93 cfs @ 12.39 hrs, Volume=	1.443 af, Atten= 36%, Lag= 11.7 min
Primary =	9.93 cfs @ 12.39 hrs, Volume=	1.443 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 319.50' @ 12.39 hrs Surf.Area= 9,224 sf Storage= 20,603 cf

Plug-Flow detention time= 98.4 min calculated for 1.443 af (96% of inflow) Center-of-Mass det. time= 73.4 min (870.3 - 796.9)

 Type III 24-hr
 100-Year Rainfall=6.50"

 Printed
 7/10/2015

 LC
 Page 75

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions L	<u>LC</u>

Volume	Invert	Avail.Sto	rage Storag	e Description
#1	315.00'	25,38	34 cf Custo	m Stage Data (Prismatic)Listed below (Recalc)
Elevatio		urf.Area	Inc.Store	Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)
315.0		732	0	0
316.0		1,538	1,135	1,135
317.0		2,713	2,126	3,261
318.0		7,244	4,979	8,239
319.0		8,596	7,920	16,159
320.0	00	9,854	9,225	25,384
Device	Routing	Invert	Outlet Devic	ces
#1	Primary	315.00'	12.0" Roun	nd Culvert
	, in the second s			CP, groove end projecting, Ke= 0.200
				Invert= 315.00' / 314.80' S= 0.0100 '/' Cc= 0.900
			n= 0.011 Co	oncrete pipe, straight & clean, Flow Area= 0.79 sf
#2	Device 1	316.00'		prifice/Grate C= 0.600
#3	Device 1	316.85'	8.0" Vert. O	Prifice/Grate C= 0.600
#4	Device 2	318.00'	12.0" Roun	nd Culvert X 0.00
			L= 10.0' R0	CP, end-section conforming to fill, Ke= 0.500
				t Invert= 318.00' / 317.90' S= 0.0100 '/' Cc= 0.900
			n= 0.011 Co	oncrete pipe, straight & clean, Flow Area= 0.79 sf
#5	Primary	319.00'	8.0' long x	4.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet)	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3	3.50 4.00 4.50 5.00 5.50
			Coef. (Englis	sh) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66
			2.68 2.72 2	2.73 2.76 2.79 2.88 3.07 3.32
				HW=319.50' (Free Discharge)
			9.44 cfs pote	
−2		`) cfs potential flow)
		(Controls 0.0		
∣ └──3=	Orifice/Gra	te (Orifice Co	ntrols 2.56 cfs	s @ 7.33 fps)

3=Orifice/Grate (Orifice Controls 2.56 cfs @ 7.33 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 7.37 cfs @ 1.85 fps)

Summary for Pond P21: Gravel Wetland #2

Inflow Area =	: 3.645 ac, 3	57.34% Impervious,	Inflow Depth = 5.	33" for 100-Year event
Inflow =	20.60 cfs @	12.10 hrs, Volume	= 1.620 af	
Outflow =	3.10 cfs @	12.61 hrs, Volume	= 1.426 af,	Atten= 85%, Lag= 30.7 min
Primary =	3.10 cfs @	12.61 hrs, Volume	= 1.426 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 305.76' @ 12.61 hrs Surf.Area= 11,752 sf Storage= 38,965 cf

Plug-Flow detention time= 288.0 min calculated for 1.426 af (88% of inflow) Center-of-Mass det. time= 233.2 min (1,016.7 - 783.5)

 Type III 24-hr
 100-Year Rainfall=6.50"

 Printed
 7/10/2015

 LC
 Page 76

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC	2

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	299.0	0' 41,84	14 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	n s	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
299.0	/	714	0	0	
300.0		1,434	1,074	1,074	
301.0	00	2,271	1,853	2,927	
302.0		3,362	2,817	5,743	
303.0		8,208	5,785	11,528	
304.0		9,442	8,825	20,353	
305.0		10,731	10,087	30,440	
306.0)0	12,077	11,404	41,844	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	299.00'	12.0" Round	l Culvert	
					ojecting, Ke= 0.200
					298.70' S= 0.0107 '/' Cc= 0.900
					ght & clean, Flow Area= 0.79 sf
#2	Device 1	299.00'		fice/Grate C=	
#3	Device 1	302.55'		fice/Grate C=	0.600
#4	Device 2	305.00'	12.0" Round		iarm to fill Ka- 0 700
					form to fill, Ke= 0.700 304.90' S= 0.0167 '/' Cc= 0.900
					ght & clean, Flow Area= 0.79 sf
#5	Primary	306.00'			ad-Crested Rectangular Weir
#5	Thinary	300.00			0.80 1.00 1.20 1.40 1.60 1.80 2.00
				50 4.00 4.50 5	
					70 2.69 2.68 2.68 2.66 2.64 2.64
			· · ·	65 2.66 2.66 2	
				N=305.76' (Fre	e Discharge)
		ses 3.10 cfs of			
				ofs potential flow)
		t (Barrel Contro			
		rate (Orifice Co			
—ə=Br	oad-Crest	ed Rectangula	ir weir (Contro	150.00 CIS)	

Summary for Pond P62: Detention Basin #1

Inflow Are	a =	0.893 ac, 54.33% Impervious, Inflow Depth =	5.33" for 100-Year event
Inflow	=	4.35 cfs @ 12.16 hrs, Volume= 0.397	af
Outflow	=	3.17 cfs @ 12.28 hrs, Volume= 0.397	af, Atten= 27%, Lag= 7.2 min
Primary	=	3.17 cfs @ 12.28 hrs, Volume= 0.397	af
	<u>.</u>		

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 333.11' @ 12.28 hrs Surf.Area= 2,640 sf Storage= 2,475 cf

Plug-Flow detention time= 27.8 min calculated for 0.397 af (100% of inflow) Center-of-Mass det. time= 27.7 min (815.7 - 787.9)

 Type III 24-hr
 100-Year Rainfall=6.50"

 Printed
 7/10/2015

 LC
 Page 77

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LL	<u>_C</u>

Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	332.0	00' 8,8	90 cf Custom	n Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio (fee 332.0 333.0 334.0	et) 00 00 00	Surf.Area (sq-ft) 1,844 2,559 3,330	Inc.Store (cubic-feet) 0 2,202 2,945	Cum.Store (cubic-feet) 0 2,202 5,146	
335.0	00	4,158	3,744	8,890	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	332.00'	Inlet / Outlet I	P, groove end pro Invert= 332.00' / 3	ojecting, Ke= 0.200 331.75' S= 0.0100 '/' Cc= 0.900 ght & clean, Flow Area= 0.79 sf
#2	Primary	334.50'			

Primary OutFlow Max=3.17 cfs @ 12.28 hrs HW=333.11' (Free Discharge) -1=Culvert (Barrel Controls 3.17 cfs @ 4.56 fps) -2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Link DP-1: Wetland #1

Inflow Are	a =	20.667 ac, 31.80% l	mpervious, Inflow D	Depth = $4.66"$	for 100-Year event
Inflow	=	32.21 cfs @ 12.37 h	rs, Volume=	8.019 af	
Primary	=	32.21 cfs @ 12.37 h	irs, Volume=	8.019 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-2: Wetland #2

Inflow Are	a =	8.071 ac, 26.34% Impervious, Inflow Depth = 4.35" for 100-Year event	
Inflow	=	13.69 cfs @ 12.42 hrs, Volume= 2.925 af	
Primary	=	13.69 cfs @ 12.42 hrs, Volume= 2.925 af, Atten= 0%, Lag= 0.0 min	۱

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-3: Wetland #3

Inflow Are	a =	5.236 ac,	0.52% Impervious, I	nflow Depth = 4.23 "	for 100-Year event
Inflow	=	14.03 cfs @	12.43 hrs, Volume=	1.848 af	
Primary	=	14.03 cfs @	12.43 hrs, Volume=	1.848 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-4: Eliot Street

Inflow Area	a =	0.772 ac,	3.96% Impervious,	Inflow Depth = 4.24	4" for 100-Year event
Inflow	=	3.51 cfs @	12.12 hrs, Volume	= 0.273 af	
Primary	=	3.51 cfs @	12.12 hrs, Volume	= 0.273 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-5: (Offsite Southeast)

Inflow Area =		0.981 ac,	0.32% Impervious,	Inflow Depth = 4.02	2" for 100-Year event
Inflow	=	3.41 cfs @	12.22 hrs, Volume=	= 0.329 af	
Primary	=	3.41 cfs @	12.22 hrs, Volume=	= 0.329 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-6: Prospect Heights

Inflow Area =		2.302 ac, 21.08% Impervious, Inflow Depth = 4.53"	for 100-Year event
Inflow	=	7.08 cfs @ 12.33 hrs, Volume= 0.869 af	
Primary	=	7.08 cfs @ 12.33 hrs, Volume= 0.869 af, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link DP-7: Chestnut Street

Inflow Area =		2.506 ac,	5.09% Impervious,	Inflow Depth = 4.7	13" for 100-Year event
Inflow	=	8.06 cfs @	12.28 hrs, Volume	e= 0.862 af	
Primary	=	8.06 cfs @	12.28 hrs, Volume	e= 0.862 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs