

TABLE OF CONTENTS

Stormwater Management Summary Checklist for Stormwater Report Illicit Discharge Statement

Existing Conditions Analysis	Attachment A
Existing Drainage Exhibit	
Runoff Curve Numbers	
Hvdraflow Hvdrographs Model	
Existing Conditions Hydrograph Summary Chart	
Individual Hydrographs for 100 year storm	•••••

Proposed Conditions Analysis	Attachment B
Proposed Drainage Exhibit	•••••••
Runoff Curve Numbers	
Hydraflow Hydrographs Model	
Proposed Conditions Hydrograph Summary Chart	
Individual Hydrographs for 100 year storm	••••••

Subsurface Recharge System	chment C
Recharge Pond Stage Storage Calculator	
Rational Method Pipe SizingAtta	chment D
Pipe Sizing Exhibit	
Rational Method Pipe Sizing Calculations	
Manning Calculator for each pipe	
TSS RemovalAtta	chment E
TSS Removal Worksheets	
Water Quality Calculations	
Provided Water Quality Volumes	
Contech Water Quality Calculations	
Stormwater Maintenance System Operation and Maintenance Plan	
Operation and Maintenance Worksheet	
BMP Location Map	
MiscellaneousAtta	chment F
Required Recharge Volume	
MILLI AUOII NAUS	
Site Specific Soils information	
Site Specific Sons more mation	
USG5 Lucauon Map	

INTRODUCTION

The purpose of this report is to analyze the predevelopment and post-development drainage conditions for the proposed project and to demonstrate that the project will have no negative impacts on the surrounding properties and resource areas. The design incorporates multiple management practices. The project as designed is complaint with the Massachusetts Department of Environmental Protection Stormwater Management Standards, The town of Ashland Conservation Commission Stormwater Management By-Law and Regulations, and the Town of Ashland Wetlands Protection By-Law and Regulations.

PROJECT DESCRIPTION

The project consists of a 398 unit Apartment Complex to be constructed on approximately 30 Acres of the 200 plus Acre mixed use development known as Ashland Station. The proposed project will replace the previously approved "Jefferson at Ashland Station" that consisted of 500 Units on approximately the same 30 Acres.

The proposed development will include 9 3.5 story Apartment Buildings, 21 detached garage buildings with 168 car spaces, 548 surface parking stalls, a clubhouse amenity facility, a playground, a dog run, and a recycle center.

Utilities including natural gas, electricity, and sewer will be serviced from the existing MTBA access road. A state of the art drainage system will be installed to match existing drainage patterns and decrease

RELATION TO PREVIOUS PROJECTS

As stated in the introduction the current project replaces the 500 unit Jefferson At Ashland Station. The primary difference of this 398 unit proposal is that the current proposal does not propose to utilize a park wide storm water management system. The current design will utilize on site best management practices.

In order to prepare this storm water management report we have reviewed "Stormwater Management Report, Jefferson at Ashland Station, An Apartment Community, by Allen & Major Associates, Inc., for JPI Development L.P. last dated April 2007. This report will be referenced as the ("2007 SWM Report")

This report chose three analysis points that are similar to those reviewed in the referenced report. These include runoff that enters High Street and eventually enters the Sudbury River to the North of the site (Sudbury River), runoff that flows across MTBA road and enters the existing wetland system located north of the project and just south and east of the MTBA parking lot (Northerly Wetlands), and runoff that crosses MBTA road and enters the wetland system just to the south and east of proposed site and south of the Nyanza Superfund Site(Easterly Wetlands)

EXISTING SITE

The 30+/- Acre site is located on the west side of MBTA Road Exhibit and located in the Rail Transit Overlay Overlay District "E". The site currently consists of wooded areas with elevations ranging from 258 to 358.

A review of the NRCS soils maps show that the majority of the site consists Paxton fine Sandy Loam that is rate as hydrologic soil group(HSG) D. The area of the site closest to MTBA roadway consists of Narraganset Silt Loam that is HSG A. In addition to reviewing the soils maps the test holes, borings, and percolation testing provided in the 2007 SWM has also been reviewed. The soil testing is consistent with the NRCS mapping. The NRCS mapping and relevant portions of the 2007 SWM geotechnical information can be viewed in **Attachment E**.

As stated above the existing stormwater catchment areas and design points have been chosen based on the 2007 SWM Report. Approximately 67 Acres have been analyzed for pre and post runoff conditions. Three Design Points have been chosen. Approximately 19.5 Acres currently runs off the North and West of the Site toward High Street and eventually enters the Sudbury River to the North and West of the Site. 33.2 Acres currently drains across MBTA road, enters the wetland area North of the site and South East of the MBTA parking lot. This wetland drains to Chemical Brook, a stone ditch that runs along the rail road tracks, and exists Ashland Station through an existing 36" pipe that goes under the CSX railway. Approximately 13.7 Acres Cross MTBA Raodway and enter the wetlands system located to the South and East. Runoff that enters this wetland travels around the Nyanza Superfund Site, and ultimately crosses Megunko Road, combines with Chemical Brook and enters the 36" culvert that crosses the CSX rail line.

See Attachment A for existing conditions drainage maps and runoff calculations.

PROPOSED SITE

The proposed project will entail constructing 398 Apartment units in 9 3.5 Apartment Buildings, 21 detached garage buildings with 168 car spaces, 548 surface parking stalls, a clubhouse amenity facility, a playground, a dog run, and a recycle center. A stormwater management system has been designed to comply with Massachusetts Department of Environmental Protection Standards for stormwater management. The Stormwater management system will incorporate many Best Management Practices (BMPs), which will include multiple deep sump catch basins, 2 proprietary water quality devices, 9 subsurface recharge chambers, 1 stommwater management pond, an operations and maintenance program designed to treat, recharge, and detain all of the runoff generated from the proposed development of the site.

See Proposed Conditions Drainage Exhibit in Attachment B.

STORMWATER MANAGEMENT STANDARDS

The following is a discussion of the Massachusetts Stormwater Management Standards

STANDARD 1: NO NEW UNTREATED DISCHARGES

The proposed project has been designed for no new untreated discharges from the site. The proposed pavement areas will be treated by proprietary water quality devices or biofilter swales.

STANDARD 2: PEAK RATE ATTENUATION

Existing and developed sites were modeled using Hydraflow Hydrographs 10 computer program by AutoCAD Civil 3D 2013. This computer software uses the TR55/TR20 tabular method of computing peak flows, hydrograph addition, and pond routing. The curve numbers for the existing conditions analysis were determined using soil survey maps which show hydrologic group A and D soils. See soil survey map in **Attachment F**.

As can be seen from the summary chart below, the peak flows from the design storm on the site will be reduced as a result of this project. Peak flow mitigation is provided within the stormwater management pond

The entire TR55 analysis is included in **Attachment A** (existing conditions) **and B** (proposed conditions) of this report.

<u>Storm</u>	Existing	Proposed	Difference
(yr, inches)	(cfs)	(cfs)	(cfs)
2,3.1	17.68	11.13	-6.55
10,4.5	33.15	21.65	-11.5
25,5.3	45.86	28.01	-17.85
50,5.9	52.35	32.89	-19.46
100,6.5	61.55	37.84	-23.71

Peak Runoff Chart (To High Street and The Sudbury River)

Peak Runoff Chart (To Northerly Wetlands)

<u>Storm</u>	Existing Proposed		Difference
(yr, inches)	(cfs)	(cfs)	(cfs)
2,3.1	10.12	5.31	-4.81
10,4.5	27.66	23.49	-4.17
25,5.3	44.74	39.08	-5.66
50,5.9	54.05	51.49	-2.56
100,6.5	67.68	64.52	-3.16

Peak Runoff Chart (To Easterly Wetlands)

<u>Storm</u>	Existing Proposed		Difference
(yr, inches)	(cfs)	(cfs)	(cfs)
2,3.1	0.836	0.956	0.12
10,4.5	4.195	4.632	0.437
25,5.3	8.745	8.186	-0.559
50,5.9	11.50	11.41	-0.09
100,6.5	15.86	15.02	-0.84

STANDARD 3: RECHARGE

The project site contains hydrologic group A and B soils according to the NRCS soil maps and confirmed by on site soil testing by others. Based on DEP guidelines for recharge, the required recharge volume for hydrologic group A soils is 0.6" and the required recharge volume for Group D soil is 0.1". The project complies with the DEP guidelines for the Static Method that requires the total required recharge volume be provided below the lowest overflow and drain down within 72 hours after a rain event.

The total impervious area on the proposed site is 543,985 s.f. and will require 11,024 cu.ft. of recharge volume.

The dedicated recharge volume has been provided in the 9 subsurface recharge basins and one recharge pond totaling 12,543 cu.ft of dedicated recharge volume.

See Attachment C for detailed calculations and recharge volumes

STANDARD 4: STORMWATER QUALITY

Stormwater runoff from the site will be enhanced by means of a number of Best Management Practices (BMP's), which have been designed to comply with the DEP Stormwater Management Guidelines. In order to achieve a Total Suspended Solids (TSS) removal rate of 80%, the following BMP's will be incorporated:

- o Pavement sweeping and maintenance program
- o 2 ea. Proprietary Water Quality Devices
- o Deep Sump Catch Basins
- o Constructed Wetland Water Quality Pond with Sediment Forebay.
- o Infiltration basins including 9 subsurface and one surface basin.

The total TSS removal is expected to be greater than 80%. See TSS Removal in **Attachment E**.

STANDARD 5: Land Uses with Higher Potential Pollutant Loads (LUHPPL's)

The proposed project is considered a land use with higher potential pollutant loads due to 1,000 average daily traffic trips. The proposed use is not an industrial use and is not subject to a NPDES Multi-Sector General Permit.

STANDARD 6: CRITICAL AREAS

The site is not in an active public water supply, surface water protection area, nor groundwater protection area, and is not in an area of critical environmental concern.

STANDARD 7: REDEVELOPMENT

The proposed project constitutes both redevelopment and new development.

STANDARD 8: CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION CONTROL

A construction phasing plan will be established when a site contractor is consulted. At that time a construction phasing plan and the associated Stormwater Pollution Prevention Plan will be prepared and submitted to the Town of Framingham and the EPA.

STANDARD 9: OPERATIONS AND MAINTENANCE PLAN

The Stormwater Management System Operation and Maintenance Plan and Long Term Pollution Prevention Plan, Operations and Maintenance Log, and BMP Location Map are provided in **Attachment D**.

STANDARD 10: ILLICIT DISCHARGES

An Illicit Discharge Statement is attached and can be found it the Table of Contents. The Long Term Pollution Prevention Plan can be found in **Attachment D**.

HYDROLOGY AND HYDRAULICS:

Hydraulics:

The on-site drainage systems were designed by means of the Rational Method. The drainage system was designed based on a 25-year recurrence interval.

The Rational Method is based on the following formula:

Q=CiA Where:

Q = Peak Rate of Runoff in Cubic Feet per Second
C = Coefficient of Runoff
i = Rainfall Intensity in Inches per Hour
(A value 7.0 inches per hour was used per TP-40)
A = Drainage Area in Acres

The values that have been used in the Rational Method formula to calculate the peak rate of runoff for this project are as follows:

C= Runoff Coefficients:

For our analysis, we used the following runoff coefficients: C = 0.90 for paved areas and C = 0.40 for grass, woods, and landscaping areas.

Tc = Time of Concentration

Considering the fact that almost the whole site is paved, a Time of Concentration of 5 minutes has been used to determine rainfall intensity. This will give conservative estimates for peak runoff.

Drainage Area Drainage divide lines were determined by using Site Topographic Maps and the proposed grading plan prepared by this office. Existing watershed boundaries were verified by existing topographic information and by field inspection.

Storm drains were designed using the Manning formula.

$$Q = \frac{1.49}{n} R^{2/3} A S^{1/2}$$

Where

A =

Q = Capacity of Pipe flowing full in cubic feet per second.

R = Hydraulic radius

n = Manning's Resistance Coefficient

(For our computation, we used n = .011 for HDPE)

A = Cross sectional area of the pipe in square feet

S = Slope of the pipe in feet per feet

The entire Rational Method and Manning's Calculation is included in **Attachment D.**

CONCLUSION

An extensive stormwater management system has been designed for the project. The stormwater management system has been designed to comply with current (DEP) standards and will incorporate a number of Best Management Practices ("BMP's") that will ensure that the runoff will be treated prior to leaving the site.

The construction of the stormwater management system will ensure that stormwater runoff from this site will be of high quality and that there will be no adverse impacts on surrounding properties or resource areas.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

David Noel Kelly 2015.09.29 Land Noelly 16:56:00 -04'00'

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
\square	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
\boxtimes	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

 \boxtimes No new untreated discharges

- \boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

 \boxtimes

🖂 s	oil Anal	ysis	provided.
-----	----------	------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	Simple Dynamic
--------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

🛛 Rea	harge BMPs	have been	sized to	infiltrate th	he Required	Recharge V	Volume.
-------	------------	-----------	----------	---------------	-------------	------------	---------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands ProgramChecklist for Stormwater Report

Standard 4: Water Quality (continued)
The BMP is sized (and calculations provided) based on:
The ½" or 1" Water Quality Volume or
The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
 The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> <i>to</i> the discharge of stormwater to the post-construction stormwater BMPs.
The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
All exposure has been eliminated.
All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Standard 6: Critical Areas
The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project	
-----------------	--

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project

Redevelopment portion of mix of new and redevelopment.

Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

ILLICIT DISCHARGE STATEMENT

This statement has been prepared to comply with Stormwater Management Standard #10 as referenced in the Massachusetts Stormwater Handbook, Volume One, Chapter One, Page 25. This handbook has been issued by the Massachusetts Department of Environmental Protection for compliance with revised Regulations for Wetlands 310 CMR 10.00.

As detailed in the Site Development Plans accompanying this application this project will not involve any illicit discharge to the stormwater management system. Furthermore, to the best of my knowledge there are no illicit discharges to the stormwater management system of the existing site.

Owner and Responsible Party for Operating and Managing the site:

Campanelli Acquisitions II, LLC PO Box 850985 Braintree, MA 781-849-1440

Date

KELLY ENGINEERING GROUP, INC.

Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment A Existing Conditions

Name:	Campa	nelli Ash	land	By:	GH	Date:	09/23/15
Location :	MBTA I	Road, As	hland MA				
Description:	Existin	g Condi	tions - To Hi	igh St. Culvert			
Circle One:	Pre	or	Post				

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	0	0
Woods	Hydrologic Group D; Good Condition	77	505460	3.9E+07
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
		Totals =	505460.00	3.9E+07
		Acres =	11.6037649	

CN or C (weighted) = total product/total area =

77.0

Reference:

Name:	Campa	nelli Ash	land	By:	GH	Date:	09/23/15
Location :	MBTA F	Road, As	hland MA			_	
Description:	Existin	g Condi	tions - To I	High St. Drainage S	ystem		
Circle One:	Pre	or	Post				

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	0	0
Woods	Hydrologic Group D; Good Condition	77	363607	2.8E+07
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
	•	Totals =	363607.00	2.8E+07
		Acres =	8.34726814	•

CN or C (weighted) = total product/total area =

77.0

Reference:

Name:	Campai	nelli Ash	land	By:	GH	Date:	09/23/15
Location :	MBTA F	Road, As	hland MA				
Description:	Existin	g Condi	tions - To M	BTA Rd. CB-1			
Circle One:	Pre	or	Post				

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	64665	1939950
Woods	Hydrologic Group D; Good Condition	77	478404	3.7E+07
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
		Totals =	543069.00	3.9E+07
		Acres =	12.4671488	

CN or C (weighted) = total product/total area =

71.4

Reference:

Name:	Campa	nelli Ash	land	By:	GH	Date:	09/23/15
Location :	MBTA I	Road, As	hland MA			_	
Description:	Existin	g Condi	tions - To M	BTA Rd. Culvert			
Circle One:	Pre	or	Post				

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	312403	9372090
Woods	Hydrologic Group D; Good Condition	77	416587	3.2E+07
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
		Totals =	728990.00	4.1E+07
		Acres =	16.7353076	

CN or C (weighted) = total product/total area =

56.9

Reference:

Name:	Campa	nelli Ash	land	By:	GH	Date:	09/23/15
Location :	MBTA I	Road, As	shland MA				
Description:	Existin	g Condi	tions - To M	BTA Rd. CB-2			
Circle One:	Pre	or	Post				

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	97996	2939880
Woods	Hydrologic Group D; Good Condition	77	77788	5989676
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
		Totals =	175784.00	8929556
		Acres =	4.03544536	

CN or C (weighted) = total product/total area =

50.8

Reference:

Name:	Campa	nelli Ash	land	By:	GH	Date:	09/23/15
Location :	MBTA I	Road, As	shland MA				
Description:	Existin	g Condi	tions - To M	BTA Rd. CB-3			
Circle One:	Pre	or	Post				

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	138868	4166040
Woods	Hydrologic Group D; Good Condition	77	173901	1.3E+07
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
	•	Totals =	312769.00	1.8E+07
		Acres =	7.18018825	•

CN or C (weighted) = total product/total area =

56.1

Reference:

Name:	Campa	nelli Ash	land	By:	GH	Date:	09/23/15								
Location :	MBTA I	MBTA Road, Ashland MA													
Description:	Existin	Existing Conditions - To MBTA Rd. DMH													
Circle One:	Pre	or	Post												

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	188792	5663760
Woods	Hydrologic Group D; Good Condition	77	95535	7356195
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
	•	Totals =	284327.00	1.3E+07
		Acres =	6.52724977	*

CN or C (weighted) = total product/total area =

45.8

Reference:

Watershed Model Schematic

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd.	Hydrograph	Inflow	nflow Peak Outflow (cfs)							Hydrograph	
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Hydrograph Description
1	SCS Runoff			9.883			18.55	25.66	29.30	34.46	TO HIGH ST. CULVERT
2	SCS Runoff			8.087			15.12	20.90	23.85	28.04	HIGH ST. DRAINAGE SYSTEM
3	SCS Runoff			8.421			17.80	25.83	30.00	35.98	MBTA RD. CB-1
4	SCS Runoff			2.248			9.233	16.75	20.94	27.24	MBTA RD. CULVERT
5	SCS Runoff			0.116			1.104	2.440	3.256	4.523	MBTA RD. CB-2
6	SCS Runoff			0.836			3.664	6.797	8.555	11.19	MBTA RD. CB-3
7	SCS Runoff			0.047			0.742	2.184	3.164	4.773	MBTA RD. DMH
8	Combine	1, 2,		17.68			33.15	45.86	52.35	61.55	TO SUDBURY RIVER
9	Combine	3, 4, 5,		10.12			27.66	44.74	54.05	67.68	TO NORTHERLY WETLANDS
10	Combine	6, 7,		0.836			4.195	8.745	11.50	15.86	TO EASTERLY WETLANDS
Pro	j. file: Pre-Ex	isting Con	ditions.	þ					We	ednesday	, 09 / 23 / 2015

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
SCS Runoff	9.883	2	738	50,247				TO HIGH ST. CULVERT		
SCS Runoff	8.087	2	734	36,717				HIGH ST. DRAINAGE SYSTEM		
SCS Runoff	8.421	2	736	40,663				MBTA RD. CB-1		
SCS Runoff	2.248	2	746	18,620				MBTA RD. CULVERT		
SCS Runoff	0.116	2	758	2,134				MBTA RD. CB-2		
SCS Runoff	0.836	2	748	7,360				MBTA RD. CB-3		
SCS Runoff	0.047	2	916	1,298				MBTA RD. DMH		
Combine	17.68	2	736	86,964	1, 2,			TO SUDBURY RIVER		
Combine	10.12	2	738	61,417	3, 4, 5,			TO NORTHERLY WETLANDS		
Combine	0.836	2	748	8,659	6, 7,			TO EASTERLY WETLANDS		
-Existing Con	ditions or			Return P	eriod: 2 Ye	ar	Wednesday	4 09 / 23 / 2015		
Pre-Existing Conditions.gpw					eriod: 2 Ye	ar	Wednesday	Wednesday, 09 / 23 / 2015		
	Hydrograph type (origin) SCS Runoff SCS Runoff SCS Runoff SCS Runoff Combine Combine Combine	Hydrograph type (origin)Peak flow (cfs)SCS Runoff9.883SCS Runoff8.087SCS Runoff8.421SCS Runoff0.116SCS Runoff0.116SCS Runoff0.047Combine10.12Combine0.836	Hydrograph (origin)Peak flow (offs)Time interval (min)SCS Runoff9.8832SCS Runoff8.0872SCS Runoff2.2482SCS Runoff0.1162SCS Runoff0.0472Combine10.122Combine0.8362Combine0.8362SCS Runoff0.0472Combine10.122Combine0.8362	Hydrograph type (origin)Peak flow (cfs)Time to interval (min)Time to Peak (min)SCS Runoff9.8832738SCS Runoff8.0872736SCS Runoff2.2482746SCS Runoff0.1162758SCS Runoff0.0472916Combine10.122738Combine0.8362748SCS Runoff0.8362748SCS Runoff0.8362748SCS Runoff0.8362748Combine10.122738Combine0.8362748SCS Runoff0.8362916Combine10.1211Combine0.83611SCS Runoff0.83611SCS Runoff0.83611SCS Runoff0.83611SCS Runoff0.83611SCS Runoff0.83611SCS Runoff0.83611SCS Runoff111SCS Runoff111SCS Runoff111SCS Runoff111SCS Runoff111SCS Runoff111SCS Runoff111SCS Runoff111SCS Runoff111SCS Runoff111 </td <td>Hydrograph type (origin) Peak flow (cfs) Time interval mine interval (min) Time to Peak (min) Hyd. volume (cuft) SCS Runoff 9.883 2 738 50,247 SCS Runoff 8.087 2 734 36,717 SCS Runoff 8.421 2 736 40,663 SCS Runoff 0.427 278 2,134 SCS Runoff 0.116 2 748 7360 SCS Runoff 0.047 2 916 1,298 Combine 10.12 2 738 61,417 Combine 0.836 2 748 8,659 Vial and the set of the set</td> <td>Hydrograph (origin) Peak flow (crs) Time to interval (min) Hyd. (cut) Inflow hyd(s) SCS Runoff 9.883 2 738 50.247 SCS Runoff 8.087 2 734 36.717 SCS Runoff 8.421 2 736 40.663 SCS Runoff 0.116 2 758 2.134 SCS Runoff 0.836 2 746 18.620 SCS Runoff 0.167 2 916 1.298 SCS Runoff 0.047 2 916 1.298 Combine 10.12 2 738 61.417 3.4.5. Combine 0.836 2 748 8.659 6.7. Hydio and and and and and and and and and and</td> <td>Hydrograph (origin) Plask (ns. Time value (ns. Inflow (ns. Maximum elevation (ns. SCS Runoff SCS Runoff 9.883 2 738 50,247 SCS Runoff 8.087 2 738 36,717 SCS Runoff 8.421 2 736 40,663 SCS Runoff 2.248 2 746 18,620 SCS Runoff 0.116 2 758 2.134 SCS Runoff 0.047 2 746 12.98 SCS Runoff 0.047 2 736 86,964 1,2<</td> Combine 10.12 2 738 86,59 6,7 Combine 0.836 2 748 8,659 6,7 SCS Runoff 0.836 2 748 8,659 6,7 Combine 0.8	Hydrograph type (origin) Peak flow (cfs) Time interval mine interval (min) Time to Peak (min) Hyd. volume (cuft) SCS Runoff 9.883 2 738 50,247 SCS Runoff 8.087 2 734 36,717 SCS Runoff 8.421 2 736 40,663 SCS Runoff 0.427 278 2,134 SCS Runoff 0.116 2 748 7360 SCS Runoff 0.047 2 916 1,298 Combine 10.12 2 738 61,417 Combine 0.836 2 748 8,659 Vial and the set of the set	Hydrograph (origin) Peak flow (crs) Time to interval (min) Hyd. (cut) Inflow hyd(s) SCS Runoff 9.883 2 738 50.247 SCS Runoff 8.087 2 734 36.717 SCS Runoff 8.421 2 736 40.663 SCS Runoff 0.116 2 758 2.134 SCS Runoff 0.836 2 746 18.620 SCS Runoff 0.167 2 916 1.298 SCS Runoff 0.047 2 916 1.298 Combine 10.12 2 738 61.417 3.4.5. Combine 0.836 2 748 8.659 6.7. Hydio and	Hydrograph (origin) Plask (ns. Time value (ns. Inflow (ns. Maximum elevation (ns. SCS Runoff SCS Runoff 9.883 2 738 50,247 SCS Runoff 8.087 2 738 36,717 SCS Runoff 8.421 2 736 40,663 SCS Runoff 2.248 2 746 18,620 SCS Runoff 0.116 2 758 2.134 SCS Runoff 0.047 2 746 12.98 SCS Runoff 0.047 2 736 86,964 1,2<	Hydrograph type (origin) Peak ftow (rsi) Time intervar (rsi) Time to (rsi) Hyd. volum (rsi) Inflow hyd(s) Maximum elevation (rsi) Total strge used (cut) SCS Runoff 9.883 2 738 50.247 SCS Runoff 8.421 2 736 40.663 SCS Runoff 8.421 2 736 40.663 SCS Runoff 0.416 2 778 2.134 SCS Runoff 0.407 2 748 7.360 SCS Runoff 0.407 2 748 86.964 1,2,2 Combine 10.12 2 738 61.417 3.4,5 Combine 0.836 2 748 8.659 6,7,7 Lopopolicium </td		

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	18.55	2	738	91,662				TO HIGH ST. CULVERT	
2	SCS Runoff	15.12	2	734	66,981				HIGH ST. DRAINAGE SYSTEM	
3	SCS Runoff	17.80	2	734	80,365				MBTA RD. CB-1	
4	SCS Runoff	9.233	2	738	51,260				MBTA RD. CULVERT	
5	SCS Runoff	1.104	2	744	7,855				MBTA RD. CB-2	
6	SCS Runoff	3.664	2	738	20,864				MBTA RD. CB-3	
7	SCS Runoff	0.742	2	750	7,715				MBTA RD. DMH	
8	Combine	33.15	2	736	158,642	1, 2,			TO SUDBURY RIVER	
9	Combine	27.66	2	736	139,479	3, 4, 5,			TO NORTHERLY WETLANDS	
10	Combine	4.195	2	742	28,579	6, 7,			TO EASTERLY WETLANDS	
Pre	-Existing Con	ditions.or			Return P	eriod: 10 Y	/ear	Wednesday	4 09 / 23 / 2015	
Pre-Existing Conditions.gpw					Return P	eriod: 10 Y	'ear	Wednesday, 09 / 23 / 2015		

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
SCS Runoff	25.66	2	738	126,320				TO HIGH ST. CULVERT		
SCS Runoff	20.90	2	734	92,307				HIGH ST. DRAINAGE SYSTEM		
SCS Runoff	25.83	2	734	114,793				MBTA RD. CB-1		
SCS Runoff	16.75	2	736	83,455				MBTA RD. CULVERT		
SCS Runoff	2.440	2	740	14,035				MBTA RD. CB-2		
SCS Runoff	6.797	2	736	34,315				MBTA RD. CB-3		
SCS Runoff	2.184	2	744	15,538				MBTA RD. DMH		
Combine	45.86	2	736	218,627	1, 2,			TO SUDBURY RIVER		
Combine	44.74	2	734	212,283	3, 4, 5,			TO NORTHERLY WETLANDS		
Combine	8.745	2	738	49,853	6, 7,			TO EASTERLY WETLANDS		
-Existing Con	ditions or			Return P	eriod: 25 Y	ear	Wednesday	(09 / 23 / 2015		
Pre-Existing Conditions.gpw					eriod: 25 Y	ear	Wednesday	Wednesday, 09 / 23 / 2015		
	Hydrograph type (origin) SCS Runoff SCS Runoff SCS Runoff SCS Runoff Combine Combine Combine	Hydrograph type (origin)Peak flow (cfs)SCS Runoff25.66SCS Runoff20.90SCS Runoff25.83SCS Runoff2.440SCS Runoff2.184Combine45.86Combine44.74Combine8.745	Hydrograph (origin)Peak flow (offs)Time interval (min)SCS Runoff25.662SCS Runoff20.902SCS Runoff25.832SCS Runoff2.4402SCS Runoff2.1842Combine45.862Combine8.7452SCS Runoff9.7452	Hydrograph type (origin)Peak flow (cfs)Time to interval (min)Time to Peak (min)SCS Runoff25.662738SCS Runoff20.902734SCS Runoff25.832734SCS Runoff16.752736SCS Runoff2.4402740SCS Runoff6.7972736SCS Runoff2.1842734Combine44.742734Combine8.7452738SCS Runoff9.7459.736734Combine44.749.736738Combine44.749.736738SCS Runoff9.7459.736738Combine44.749.736738Combine9.7459.736738SCS Runoff9.7459.736738Combine9.7459.736738SCS Runoff9.7459.736738Combine9.7459.7369.736SCS Runoff9.7459.7369.736SCS Runoff9.7459.7469.746SCS Runoff9.7459.7469.746SCS Runoff9.7459.7469.746SCS Runoff9.7459.7469.746SCS Runoff9.7459.7469.746SCS Runoff9.7459.7469.746SCS Runoff9.7469.7469.746SCS Runoff9.7469.7469.746SCS Runoff	Hydrograph type (origin) Peak flow (cfs) Time interval mine interval (min) Time to peak (min) Hyd. volume (cut) SCS Runoff 25.66 2 738 126,320 SCS Runoff 20.90 2 734 92,307 SCS Runoff 25.83 2 734 14,793 SCS Runoff 16.75 2 736 83,455 SCS Runoff 2.440 2 740 14,035 SCS Runoff 2.184 2 744 15,538 Combine 45.86 2 736 218,627 Combine 44.74 2 738 49,853 Combine 8.745 2 738 49,853 Combine 8.745 2 738 49,853 Marker Auge Auge Auge Auge Marker Auge Auge Auge Auge Scombine Auge Auge Auge Auge Auge Auge Auge Auge	Hydrograph (origin) Peak (ox Time (min) Time to Peak (min) Hyd. (cut) Inflow hyd(s) SCS Runoff 25.66 2 738 126.320 SCS Runoff 20.90 2 734 92.307 SCS Runoff 25.83 2 736 83.455 SCS Runoff 2.440 2 740 14.035 SCS Runoff 2.440 2 736 34.315 SCS Runoff 2.184 2 736 218.627 1,2,2 Combine 45.86 2 738 49.853 6,7,7 Combine 8.745 2 738 49.853 6,7,7 SC Subject 45.45 2 50 Combine 8.745 2 50 Subject 49.853 6,7,7 Subject Inteabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	Hydrograph (origin) Resk (rs) Time (m) Time transk (m) Hyd. (m) Inflow (m) Maximum elevation (m) SCS Runoff 26.66 2 738 126.320 SCS Runoff 20.90 2 734 92.307 SCS Runoff 20.90 2 736 83.455 SCS Runoff 16.75 2 736 83.455 SCS Runoff 16.75 2 736 34.315 SCS Runoff 2.184 2 744 15.538 SCS Runoff 4.546 2 736 218.627 1.2.2 Combine 8.745 2 738 49.853 6.7.7 Combine 8.745 2 738 49.853 6.7.1 SCS Runoff S.4.5 S S S	Hydrograph type (origin) Peak ftow (rdi) Time intervar (rdi) Time to volum (rdi) Hyd. volum (rdi) Inflow hyd(s) Maximum elevation (rdi) Total strge used (rdi) SCS Runoff 25.66 2 738 126.320 SCS Runoff 20.30 2 734 126.320 SCS Runoff 16.75 2 736 83.455 SCS Runoff 2.440 2 740 14.035 SCS Runoff 2.440 2 744 15.538 SCS Runoff 2.184 2 744 15.538 Combine 44.74 2 734 212.283 3.4,5 Combine 8.745 2 738 49.853 6,7, Height preserver Interver Interver		
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
-------------	--------------------------------	-----------------------	---------------------------	--------------------------	--------------------------	------------------	------------------------------	-------------------------------	---------------------------	
1	SCS Runoff	29.30	2	738	144,257				TO HIGH ST. CULVERT	
2	SCS Runoff	23.85	2	734	105,414				HIGH ST. DRAINAGE SYSTEM	
3	SCS Runoff	30.00	2	734	132,889				MBTA RD. CB-1	
4	SCS Runoff	20.94	2	736	101,328				MBTA RD. CULVERT	
5	SCS Runoff	3.256	2	738	17,587				MBTA RD. CB-2	
6	SCS Runoff	8.555	2	736	41,813				MBTA RD. CB-3	
7	SCS Runoff	3.164	2	742	20,217				MBTA RD. DMH	
8	Combine	52.35	2	736	249,672	1, 2,			TO SUDBURY RIVER	
9	Combine	54.05	2	734	251,804	3, 4, 5,			TO NORTHERLY WETLANDS	
10	Combine	11.50	2	736	62,030	6, 7,			TO EASTERLY WETLANDS	
Pre	-Existing Con	ditions or			Return P	eriod: 50 Y	021	Wednesday	(09 / 23 / 2015	
Pre	-Existing Con	ditions.gp	w		Return P	eriod: 50 Y	ear	Wednesday	v, 09 / 23 / 2015	

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	34.46	2	738	169,887				TO HIGH ST. CULVERT
2	SCS Runoff	28.04	2	732	124,143				HIGH ST. DRAINAGE SYSTEM
3	SCS Runoff	35.98	2	734	158,992				MBTA RD. CB-1
4	SCS Runoff	27.24	2	734	127,996				MBTA RD. CULVERT
5	SCS Runoff	4.523	2	736	22,999				MBTA RD. CB-2
6	SCS Runoff	11.19	2	734	53,026				MBTA RD. CB-3
7	SCS Runoff	4.773	2	740	27,516				MBTA RD. DMH
8	Combine	61.55	2	736	294,029	1, 2,			TO SUDBURY RIVER
9	Combine	67.68	2	734	309,987	3, 4, 5,			TO NORTHERLY WETLANDS
10	Combine	15.86	2	736	80,542	6, 7,			TO EASTERLY WETLANDS
Pre	-Existing Con	ditions or			Return P	eriod: 100	Year	Wednesday	(09 / 23 / 2015
Pre	-Existing Con	ditions.gp	W		Return P	eriod: 100	Year	Wednesday	v, 09 / 23 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Wednesday, 09 / 23 / 2015

Hyd. No. 1

TO HIGH ST. CULVERT

	hrs
Storm frequency = 100 yrs I me to peak = 12.30	1110
Time interval = 2 min Hyd. volume = 169,8	87 cuft
Drainage area = 11.604 ac Curve number = 77	
Basin Slope = 0.0% Hydraulic length = 0 ft	
Tc method = TR55 Time of conc. (Tc) = 24.70	min
Total precip.= 6.70 inDistribution= Type	111
Storm duration= 24 hrsShape factor= 484	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 1

TO HIGH ST. CULVERT

Description	<u>A</u>		<u>B</u>		<u>C</u>		Totals
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.74	+	0.00	+	0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 520.00 = 4.00 = Unpaved =3.23	b	1650.00 5.50 Unpave 3.78	0 ed	0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.69	+	7.27	+	0.00	=	9.95
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Flow length (ft) Travel Time (min)	({0})0.0 = 0.00	+	0.0 0.00	+	0.0 0.00	=	0.00

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Wednesday, 09 / 23 / 2015

Hyd. No. 2

HIGH ST. DRAINAGE SYSTEM

Hydrograph type	= SCS Runoff	Peak discharge	= 28.04 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 124,143 cuft
Drainage area	= 8.347 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.50 min
Total precip.	= 6.70 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 2

HIGH ST. DRAINAGE SYSTEM

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.600 = 50.0 = 3.10 = 3.00 = 14.74	+	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1100.00 = 9.00 = Unpaved =4.84	d	0.00 0.00 Unpave 0.00	ed	0.00 0.00 Unpave 0.00	ed	
Travel Time (min)	= 3.79	+	0.00	+	0.00	=	3.79
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							18.50 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Wednesday, 09 / 23 / 2015

Hyd. No. 3

MBTA RD. CB-1

Hydrograph type =	SCS Runoff	Peak discharge	= 35.98 cfs
Storm frequency =	100 yrs	Time to peak	= 12.23 hrs
Time interval =	2 min	Hyd. volume	= 158,992 cuft
Drainage area =	12.467 ac	Curve number	= 71.4
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	TR55	Time of conc. (Tc)	= 18.10 min
Total precip. =	6.70 in	Distribution	= Type III
Storm duration =	24 hrs	Shape factor	= 484

	ŀ	lydraflo	w Hydrograph	s Exten	sion for AutoC	CAD® Ci	vil 3D® 2013 by Autodesk, Inc. v10
Hyd. No. 3							
MBTA RD. CB-1							
Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.74	+	0.00	+	0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 520.00 = 6.70 = Unpave =4.18	d	560.00 21.00 Unpave 7.39	ed	0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.08	+	1.26	+	0.00	=	3.34
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							18.10 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Wednesday, 09 / 23 / 2015

Hyd. No. 4

MBTA RD. CULVERT

Hydrograph type	= SCS Runoff	Peak discharge	= 27.24 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 127,996 cuft
Drainage area	= 16.735 ac	Curve number	= 56.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 6.70 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 4

MBTA RD. CULVERT

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.74	+	0.00	+	0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 720.00 = 11.80 = Unpaved =5.54	ł	760.00 6.70 Paved 5.26		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.17	+	2.41	+	0.00	=	4.57
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							19.30 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Wednesday, 09 / 23 / 2015

Hyd. No. 5

MBTA RD. CB-2

Hydrograph type	= SCS Runoff	Peak discharge	= 4.523 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 22,999 cuft
Drainage area	= 4.035 ac	Curve number	= 50.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.70 min
Total precip.	= 6.70 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 5							
MBTA RD. CB-2							
Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.74	+	0.00	+	0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 750.00 = 12.00 = Unpave =5.59	d	515.00 3.80 Unpave 3.15	ed	0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.24	+	2.73	+	0.00	=	4.97
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							19.70 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Wednesday, 09 / 23 / 2015

Hyd. No. 6

MBTA RD. CB-3

Hydrograph type =	= SCS Runoff	Peak discharge	= 11.19 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 53,026 cuft
Drainage area	= 7.180 ac	Curve number	= 56.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 18.10 min
Total precip.	= 6.70 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

	Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v					ivil 3D® 2013 by Autodesk, Inc. v10	
Hyd. No. 6							
MBTA RD. CB-3							
Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.74	+	0.00	+	0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1030.00 = 10.00 = Unpave =5.10) ed	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.36	+	0.00	+	0.00	=	3.36
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							18.10 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Wednesday, 09 / 23 / 2015

Hyd. No. 7

MBTA RD. DMH

Hydrograph type :	= SCS Runoff	Peak discharge	= 4.773 cfs
Storm frequency :	= 100 yrs	Time to peak	= 12.33 hrs
Time interval :	= 2 min	Hyd. volume	= 27,516 cuft
Drainage area :	= 6.527 ac	Curve number	= 45.8
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 19.60 min
Total precip.	= 6.70 in	Distribution	= Type III
Storm duration :	= 24 hrs	Shape factor	= 484

Hyd. No. 7

nya. No. 7				
MBTA RD. DMH				
Description	A	<u>B</u>	<u>C</u>	<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00	0.011 0.0 0.00 0.00	0.011 0.0 0.00 0.00	
Travel Time (min)	= 14.74 +	0.00 +	0.00 =	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 860.00 = 11.00 = Unpaved =5.35	610.00 8.20 Unpaved 4.62	0.00 0.00 Paved 0.00	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Travel Time (min)	= 2.68	+	2.20	+	0.00	=	4.88	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00			
Flow length (ft)	({0})0.0		0.0		0.0			
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00	
Total Travel Time, Tc							19.60 min	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10 $\,$

Hyd. No. 8

TO SUDBURY RIVER

Hydrograph type	= Combine	Peak discharge	= 61.55 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 294,029 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 19.951 ac

Wednesday, 09 / 23 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 9

TO NORTHERLY WETLANDS

Hydrograph type	= Combine	Peak discharge	= 67.68 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 309,987 cuft
Inflow hyds.	= 3, 4, 5	Contrib. drain. area	= 33.237 ac

Wednesday, 09 / 23 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 10

TO EASTERLY WETLANDS

Hydrograph type	= Combine	Peak discharge	= 15.86 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 80,542 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 13.707 ac

Wednesday, 09 / 23 / 2015

KELLY ENGINEERING GROUP, INC.

Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment B Proposed Conditions

Name:	Campanelli Ashland	By:	bgl	Date:	09/28/15
Location :	MBTA Road, Ashland MA			_	
Description:	Proposed Conditions - To H	ligh St. Culvert			

Circle One: Pre or <u>Post</u>

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	0	0
Woods	Hydrologic Group D; Good Condition	77	431352	3.3E+07
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	23971	1917680
Roof		98	0	0
Paved		98	18253	1788794
		Totals =	473576.00	3.7E+07

Acres = 10.871809

CN or C (weighted) = total product/total area =

78.0

Reference:

Name:	Campanelli Ashland	By:	bgl	Date:	09/28/15
Location :	MBTA Road, Ashland MA			_	
Description:	Proposed Conditions - To H	igh St. Drainage	System		

Circle One: Pre or <u>Post</u>

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	0	0
Woods	Hydrologic Group D; Good Condition	77	56257	4331789
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	49116	3929280
Roof		98	0	0
Paved		98	8590	841820
		Totals =	113963.00	9102889

Acres = 2.61623049

CN or C (weighted) = total product/total area =

79.9

Reference:

Name:	Campanelli Ashland	By:	bgl	Date:	09/28/15
Location :	MBTA Road, Ashland MA			_	
Description:	Proposed Conditions - To MBTA Re	d. CB-1			

Circle One: Pre or <u>Post</u>

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	64282	1928460
Woods	Hydrologic Group D; Good Condition	77	119413	9194801
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	80122	6409760
Roof		98	0	0
Paved		98	0	0
		Totals =	263817.00	1.8E+07

Acres = 6.05640496

CN or C (weighted) = total product/total area =

66.5

Reference:

Name:	Campanelli Ashland	By:	bgl	Date:	09/28/15
Location :	MBTA Road, Ashland MA			_	
Description:	Proposed Conditions - To	MBTA Rd. Culvert			

Circle One: Pre or <u>Post</u>

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	78082	2342460
Woods	Hydrologic Group D; Good Condition	77	1651	127127
Grass	Hydrologic Group A; Good Condition	39	39847	1554033
Grass	Hydrologic Group D; Good Condition	80	1805	144400
Roof		98	0	0
Paved		98	0	0
		Totals =	121385.00	4168020

Acres = 2.78661616

CN or C (weighted) = total product/total area =

34.3

Reference:

Name:	Campanelli Ashland	By:	bgl	Date:	09/28/15
Location :	MBTA Road, Ashland MA				
Description:	Proposed Conditions - To MBTA R	d. CB-2			

Circle One: Pre or <u>Post</u>

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	0	0
Woods	Hydrologic Group D; Good Condition	77	0	0
Grass	Hydrologic Group A; Good Condition	39	7321	285519
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
		Totals =	7321.00	285519

Acres = 0.16806703

CN or C (weighted) = total product/total area =

39.0

Reference:

Name:	Campanelli Ashland E	By:	bgl	Date:	09/28/15
Location :	MBTA Road, Ashland MA			_	
Description:	Proposed Conditions - To MBTA Ro	d. CB-3			

Circle One: Pre or <u>Post</u>

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	108960	3268800
Woods	Hydrologic Group D; Good Condition	77	173431	1.3E+07
Grass	Hydrologic Group A; Good Condition	39	9709	378651
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
		Totals =	292100.00	1.7E+07

Acres = 6.7056933

CN or C (weighted) = total product/total area =

58.2

Reference:

Name:	Campanelli Ashland	By:	bgl	Date:	09/28/15
Location :	MBTA Road, Ashland MA			_	
Description:	Proposed Conditions - To	MBTA Rd. DMH			

Circle One: Pre or <u>Post</u>

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	188792	5663760
Woods	Hydrologic Group D; Good Condition	77	95535	7356195
Grass	Hydrologic Group A; Good Condition	39	0	0
Grass	Hydrologic Group D; Good Condition	80	0	0
Roof		98	0	0
Paved		98	0	0
		Totals =	284327.00	1.3E+07

Acres = 6.52724977

CN or C (weighted) = total product/total area =

45.8

Reference:

Name:	Campanelli Ashland	By:	bgl	Date:	09/28/15
Location :	MBTA Road, Ashland MA	_		_	
Description:	Proposed Conditions - To Pond	_			

Circle One: Pre or <u>Post</u>

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Woods	Hydrologic Group A; Good Condition	30	11652	349560
Woods	Hydrologic Group D; Good Condition	77	373465	2.9E+07
Grass	Hydrologic Group A; Good Condition	39	139645	5446155
Grass	Hydrologic Group D; Good Condition	80	323439	2.6E+07
Roof		98	194558	1.9E+07
Paved		98	322584	3.2E+07
		Totals =	1365343.00	1.1E+08

Acres = 31.3439624

CN or C (weighted) = total product/total area =

81.4

Reference:

Watershed Model Schematic

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd.	Hydrograph	Inflow hyd(s)				Hydrograph					
NO.	type (origin)		1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			9.204			18.05	23.42	27.53	31.68	TO HIGH ST. CULVERT
2	SCS Runoff			3.609			6.822	8.745	10.21	11.68	HIGH ST. DRAINAGE SYSTEM
3	SCS Runoff			2.624			7.111	10.09	12.45	14.89	MBTA RD. CB-1
4	SCS Runoff			0.000			0.012	0.039	0.079	0.242	MBTA RD. CULVERT -direct
5	SCS Runoff			36.26			66.50	84.53	98.27	112.09	To Pond
6	Diversion1	5		1.050			1.050	1.050	1.050	1.050	Recharge @ 4.0 in/hr
7	Diversion2	5		35.21			65.45	83.48	97.22	111.04	back up in pond
8	Reservoir	7		4.727			21.04	34.84	45.76	57.14	Route Through Pond
9	Combine	4, 8		4.727			21.04	34.84	45.83	57.37	Total to MBTA Culvert
10	SCS Runoff			0.000			0.002	0.011	0.024	0.044	MBTA RD. CB-2
11	SCS Runoff			0.956			4.156	6.644	8.688	10.90	MBTA RD. CB-3
12	SCS Runoff			0.035			0.742	1.833	2.956	4.292	MBTA RD. DMH
13	Combine	1, 2,		11.13			21.65	28.01	32.89	37.84	TO SUDBURY RIVER
14	Combine	3, 9, 10,		5.310			23.49	39.08	51.49	64.52	TO NORTHERLY WETLANDS
15	Combine	11, 12,		0.956			4.632	8.186	11.41	15.02	TO EASTERLY WETLANDS
Pro	j. file: Post-P	Proposed C	nday, 09	/ 27 / 2015							

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	9.204	2	738	46,632				TO HIGH ST. CULVERT	
2	SCS Runoff	3.609	2	726	12,526				HIGH ST. DRAINAGE SYSTEM	
3	SCS Runoff	2.624	2	734	13,162				MBTA RD. CB-1	
4	SCS Runoff	0.000	2	n/a	0				MBTA RD. CULVERT -direct	
5	SCS Runoff	36.26	2	734	161,276				To Pond	
6	Diversion1	1.050	2	710	49,761	5			Recharge @ 4.0 in/hr	
7	Diversion2	35.21	2	734	111,515	5			back up in pond	
8	Reservoir	4.727	2	786	75,861	7	271.36	71,433	Route Through Pond	
9	Combine	4.727	2	786	75,861	4, 8			Total to MBTA Culvert	
10	SCS Runoff	0.000	2	n/a	0				MBTA RD. CB-2	
11	SCS Runoff	0.956	2	746	7,616				MBTA RD. CB-3	
12	SCS Runoff	0.035	2	930	1,013				MBTA RD. DMH	
13	Combine	11.13	2	736	59,158	1, 2,			TO SUDBURY RIVER	
14	Combine	5.310	2	778	89,023	3, 9, 10,			TO NORTHERLY WETLANDS	
15	Combine	0.956	2	746	8,629	11, 12,			TO EASTERLY WETLANDS	
Pos	st-Proposed C	onditions	.gpw		Return P	Period: 2 Ye	ear	Sunday, 09 / 27 / 2015		

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	18.05	2	738	89,057				TO HIGH ST. CULVERT		
2	SCS Runoff	6.822	2	726	23,294				HIGH ST. DRAINAGE SYSTEM		
3	SCS Runoff	7.111	2	732	30,649				MBTA RD. CB-1		
4	SCS Runoff	0.012	2	1326	228				MBTA RD. CULVERT -direct		
5	SCS Runoff	66.50	2	734	293,891				To Pond		
6	Diversion1	1.050	2	732	58,441	5			Recharge @ 4.0 in/hr		
7	Diversion2	65.45	2	734	235,451	5			back up in pond		
8	Reservoir	21.04	2	758	199,779	7	272.48	120,493	Route Through Pond		
9	Combine	21.04	2	758	200,007	4, 8			Total to MBTA Culvert		
10	SCS Runoff	0.002	2	888	66				MBTA RD. CB-2		
11	SCS Runoff	4.156	2	738	22,299				MBTA RD. CB-3		
12	SCS Runoff	0.742	2	750	7,715				MBTA RD. DMH		
13	Combine	21.65	2	736	112,351	1, 2,			TO SUDBURY RIVER		
14	Combine	23.49	2	756	230,722	3, 9, 10,			TO NORTHERLY WETLANDS		
15	Combine	4.632	2	740	30,013	11, 12,			TO EASTERLY WETLANDS		
Pos	st-Proposed C	onditions	.gpw		Return P	eriod: 10 Y	′ear	Sunday, 09	Sunday, 09 / 27 / 2015		

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	23.42	2	738	115,288				TO HIGH ST. CULVERT		
2	SCS Runoff	8.745	2	726	29,881				HIGH ST. DRAINAGE SYSTEM		
3	SCS Runoff	10.09	2	732	42,328				MBTA RD. CB-1		
4	SCS Runoff	0.039	2	898	1,059				MBTA RD. CULVERT -direct		
5	SCS Runoff	84.53	2	732	374,376				To Pond		
6	Diversion1	1.050	2	726	60,972	5			Recharge @ 4.0 in/hr		
7	Diversion2	83.48	2	732	313,404	5			back up in pond		
8	Reservoir	34.84	2	754	277,725	7	273.04	145,174	Route Through Pond		
9	Combine	34.84	2	754	278,784	4, 8			Total to MBTA Culvert		
10	SCS Runoff	0.011	2	752	157				MBTA RD. CB-2		
11	SCS Runoff	6.644	2	736	32,897				MBTA RD. CB-3		
12	SCS Runoff	1.833	2	744	13,797				MBTA RD. DMH		
13	Combine	28.01	2	736	145,169	1, 2,			TO SUDBURY RIVER		
14	Combine	39.08	2	752	321,269	3, 9, 10,			TO NORTHERLY WETLANDS		
15	Combine	8.186	2	738	46,694	11, 12,			TO EASTERLY WETLANDS		
Pos	t-Proposed C	onditions	.gpw		Return P	eriod: 25 Y	′ear	Sunday, 09	Sunday, 09 / 27 / 2015		

Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	27.53	2	738	135,585				TO HIGH ST. CULVERT	
2	SCS Runoff	10.21	2	726	34,955				HIGH ST. DRAINAGE SYSTEM	
3	SCS Runoff	12.45	2	732	51,666				MBTA RD. CB-1	
4	SCS Runoff	0.079	2	820	2,041				MBTA RD. CULVERT -direct	
5	SCS Runoff	98.27	2	732	436,170				To Pond	
6	Diversion1	1.050	2	724	62,681	5			Recharge @ 4.0 in/hr	
7	Diversion2	97.22	2	732	373,489	5			back up in pond	
8	Reservoir	45.76	2	752	337,807	7	273.45	163,075	Route Through Pond	
9	Combine	45.83	2	752	339,848	4, 8			Total to MBTA Culvert	
10	SCS Runoff	0.024	2	748	248				MBTA RD. CB-2	
11	SCS Runoff	8.688	2	736	41,646				MBTA RD. CB-3	
12	SCS Runoff	2.956	2	742	19,247				MBTA RD. DMH	
13	Combine	32.89	2	734	170,541	1, 2,			TO SUDBURY RIVER	
14	Combine	51.49	2	750	391,762	3, 9, 10,			TO NORTHERLY WETLANDS	
15	Combine	11.41	2	736	60,892	11, 12,			TO EASTERLY WETLANDS	
Pos	st-Proposed C	onditions	.gpw		Return P	eriod: 50 Y	′ear	Sunday, 09 / 27 / 2015		
Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	31.68	2	738	156,294				TO HIGH ST. CULVERT
2	SCS Runoff	11.68	2	726	40,118				HIGH ST. DRAINAGE SYSTEM
3	SCS Runoff	14.89	2	732	61,405				MBTA RD. CB-1
4	SCS Runoff	0.242	2	746	3,302				MBTA RD. CULVERT -direct
5	SCS Runoff	112.09	2	732	498,897				To Pond
6	Diversion1	1.050	2	722	64,295	5			Recharge @ 4.0 in/hr
7	Diversion2	111.04	2	732	434,602	5			back up in pond
8	Reservoir	57.14	2	750	398,917	7	273.84	180,057	Route Through Pond
9	Combine	57.37	2	750	402,219	4, 8			Total to MBTA Culvert
10	SCS Runoff	0.044	2	744	355				MBTA RD. CB-2
11	SCS Runoff	10.90	2	734	50,968				MBTA RD. CB-3
12	SCS Runoff	4.292	2	740	25,348				MBTA RD. DMH
13	Combine	37.84	2	734	196,412	1, 2,			TO SUDBURY RIVER
14	Combine	64.52	2	748	463,979	3, 9, 10,			TO NORTHERLY WETLANDS
15	Combine	15.02	2	736	76,317	11, 12,			TO EASTERLY WETLANDS
Pos	st-Proposed C	onditions	.gpw		Return P	eriod: 100	Year	Sunday, 09	/ 27 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 1

TO HIGH ST. CULVERT

Hydrograph type	= SCS Runoff	Peak discharge	= 9.204 cfs
Storm frequency	= 2 yrs	Time to peak	= 738 min
Time interval	= 2 min	Hyd. volume	= 46,632 cuft
Drainage area	= 10.870 ac	Curve number	= 78
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.69 min
Total precip.	= 3.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 1

TO HIGH ST. CULVERT

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00 = 14.74	+	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 520.00 = 4.00 = Unpave =3.23	d	1650.00 5.50 Unpave 3.78	C ed	0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.69	+	7.27	+	0.00	=	9.95
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							24.69 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 2

HIGH ST. DRAINAGE SYSTEM

Hydrograph type	= SCS Runoff	Peak discharge	= 3.609 cfs
Storm frequency	= 2 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 12,526 cuft
Drainage area	= 2.616 ac	Curve number	= 79.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 6.90 min
Total precip.	= 3.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 2

HIGH ST. DRAINAGE SYSTEM

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 50.0 = 3.10 = 3.00 = 4.86	+	0.150 0.0 0.00 0.00 0.00	÷	0.011 0.0 0.00 0.00 0.00	_	4.86
		•		•			
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 117.00 = 13.60 = Unpave =5.95	d	545.00 10.60 Unpave 5.25	d	0.00 0.00 Unpave 0.00	ed	
Travel Time (min)	= 0.33	+	1.73	+	0.00	=	2.06
Channel Flow							
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	$= 0.00 \\= 0.00 \\= 0.00 \\= 0.015 \\= 0.00$		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
					0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							6.90 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 2.624 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 13,162 cuft
Drainage area	= 6.056 ac	Curve number	= 66.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.60 min
Total precip.	= 3.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 3

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 10.0 = 3.10 = 2.00 = 1.58	+	0.150 72.0 3.10 50.00 2.11	+	0.600 41.0 3.10 17.00 6.28	=	9.97
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2133.00 = 37.00 = Unpaved =9.81	b	0.00 0.00 Unpave 0.00	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.62	+	0.00	+	0.00	=	3.62
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 4

MBTA RD. CULVERT -direct

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Drainage area	= 2.787 ac	Curve number	= 34.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 7.36 min
Total precip.	= 3.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

— Hyd No. 4

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 4

MBTA RD. CULVERT -direct

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 26.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00			
Travel Time (min)	= 6.21	+	0.00	+	0.00	=	6.21	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 88.00 = 33.00 = Unpaved =9.27	d	279.00 5.30 Paved 4.68		0.00 0.00 Paved 0.00			
Travel Time (min)	= 0.16	+	0.99	+	0.00	=	1.15	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00			
Flow length (ft)	({0})0.0		0.0		0.0			
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00	
Total Travel Time, Tc	Total Travel Time, Tc							

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Hyd. No. 5

To Pond

Hydrograph type	= SCS Runoff	Peak discharge	= 36.26 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 161,276 cuft
Drainage area	= 31.343 ac	Curve number	= 81.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.52 min
Total precip.	= 3.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 5

To Pond

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		47.00
Travel Time (min)	= 17.33	+	0.00	+	0.00	=	17.33
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 251.00 = 7.00 = Unpaved =4.27	ł	235.00 17.00 Unpave 6.65	d	140.00 25.00 Unpave 8.07	d	
Travel Time (min)	= 0.98	+	0.59	+	0.29	=	1.86
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 3.14 = 3.00 = 2.50 = 0.011 =22.08		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})442.0		0.0		0.0		
Travel Time (min)	= 0.33	+	0.00	+	0.00	=	0.33
Total Travel Time, Tc							19.52 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 6

Recharge @ 4.0 in/hr

Hydrograph type	= Diversion1	Peak discharge	= 1.050 cfs
Storm frequency	= 2 yrs	Time to peak	= 710 min
Time interval	= 2 min	Hyd. volume	= 49,761 cuft
Inflow hydrograph	= 5 - To Pond	2nd diverted hyd.	= 7
Diversion method	= Constant Q	Constant Q	= 1.05 cfs

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 7

back up in pond

Hydrograph type	= Diversion2	Peak discharge	= 35.21 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 111,515 cuft
Inflow hydrograph	= 5 - To Pond	2nd diverted hyd.	= 6
Diversion method	= Constant Q	Constant Q	= 1.05 cfs

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 8

Route Through Pond

= Reservoir	Peak discharge	= 4.727 cfs
= 2 yrs	Time to peak	= 786 min
= 2 min	Hyd. volume	= 75,861 cuft
= 7 - back up in pond	Max. Elevation	= 271.36 ft
= Detention	Max. Storage	= 71,433 cuft
	 Reservoir 2 yrs 2 min 7 - back up in pond Detention 	= ReservoirPeak discharge= 2 yrsTime to peak= 2 minHyd. volume= 7 - back up in pondMax. Elevation= DetentionMax. Storage

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Pond No. 1 - Detention

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 268.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	268.00	11,426	0	0	
0.80	268.80	12,609	9,609	9,609	
2.40	270.40	16,375	23,119	32,729	
2.60	270.60	39,500	5,420	38,148	
6.00	274.00	48,396	149,153	187,301	

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 10.00	12.00	0.00	0.00	Crest Len (ft)	= 0.00	4.00	0.00	0.00
Span (in)	= 10.00	12.00	0.00	0.00	Crest El. (ft)	= 271.00	272.00	0.00	0.00
No. Barrels	= 2	2	0	0	Weir Coeff.	= 3.03	3.33	3.33	3.33
Invert El. (ft)	= 268.80	270.50	0.00	0.00	Weir Type	= 100 degV	Rect		
Length (ft)	= 1.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by 0	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table Stage Storage Elevation Clv A Clv B Clv C PrfRsr Wr A Wr B Wr C Wr D Exfil User ft cuft ft cfs 0.00 0 268.00 0.00 0.00 0.00 -----------------------0.80 9,609 268.80 0.00 0.00 0.00 -------------------------2.40 32,729 270.40 0.00 0.00 ----------0.00 ---------------2.60 38,148 270.60 0.00 0.09 ic 0.00 ------------------------187,301 274.00 11.43 ic 13.10 ic ----11.42 s 37.67 6.00 ----------------

Sunday, 09 / 27 / 2015

Total

cfs

0.000

0.000

0.000

0.088

62.19

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 9

Total to MBTA Culvert

Hydrograph type	= Combine	Peak discharge	= 4.727 cfs
Storm frequency	= 2 yrs	Time to peak	= 786 min
Time interval	= 2 min	Hyd. volume	= 75,861 cuft
Inflow hyds.	= 4, 8	Contrib. drain. area	= 2.787 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Hyd. No. 10

= SCS Runoff	Peak discharge	= 0.000 cfs
= 2 yrs	Time to peak	= n/a
= 2 min	Hyd. volume	= 0 cuft
= 0.168 ac	Curve number	= 39
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 16.60 min
= 3.10 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 2 yrs = 2 min = 0.168 ac = 0.0 % = TR55 = 3.10 in = 24 hrs	= SCS RunoffPeak discharge= 2 yrsTime to peak= 2 minHyd. volume= 0.168 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 3.10 inDistribution= 24 hrsShape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 10

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 5.40		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		11 65
rraver rinne (minn)	= 11.05	Ŧ	0.00	Ŧ	0.00	=	11.05
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 750.00 = 12.00 = Unpave =5.59	d	515.00 3.80 Unpave 3.15	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.24	+	2.73	+	0.00	=	4.97
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							16.60 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Hyd. No. 11

Hydrograph type	= SCS Runoff	Peak discharge	= 0.956 cfs
Storm frequency	= 2 yrs	Time to peak	= 746 min
Time interval	= 2 min	Hyd. volume	= 7,616 cuft
Drainage area	= 6.706 ac	Curve number	= 58.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.10 min
Total precip.	= 3.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 11

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14./4	+	0.00	+	0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1030.00 = 10.00 = Unpaved =5.10	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.36	+	0.00	+	0.00	=	3.36
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc						18.10 min	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Hyd. No. 12

MBTA RD. DMH

Hydrograph type	= SCS Runoff	Peak discharge	= 0.035 cfs
Storm frequency	= 2 yrs	Time to peak	= 930 min
Time interval	= 2 min	Hyd. volume	= 1,013 cuft
Drainage area	= 6.527 ac	Curve number	= 45.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.60 min
Total precip.	= 3.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 12

MBTA RD. DMH

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.600 = 50.0 = 3.10 = 3.00	_	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		4474
Travel Time (min)	= 14.74	+	0.00	+	0.00	=	14.74
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 860.00 = 11.00 = Unpave =5.35	d	610.00 8.20 Unpave 4.62	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.68	+	2.20	+	0.00	=	4.88
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							19.60 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 13

TO SUDBURY RIVER

Hydrograph type	= Combine	Peak discharge	= 11.13 cfs - 736 min
Time interval	= 2 min	Hyd. volume	= 59,158 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 13.486 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 14

TO NORTHERLY WETLANDS

Hydrograph type=Storm frequency=Time interval=Inflow hyds.=	 Combine 2 yrs 2 min 3, 9, 10 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 5.310 cfs 778 min 89,023 cuft 6.224 ac
innow nyus. =	3, 9, 10	Contrib. urain. area	= 0.224 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 1

TO HIGH ST. CULVERT

Hydrograph type =	SCS Runoff	Peak discharge	= 31.68 cfs
Storm frequency =	100 yrs	Time to peak	= 738 min
Time interval =	2 min	Hyd. volume	= 156,294 cuft
Drainage area =	10.870 ac	Curve number	= 78
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	TR55	Time of conc. (Tc)	= 24.69 min
Total precip. =	6.50 in	Distribution	= Type III
Storm duration =	24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 2

HIGH ST. DRAINAGE SYSTEM

SCS Runoff	Peak discharge	= 11.68 cfs
= 100 yrs	Time to peak	= 726 min
= 2 min	Hyd. volume	= 40,118 cuft
= 2.616 ac	Curve number	= 79.9
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 6.90 min
= 6.50 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 100 yrs = 2 min = 2.616 ac = 0.0 % = TR55 = 6.50 in = 24 hrs	= SCS RunoffPeak discharge= 100 yrsTime to peak= 2 minHyd. volume= 2.616 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 6.50 inDistribution= 24 hrsShape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 14.89 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 61,405 cuft
Drainage area	= 6.056 ac	Curve number	= 66.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.60 min
Total precip.	= 6.50 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 4

MBTA RD. CULVERT -direct

.242 CIS
46 min
,302 cuft
4.3
ft
.36 min
ype III
84
,302 cuft 4.3 ft .36 min ype III 84

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Hyd. No. 5

To Pond

Hydrograph type	= SCS Runoff	Peak discharge	= 112.09 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 498,897 cuft
Drainage area	= 31.343 ac	Curve number	= 81.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.52 min
Total precip.	= 6.50 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 6

Recharge @ 4.0 in/hr

Hydrograph type	= Diversion1	Peak discharge	= 1.050 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 64,295 cuft
Inflow hydrograph	= 5 - To Pond	2nd diverted hyd.	= 7
Diversion method	= Constant Q	Constant Q	= 1.05 cfs

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 7

back up in pond

Hydrograph type	= Diversion2	Peak discharge	= 111.04 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 434,602 cuft
Inflow hydrograph	= 5 - To Pond	2nd diverted hyd.	= 6
Diversion method	= Constant Q	Constant Q	= 1.05 cfs

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 8

Route Through Pond

Hydrograph type =	Reservoir	Peak discharge	= 57.14 cfs
Storm frequency =	100 yrs	Time to peak	= 750 min
Time interval =	2 min	Hyd. volume	= 398,917 cuft
Inflow hyd. No. =	7 - back up in pond	Max. Elevation	= 273.84 ft
Reservoir name =	Detention	Max. Storage	= 180,057 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 9

Total to MBTA Culvert

Hydrograph type	= Combine	Peak discharge	= 57.37 cfs
Storm frequency	= 100 yrs	Time to peak	= 750 min
Time interval	= 2 min	Hyd. volume	= 402,219 cuft
Inflow hyds.	= 4,8	Contrib. drain. area	= 2.787 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 10

MBTA RD. CB-2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.044 cfs
Storm frequency	= 100 yrs	Time to peak	= 744 min
Time interval	= 2 min	Hyd. volume	= 355 cuft
Drainage area	= 0.168 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 6.50 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Hyd. No. 11

Hydrograph type	= SCS Runoff	Peak discharge	= 10.90 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 50,968 cuft
Drainage area	= 6.706 ac	Curve number	= 58.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.10 min
Total precip.	= 6.50 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 12

MBTA RD. DMH

Hydrograph type	= SCS Runoff	Peak discharge	= 4.292 cfs
Storm frequency	= 100 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 25,348 cuft
Drainage area	= 6.527 ac	Curve number	= 45.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.60 min
Total precip.	= 6.50 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 13

TO SUDBURY RIVER

 Combine 100 yrs 2 min 1, 2 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 37.84 cfs 734 min 196,412 cuft 13.486 ac
- 1, 2		- 10.400 ac
	Combine 100 yrs 2 min 1, 2	CombinePeak discharge100 yrsTime to peak2 minHyd. volume1, 2Contrib. drain. area

Sunday, 09 / 27 / 2015

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 14

TO NORTHERLY WETLANDS

Inflow hyds. = 3, 9, 10 Contrib. drain. area = 6.224 ac	Hydrograph type= ComStorm frequency= 100 yTime interval= 2 mirInflow hyds.= $3, 9,$	bine Peak discharge vrs Time to peak h Hyd. volume 10 Contrib. drain. a	= 64.52 cfs = 748 min = 463,979 cuft area = 6.224 ac
---	---	--	---

Sunday, 09 / 27 / 2015

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 15

TO EASTERLY WETLANDS

Hydrograph type Storm frequency	= Combine = 100 vrs	Peak discharge Time to peak	= 15.02 cfs = 736 min
Time interval	$= 2 \min$	Hyd. volume	= 76,317 cuft
Inflow hyds.	= 11, 12	Contrib. drain. area	= 13.233 ac

Sunday, 09 / 27 / 2015

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Sunday, 09 / 27 / 2015

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)										
(Yrs)	В	D	E	(N/A)							
1	0.0000	0.0000	0.0000								
2	42.4120	9.2500	0.7886								
3	0.0000	0.0000	0.0000								
5	56.7673	11.0000	0.7948								
10	67.9290	12.0000	0.8012								
25	85.5668	13.2500	0.8118								
50	97.8027	13.7500	0.8148								
100	112.8269	14.5000	0.8222								

File name: Sample.IDF

Intensity = B / (Tc + D)^E

Return	Intensity Values (in/hr)											
(Yrs)	5 min 10 15 20 25	30	35	40	45	50	55	60				
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.22	4.12	3.43	2.96	2.61	2.35	2.14	1.96	1.82	1.70	1.59	1.50
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.27	5.05	4.26	3.70	3.29	2.97	2.71	2.49	2.32	2.16	2.03	1.92
10	7.02	5.71	4.84	4.23	3.76	3.40	3.11	2.87	2.66	2.49	2.34	2.21
25	8.10	6.65	5.68	4.98	4.44	4.02	3.68	3.39	3.16	2.95	2.78	2.62
50	8.98	7.40	6.34	5.56	4.97	4.50	4.12	3.81	3.54	3.31	3.11	2.94
100	9.81	8.13	6.98	6.14	5.49	4.98	4.56	4.22	3.92	3.67	3.45	3.26

Tc = time in minutes. Values may exceed 60.

						Precip.	file name: S	Sample.pcp					
		Rainfall Precipitation Table (in)											
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr					
SCS 24-hour	2.50	3.10	0.00	3.30	4.50	5.30	5.90	6.50					
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-1st	0.00	0.00	0.00	2.75	0.00	0.00	0.00	0.00					
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-Indy	0.00	0.00	0.00	2.75	0.00	0.00	0.00	0.00					
Custom	0.00	0.00	0.00	2.80	0.00	0.00	0.00	0.00					

KELLY ENGINEERING GROUP, INC.

Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment C Recharge Systems

<u>Required Recharge Volume</u>

Total Impervious Area on site = 543,985 s.f.

155,778 s.f. within Group A Soils 388,207 s.f. within Group D Soils

Group A Required Volume = .6 * 155,778 * 1/12 = 7,789 cu ft.

Group D Required Volume = .1 * 388,207 * 1/12 = 3,235 cu .ft.

Total Volume Required = 11,024 cu. ft.

Provided:

9 ea. Cultec subsurface recharge systems. Each system has 16 chambers.
 6 Systems in D soils with a dedicated recharge volume of 265 cu.ft. = 1,590 cu.ft.
 3 Systems in A soils with a dedicated recharge volume of 448 cu.ft = 1,344 cu.ft

Total in Recharge Chambers: = 2,934

See attached Cultec Calculator and details for additional information.

2) Volume in Stormwater Management Pond = 9,609 cu. ft.

See attached Stage Storage calculation:

Total Provided = 12,543cu.ft.

Drain Down Time: 72 hour drain down time is required

Group D soils = .09 in/hr Group A soils = 4.0 in/hr

Cultech Systems: Each system is 62.5' x 8.33' = 521 s.f.

Group D soils: 521 s.f. *.09 in/hr *1/12 = 3.91 cu.ft./hr 265 cu.ft /3.91 cu.ft/hr = 67 hours

Group A soils: 521 s.f. * 4.0 in/hr *1/12 = 173.7 447 cu.ft/ 173.7 = 2.6 hours

Recharge Pond: 12,609 s.f * 4 in/hr *1/12 = 4,203 cu.ft/ hr = 1.17 CFS 12,609 cu.ft/ 4,203 cu.ft./hr = 3.0 hours

	Stormwa	ater and S	eptic Solutior	IS	1-800-4 Manuf ISO 90 certifier	-CULTEC actured at 01:2000 I facilities		
Prepared For:	Project In	formation:	En	gineer:		Calculatio	ons Perform	ned By:
Name	Name	Ashland	Na	ne		Name		
Company Name	Street Add	lress	Co	mpany Name		Company	Name	
Street Address	City	1 1	Str	eet Address		Street Add	dress	
City	State	Zip	City	/		City	1	1
State Zip	_		Sta	te	Zip	State		Zip
Phone	Date:	(mm/dd	l) Pho	one		Phone		
Fax			Fax	- 11		Fax		
Email			Em	all		Email		
Input Given Parameters				Г		C	hamber Sp	ecifications
Unit of Measure	English				Height		12.5	inches
Select Model	Contact	tor 100HD			Width		36.00	inches
					Length		8.00	feet
Stone Porosity	40.0%				Installed Let	ngth	7.50	feet
Number of Header Systems	1 Header				Bare Chamber	Volume	14.00	cu. feet
Stone Depth Above Chamber	6	inches		1998	Installed Chambe	er Volume	28.81	cu. feet
Stone Depth Below Chamber	6	inches			Image for visual refere	ence only.May n	ot reflect sele	cted model.
Workable Bed Depth	10.00	feet			Bed Dept	h	2.96	feet
Max. Bed Width	10.00	feet			Bed Widt	h	8.33	feet
Storage Volume Required	500.00	cu. feet –		\rightarrow	Storage Volume	Provided	560.88	cu. feet
Materials List								
Contactor 100HD Stormwater System	by CULTEC, In	IC.						
Approx. Unit Count - not for construction	17	pieces		HVLV S	SFCx2	1	pieces	
Actual Number of Chambers Required	16	pieces		CULTEC No. 410	[™] Filter Fabric	162.67	sq. yards	
Starter Chambers	2	pieces		CULTEC No. 20L F	Polyethylene Liner	8.33	feet	
Intermediate Chambers	0	pieces		Stor	ne	31.02	cu. yards	
End Chambers	14	pieces		Volume of E	Excavation	57.07	cu. yards	
Bed Detail								
	BED LEN	GTH						

Number of Rows Wide	2	pieces
Number of Chambers Long	8	pieces
Chamber Row Width	6.33	feet
Chamber Row Length	60.50	feet
Bed Width	8.33	feet
Bed Length	62.50	feet
Bed Area Required	520.83	sq. feet

Bed detail for reference only. Not project specific. Not to scale. Use CULTEC StormGenie to output project specific detail.

Pavement

95% Compacted Fill

Project Name: Name

(mm/dd)

Cross Section Detail

Stone Above6inchesChamber Height12.5inchesStone Below6inchesEffective Depth24.5inchesBed Depth35.5inches

3

8

inches

inches

Contactor 100HD

Conceptual graphic only. Not job specific.

Date:

Α	Depth of Stone Base	6.0	inches	Breakdown of	Storage I	Provided by
В	Chamber Height	12.5	inches	Contactor 100HD	Stormwa	ater System
С	Depth of Stone Above Units	6.0	inches	Chambers	225.79	cu. feet
D	Depth of 95% Compacted Fill	8.0	inches	Feed Connectors	0.10	cu. feet
E	Max. Depth of Cover Allowed Above Crown of Chamber	14.0	feet	Stone	334.99	cu. feet
F	Chamber Width	36.0	inches	Total Storage Provided	560.88	cu. feet
G	Center to Center Spacing	3.33	feet			

Phone: 203-775-4416 Fax: 203-775-1462 www.cultec.com custservice@cultec.com

Number of chamber	'S -	16	Given:	6" stone base
Stone Void -		0.40		6" stone above units
Base of Stone Eleva	ation -	1.00		40" center to center
Stone Border	Lenth	136.00		
	Width	0.90		

CULTEC Contactor 100HD Incremental Storage Volumes

Height of System (in)	Chamber Ht (in)	Incremental Chamber (ft ³)	cumulative storage per chamber alone (ft3)	cumulative storage per chamber alone (m3)	Incremental Stone (ft ³)	Incremental Chamber & Stone (ft ³)	Cumulative Storage per Chamber (ft ³)	Cumulative Storage for System (ft ³)	Elevation	Stone Border	Cummulative stone border	Total System	
24.5		0.000			0.83	0.83	28.81	461.02	3.04	4.08	99.96	560.98	l
23.5	1	0.000			0.83	0.83	27.98	447.69	2.96	4.08	95.88	543.57	
22.5]	0.000			0.83	0.83	27.15	434.35	2.88	4.08	91.8	526.15	l
21.5		0.000			0.83	0.83	26.31	421.02	2.79	4.08	87.72	508.74	
20.5		0.000			0.83	0.83	25.48	407.69	2.71	4.08	83.64	491.33	
19.5		0.000			0.83	0.83	24.65	394.35	2.63	4.08	79.56	473.91	l
18.5	12.5	0.000			0.42	0.42	23.81	381.02	2.54	2.04	75.48	456.50	
18	12	0.068	13.995	0.396	0.81	0.87	23.40	374.35	2.50	4.08	73.44	447.79	Dedicated storage for blds 4-9
17	11	0.503	13.928	0.394	0.63	1.13	22.52	360.37	2.42	4.08	69.36	429.73	
16	10	0.825	13.425	0.380	0.50	1.33	21.39	342.21	2.33	4.08	65.28	407.49	
15	9	1.043	12.600	0.357	0.42	1.46	20.06	320.96	2.25	4.08	61.2	382.16	
14	8	1.193	11.558	0.327	0.36	1.55	18.60	297.62	2.17	4.08	57.12	354.74	
13	7	1.305	10.365	0.294	0.31	1.62	17.05	272.84	2.08	4.08	53.04	325.88	
12	6	1.380	9.060	0.257	0.28	1.66	15.44	246.98	2.00	4.08	48.96	295.94	
11	5	1.440	7.680	0.217	0.26	1.70	13.77	220.39	1.92	4.08	44.88	265.27	Dedicated storage for blds 1-3
10	4	1.523	6.240	0.177	0.22	1.75	12.08	193.24	1.83	4.08	40.8	234.04	l
9	3	1.523	4.718	0.134	0.22	1.75	10.33	165.29	1.75	4.08	36.72	202.01	
8	2	1.523	3.195	0.090	0.22	1.75	8.58	137.34	1.67	4.08	32.64	169.98	
7	1	1.673	1.673	0.047	0.16	1.84	6.84	109.39	1.58	4.08	28.56	137.95	
6		0.000			0.83	0.83	5.00	80.00	1.50	4.08	24.48	104.48	
5		0.000			0.83	0.83	4.17	66.67	1.42	4.08	20.4	87.07	
4		0.000			0.83	0.83	3.33	53.33	1.33	4.08	16.32	69.65	
3	ļ	0.000			0.83	0.83	2.50	40.00	1.25	4.08	12.24	52.24	1
2		0.000			0.83	0.83	1.67	26.67	1.17	4.08	8.16	34.83	
1		0.000			0.83	0.83	0.83	13.33	1.08	4.08	4.08	17.41	
TOTALS	-	13.995			14.82	28.81	28.81	461.02				560.98	

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Pond No. 1 - Detention

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 268.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	dedicated to
0.00 0.80	268.00 268.80	11,426 12,609	0 (9.609)	9,609	recharge
2.40	270.40	16,375	23,119	32,729	
2.60	270.60	39,500	5,420	38,148	
6.00	274.00	48,396	149,153	187,301	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 10.00	12.00	0.00	0.00	Crest Len (ft)	= 0.00	4.00	0.00	0.00
Span (in)	= 10.00	12.00	0.00	0.00	Crest El. (ft)	= 271.00	272.00	0.00	0.00
No. Barrels	= 2	2	0	0	Weir Coeff.	= 3.03	3.33	3.33	3.33
Invert EI. (ft)	= 268.80	270.50	0.00	0.00	Weir Type	= 100 degV	Rect		
Length (ft)	= 1.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by C	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Slaye /	hage / Storage / Discharge Table												
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	268.00	0.00	0.00				0.00					0.000
0.80	9,609	268.80	0.00	0.00				0.00					0.000
2.40	32,729	270.40	0.00	0.00				0.00					0.000
2.60	38,148	270.60	0.00	0.09 ic				0.00					0.088
6.00	187,301	274.00	11.43 ic	13.10 ic			11.42 s	37.67					62.19

Weir Structures

Type III 24-hr Rainfall=1.29"

Table 2.3.3. 1982 Rawls Rates¹⁸

Texture Class	NRCS Hydrologic Soil Group (HSG)	Infiltration Rate Inches/Hour
Sand	A	8.27
Loamy Sand	А	2.41
Sandy Loam	В	1.02
Loam	В	0.52
Silt Loam	С	0.27
Sandy Clay Loam	С	0.17
Clay Loam	D	0.09
Silty Clay Loam	D	0.06
Sandy Clay	D	0.05
Silty Clay	D	0.04
Clay	D	0.02

Volume 3: Documenting Compliance with the Massachusetts Stormwater Management Standards

¹⁸ Rawls, Brakensiek and Saxton, 1982

KELLY ENGINEERING GROUP, INC. Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment D Pipe Sizing

Rational Method Calculations

i=6.5 in/hr (25 year storm)

Pipe Run A DMH A1 - A6								
	PA1	PA2	PA3	PA4	PA5	PA6		
Node Area (s.f.)	0	34,229	14,237	21,668	17,462	164,459		
Green area	0	7234	7234	5722	2,130	123,439		
Impervious area	0	26,995	7,003	15,946	15,332	41,020		
С	0.00	0.79	0.65	0.77	0.84	0.52		
Node Area (AC)		0.79	0.33	0.50	0.40	3.78		
Q=CiA (Node)		4.06	1.37	2.48	2.19	12.88		
Total Area (s.f.)	252055	252055	217826	203589	181921	164459		
Total Area (AC)	5.79	5.79	5.00	4.67	4.18	3.78		
Q=CiA (Total)	22.98	22.98	18.92	17.55	15.06	12.88		

	Pipe Run D DMH D1 - D5									
	PD1	PD2	PD3	PD4	PD5					
Node Area (s.f.)	21,566	35,005	0	15,658	10,717					
Green area	3519	13036	0	21969	3,796					
Impervious area	18,047	21,969	0	10,506	6,921					
С	0.82	0.71	0.00	1.17	0.72					
Node Area (AC)	0.50	0.80	0.00	0.36	0.25					
Q=CiA (Node)	2.63	3.73	0.00	2.72	1.16					
Total Area (s.f.)	82946	61380	26375	26375	10717					
Total Area (AC)	1.90	1.41	0.61	0.61	0.25					
Q=CiA (Total)	10.24	7.61	3.88	3.88	1.16					

		Pipe Run C	DMH C1 -	C17													
	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15	PC16	PC17
Node Area (s.f.)	32,905	9,008	35,579	6,382	12,738	34,105	5,708	6,648	0	37589	8436	0	49306	3643	0	19379	52,444
Green area	9876	2227	9971	807	4,925	11,747	0	858	0	11487	0	0	17269	0	0	4691	14,589
Impervious area	23,029	6,781	25,608	5,575	7,813	22,358	5,708	5,790	0	26,102	8,436	0	32,037	3,643	0	14,688	37,855
С	0.75	0.78	0.76	0.84	0.71	0.73	0.90	0.84	0.00	0.75	0.90	0.00	0.72	0.90	0.00	0.78	0.76
Node Area (AC)	0.76	0.21	0.82	0.15	0.29	0.78	0.13	0.15	0.00	0.86	0.19	0.00	1.13	0.08	0.00	0.44	1.20
Q=CiA (Node)	3.68	1.04	4.03	0.80	1.34	3.70	0.77	0.83	0.00	4.19	1.13	0.00	5.33	0.49	0.00	2.25	5.95
Total Area (s.f.)	313870	280965	271957	236378	229996	217258	183153	177445	170797	170797	133208	124772	124772	75466	71823	71823	52444
Total Area (AC)	7.21	6.45	6.24	5.43	5.28	4.99	4.20	4.07	3.92	3.92	3.06	2.86	2.86	1.73	1.65	1.65	1.20
Q=CiA (Total)	35.55	31.87	30.83	26.79	26.00	24.65	20.95	20.18	19.35	19.35	15.16	14.03	14.03	8.70	8.21	8.21	5.95

2015-042

9/28/2015

		Pipe Run B	DMH B1 -	B24													
	PB1	**PB2	PB3	PB4	PB5	PB7	PB10	PB11	PB12	*PB13	PB14	PB17	PB18	PB19	PB20	PB21	PB23
Node Area (s.f.)	2,995	0	14,995	0	78901	157207	26605	104531	40428	13270	34,453	40068	40247	13301	9288	32851	26409
Green area	0	0	9873	0	61485	156487	8904	104531	28016	7833	34,453	22392	20001	2621	1775	32851	11627
Impervious area	2,995	0	5,122	0	17,416	720	17,701	0	12,412	5,437	0	17,676	20,246	10,680	7,513	0	14,782
с	0.90	0.00	0.57	0.00	0.51	0.40	0.73	0.40	0.55	0.60	0.40	0.62	0.65	0.80	0.80	0.40	0.68
Node Area (AC)	0.07	0.00	0.34	0.00	1.81	3.61	0.61	2.40	0.93	0.30	0.79	0.92	0.92	0.31	0.21	0.75	0.61
Q=CiA (Node)	0.40	0.00	1.28	0.00	6.01	9.44	2.91	6.24	3.34	1.20	2.06	3.71	3.91	1.59	1.11	1.96	2.68
Total Area (s.f.)	1032365	1029370	715500	700505	700505	621604	464397	437792	333261	292833	196617	162164	122096	81849	68548	59260	26409
Total Area (AC)	23.70	23.63	16.43	16.08	16.08	14.27	10.66	10.05	7.65	6.72	4.51	3.72	2.80	1.88	1.57	1.36	0.61
Q=CiA (Total)	93.63	93.23	57.67	56.40	56.40	50.39	40.95	38.04	31.80	28.46	17.02	14.97	11.26	7.35	5.75	4.64	2.68

*PB13 - Flow from PD1 enters network

**PB2 - Flow from PC1 enters network

Note PB1 = pipe out from Drain Manhole #B1

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015 PA1

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 0.86
		Q (cfs)	= 22.98
		Area (sqft)	= 1.30
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 17.67
Slope (%)	= 5.00	Wetted Perim (ft)	= 2.87
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.71
		Top Width (ft)	= 1.98
Calculations		EGL (ft)	= 5.71
Compute by:	Known Q		
Known Q (cfs)	= 22.98		

Channel Report

Hydraflow Express Extension	I for Autodesk® AutoCAD® Civil 3D® by Au	itodesk, Inc.	Tuesday, Sep 29 2015		
PA3					
Circular		Highlighted			
Diameter (ft)	= 1.50	Depth (ft)	= 1.24		
		Q (cfs)	= 18.92		
		Area (sqft)	= 1.56		
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 12.10		
Slope (%)	= 2.30	Wetted Perim (ft)	= 3.43		
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.46		
		Top Width (ft)	= 1.13		
Calculations		EGL (ft)	= 3.52		
Compute by:	Known Q				
Known Q (cfs)	= 18.92				

Channel Report

Hydraflow Express Extension for AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PA2

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.00
		Q (cfs)	= 22.98
		Area (sqft)	= 1.58
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 14.55
Slope (%)	= 3.00	Wetted Perim (ft)	= 3.15
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.71
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 4.29
Compute by:	Known Q	. ,	
Known Q (cfs)	= 22.98		

Hydraflow Express Extension	Tuesday, Sep 29 2015		
PA4			
Circular Diameter (ft)	= 1.50	Highlighted Depth (ft) Q (cfs) Area (sqft)	= 0.93 = 17.55 = 1.15
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 15.22
Slope (%)	= 4.10	Wetted Perim (ft)	= 2.72
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.45
		Top Width (ft)	= 1.46
Calculations		EGL (ft)	= 4.53
Compute by:	Known Q		
Known Q (cfs)	= 17.55		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015 DA5

PAJ				
Circular		Highlighted		
Diameter (ft)	= 1.50	Depth (ft)	= 1.04	
		Q (cfs)	= 15.06	
		Area (sqft)	= 1.31	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 11.50	
Slope (%)	= 2.20	Wetted Perim (ft)	= 2.95	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.41	
		Top Width (ft)	= 1.38	
Calculations		EGL (ft)	= 3.10	
Compute by:	Known Q			
Known Q (cfs)	= 15.06			

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Monday, Sep 28 2015	
PB1				
Circular		Highlighted		
Diameter (ft)	= 3.00	Depth (ft)	= 2.16	
		Q (cfs)	= 96.63	
		Area (sqft)	= 5.46	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 17.69	
Slope (%)	= 2.00	Wetted Perim (ft)	= 6.09	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 2.89	
		Top Width (ft)	= 2.69	
Calculations		EGL (ft)	= 7.03	
Compute by:	Known Q			
Known Q (cfs)	= 96.63			

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PA6

Circular		Highlighted	
Diameter (ft)	= 1.50	Depth (ft)	= 1.29
		Q (cfs)	= 12.88
		Area (sqft)	= 1.62
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.97
Slope (%)	= 1.00	Wetted Perim (ft)	= 3.56
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.35
		Top Width (ft)	= 1.04
Calculations		EGL (ft)	= 2.28
Compute by:	Known Q		
Known Q (cfs)	= 12.88		

Hydraflow Express Extension	n for Autodesk® AutoCAD® Civil 3D® by A	utodesk, Inc.	Monday, Sep 28 2015
PB2			
Circular		Highlighted	
Diameter (ft)	= 3.00	Depth (ft)	= 2.10
		Q (cfs)	= 93.23
		Area (sqft)	= 5.30
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 17.61
Slope (%)	= 2.00	Wetted Perim (ft)	= 5.95
N-Value	= 0.011	Crit Depth, Yc (ft)	= 2.87
		Top Width (ft)	= 2.75
Calculations		EGL (ft)	= 6.92
Compute by:	Known Q		
Known Q (cfs)	= 93.23		

Hydrallow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Monday, Sep 28 2015 PB3

1 80				
Circular		Highlighted		
Diameter (ft)	= 2.50	Depth (ft)	= 1.76	
		Q (cfs)	= 57.67	
		Area (sqft)	= 3.70	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 15.57	
Slope (%)	= 2.00	Wetted Perim (ft)	= 4.99	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 2.38	
		Top Width (ft)	= 2.28	
Calculations		EGL (ft)	= 5.53	
Compute by:	Known Q			
Known Q (cfs)	= 57.67			

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Monday, Sep 28 2015
PB5			
Circular		Highlighted	
Diameter (ft)	= 2.50	Depth (ft)	= 1.73
		Q (cfs)	= 56.40
		Area (sqft)	= 3.62
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 15.56
Slope (%)	= 2.00	Wetted Perim (ft)	= 4.91
N-Value	= 0.011	Crit Depth, Yc (ft)	= 2.37
		Top Width (ft)	= 2.31
Calculations		EGL (ft)	= 5.49
Compute by:	Known Q		
Known Q (cfs)	= 56.40		

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Monday, Sep 28 2015

PB4

Circular		Highlighted	
Diameter (ft)	= 2.50	Depth (ft)	= 1.73
		Q (cfs)	= 56.40
		Area (sqft)	= 3.62
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 15.56
Slope (%)	= 2.00	Wetted Perim (ft)	= 4.91
N-Value	= 0.011	Crit Depth, Yc (ft)	= 2.37
		Top Width (ft)	= 2.31
Calculations		EGL (ft)	= 5.49
Compute by:	Known Q		
Known Q (cfs)	= 56.40		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Monday, Sep 28 2015
PB7			
Circular		Highlighted	
Diameter (ft)	= 2.50	Depth (ft)	= 1.88
		Q (cfs)	= 50.39
		Area (sqft)	= 3.96
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 12.72
Slope (%)	= 1.30	Wetted Perim (ft)	= 5.25
N-Value	= 0.011	Crit Depth, Yc (ft)	= 2.31
		Top Width (ft)	= 2.16
Calculations		EGL (ft)	= 4.39
Compute by:	Known Q		
Known Q (cfs)	= 50.39		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Monday, Sep 28 2015

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.25
		Q (cfs)	= 40.95
		Area (sqft)	= 2.07
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 19.80
Slope (%)	= 4.60	Wetted Perim (ft)	= 3.65
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.96
		Top Width (ft)	= 1.94
Calculations		EGL (ft)	= 7.34
Compute by:	Known Q		
Known Q (cfs)	= 40.95		

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.		Monday, Sep 28 2015	
PB12			
Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.25
		Q (cfs)	= 31.80
		Area (sqft)	= 2.07
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 15.37
Slope (%)	= 2.80	Wetted Perim (ft)	= 3.65
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.89
		Top Width (ft)	= 1.94
Calculations		EGL (ft)	= 4.92
Compute by:	Known Q		
Known Q (cfs)	= 31.80		

Channel Report

Hydraflow Express Extension for AutoCAD® Civil 3D® by Autodesk, Inc. Monday, Sep 28 2015

PB11

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.19
		Q (cfs)	= 38.04
		Area (sqft)	= 1.95
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 19.46
Slope (%)	= 4.60	Wetted Perim (ft)	= 3.53
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.95
		Top Width (ft)	= 1.96
Calculations		EGL (ft)	= 7.08
Compute by:	Known Q		
Known Q (cfs)	= 38.04		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Monday, Sep 28 2015
PB13			
Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.09
		Q (cfs)	= 28.46
		Area (sqft)	= 1.76
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 16.18
Slope (%)	= 3.40	Wetted Perim (ft)	= 3.33
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.84
		Top Width (ft)	= 1.99
Calculations		EGL (ft)	= 5.16
Compute by:	Known Q		
Known Q (cfs)	= 28.46		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PB14			
Circular		Highlighted	
Diameter (ft)	= 1.50	Depth (ft)	= 1.32
		Q (cfs)	= 17.03
		Area (sqft)	= 1.65
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 10.34
Slope (%)	= 1.70	Wetted Perim (ft)	= 3.65
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.44
		Top Width (ft)	= 0.97
Calculations		EGL (ft)	= 2.98
Compute by:	Known Q		
Known Q (cfs)	= 17.03		

Channel Report

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PB17

Circular	- 4.50	Highlighted	- 0.74
Diameter (ft)	= 1.50	Depth (ft)	= 0.71
		Q (cts)	= 14.97
		Area (sqft)	= 0.83
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 18.11
Slope (%)	= 7.10	Wetted Perim (ft)	= 2.28
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.41
		Top Width (ft)	= 1.50
Calculations		EGL (ft)	= 5.81
Compute by:	Known Q		
Known Q (cfs)	= 14.97		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Tuesday, Sep 29 2015
PB19			
Circular		Highlighted	
Diameter (ft)	= 1.25	Depth (ft)	= 0.88
. ,		Q (cfs)	= 7.350
		Area (sqft)	= 0.93
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.94
Slope (%)	= 1.30	Wetted Perim (ft)	= 2.49
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.08
		Top Width (ft)	= 1.14
Calculations		EGL (ft)	= 1.86
Compute by:	Known Q		
Known Q (cfs)	= 7.35		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015 PB20

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.73
		Q (cfs)	= 5.750
		Area (sqft)	= 0.61
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.35
Slope (%)	= 2.40	Wetted Perim (ft)	= 2.05
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.95
		Top Width (ft)	= 0.89
Calculations		EGL (ft)	= 2.09
Compute by:	Known Q		
Known Q (cfs)	= 5.75		

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Tuesday, Sep 29 2015
PB23			
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.58
		Q (cfs)	= 2.680
		Area (sqft)	= 0.47
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.65
Slope (%)	= 1.00	Wetted Perim (ft)	= 1.73
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.71
		Top Width (ft)	= 0.99
Calculations		EGL (ft)	= 1.08
Compute by:	Known Q		
Known Q (cfs)	= 2.68		

Channel Report

Hydraflow Express Extension for AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PB21

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.88
		Q (cfs)	= 4.640
		Area (sqft)	= 0.73
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.34
Slope (%)	= 1.10	Wetted Perim (ft)	= 2.44
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.90
		Top Width (ft)	= 0.65
Calculations		EGL (ft)	= 1.50
Compute by:	Known Q		
Known Q (cfs)	= 4.64		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Tuesday, Sep 29 2015
PC1			
Circular		Highlighted	
Diameter (ft)	= 2.50	Depth (ft)	= 1.28
		Q (cfs)	= 35.55
		Area (sqft)	= 2.53
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 14.05
Slope (%)	= 2.00	Wetted Perim (ft)	= 3.99
N-Value	= 0.011	Crit Depth, Yc (ft)	= 2.03
		Top Width (ft)	= 2.50
Calculations		EGL (ft)	= 4.35
Compute by:	Known Q		
Known Q (cfs)	= 35.55		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015 PC2

Circular		Highlighted		
Diameter (ft)	= 2.50	Depth (ft)	= 1.43	
		Q (cfs)	= 31.87	
		Area (soft)	= 2.92	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 10.92	
Slope (%)	= 1.10	Wetted Perim (ft)	= 4.30	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.92	
		Top Width (ft)	= 2.47	
Calculations		EGL (ft)	= 3.29	
Compute by:	Known Q			
Known Q (cfs)	= 31.87			

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Tuesday, Sep 29 2015	
PC4				
Circular		Highlighted		
Diameter (ft)	= 2.00	Depth (ft)	= 1.77	
		Q (cfs)	= 26.79	
		Area (sqft)	= 2.94	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.11	
Slope (%)	= 0.90	Wetted Perim (ft)	= 4.90	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.81	
		Top Width (ft)	= 1.28	
Calculations		EGL (ft)	= 3.06	
Compute by:	Known Q			
Known Q (cfs)	= 26.79			

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PC3

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 0.95
		Q (cfs)	= 30.83
		Area (sqft)	= 1.48
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 20.84
Slope (%)	= 6.40	Wetted Perim (ft)	= 3.05
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.88
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 7.70
Compute by:	Known Q		
Known Q (cfs)	= 30.83		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Tuesday, Sep 29 2015
PC5			
Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.07
		Q (cfs)	= 26.00
		Area (sqft)	= 1.72
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 15.13
Slope (%)	= 3.00	Wetted Perim (ft)	= 3.29
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.79
		Top Width (ft)	= 1.99
Calculations		EGL (ft)	= 4.63
Compute by:	Known Q		
Known Q (cfs)	= 26.00		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015 PC6

Circular		Highlighted		
Diameter (ft)	= 2.00	Depth (ft)	= 1.11	
		Q (cfs)	= 24.65	
		Area (sqft)	= 1.80	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 13.71	
Slope (%)	= 2.40	Wetted Perim (ft)	= 3.37	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.76	
		Top Width (ft)	= 1.99	
Calculations		EGL (ft)	= 4.03	
Compute by:	Known Q			
Known Q (cfs)	= 24.65			

Channel Report

Hydraflow Express Extension	Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.		
PC8			
Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.30
		Q (cfs)	= 20.18
		Area (sqft)	= 2.17
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.30
Slope (%)	= 1.00	Wetted Perim (ft)	= 3.76
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.62
		Top Width (ft)	= 1.91
Calculations		EGL (ft)	= 2.64
Compute by:	Known Q		
Known Q (cfs)	= 20.18		

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PC7

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.34
		Q (cfs)	= 20.95
		Area (sqft)	= 2.24
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.35
Slope (%)	= 1.00	Wetted Perim (ft)	= 3.84
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.64
		Top Width (ft)	= 1.88
Calculations		EGL (ft)	= 2.70
Compute by:	Known Q		
Known Q (cfs)	= 20.95		

Hydraflow Express Extension	for Autodesk® AutoCAD® Civil 3D® by A	utodesk, Inc.	Tuesday, Sep 29 2015
PC9			
Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.27
		Q (cfs)	= 19.35
		Area (sqft)	= 2.11
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.19
Slope (%)	= 1.00	Wetted Perim (ft)	= 3.69
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.59
		Top Width (ft)	= 1.93
Calculations		EGL (ft)	= 2.58
Compute by:	Known Q		
Known Q (cfs)	= 19.35		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PC10			
Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.27
		Q (cfs)	= 19.35
		Area (sqft)	= 2.11
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.19
Slope (%)	= 1.00	Wetted Perim (ft)	= 3.69
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.59
		Top Width (ft)	= 1.93
Calculations		EGL (ft)	= 2.58
Compute by:	Known Q		
Known Q (cfs)	= 19.35		

Channel Report

Hydraflow Express Extension	lydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.		
PC12			
Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.03
		Q (cfs)	= 14.03
		Area (sqft)	= 1.64
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.56
Slope (%)	= 1.00	Wetted Perim (ft)	= 3.21
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.35
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 2.17
Compute by:	Known Q		
Known Q (cfs)	= 14.03		

Channel Report

Hydraflow Express Extension for AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PC11

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.08
		Q (cfs)	= 15.16
		Area (sqft)	= 1.74
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.72
Slope (%)	= 1.00	Wetted Perim (ft)	= 3.31
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.41
		Top Width (ft)	= 1.99
Calculations		EGL (ft)	= 2.26
Compute by:	Known Q		
Known Q (cfs)	= 15.16		

Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Hydraflow Express Extension	Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			
PC13				
Circular		Highlighted		
Diameter (ft)	= 2.00	Depth (ft)	= 1.03	
		Q (cfs)	= 14.03	
		Area (sqft)	= 1.64	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.56	
Slope (%)	= 1.00	Wetted Perim (ft)	= 3.21	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.35	
		Top Width (ft)	= 2.00	
Calculations		EGL (ft)	= 2.17	
Compute by:	Known Q			
Known Q (cfs)	= 14.03			

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 20 5

1014				
Circular		Highlighted		
Diameter (ft)	= 1.50	Depth (ft)	= 0.93	
		Q (cfs)	= 8.700	
		Area (sqft)	= 1.15	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.55	
Slope (%)	= 1.00	Wetted Perim (ft)	= 2.72	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.15	
		Top Width (ft)	= 1.46	
Calculations		EGL (ft)	= 1.82	
Compute by:	Known Q			
Known Q (cfs)	= 8.70			

Channel Report

 $\begin{array}{rcl} \mbox{Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.} & Tuesday, Sep 29 2015 \\ \hline \mbox{PC16} & & \\ \hline \mbox{Circular} & & & \\ \hline \mbox{Diameter}(ft) & = 1.25 & & \\ \hline \mbox{Depth}(ft) & = 0.69 & \\ \hline \mbox{Q}(cfs) & = 8.210 & \\ \hline \mbox{Area}(sqft) & = 0.69 & \\ \hline \mbox{Q}(cfs) & = 11.82 & \\ \hline \mbox{Slope}(\%) & = 3.40 & & \\ \hline \mbox{Wetted} Perim (ft) & = 2.09 & \\ \hline \mbox{N-Value} & = 0.011 & & \\ \hline \mbox{Crit Depth}, Yc (ft) & = 1.13 & \\ \hline \mbox{Calculations} & & \\ \hline \mbox{Compute by:} & & \\ \hline \mbox{Known Q}(cfs) & = 8.21 & \\ \hline \end{array}$

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PC15

Circular Diameter (ft)	= 1.25	Highlighted Depth (ft) Q (cfs) Area (coff)	= 0.60 = 8.210 = 0.59
Invert Elev (ft) Slope (%) N-Value	= 100.00 = 5.60 = 0.011	Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft)	= 0.39 = 14.02 = 1.92 = 1.13
Calculations Compute by: Known Q (cfs)	Known Q = 8.21	EGL (ft)	= 1.25 = 3.66

Hydraflow Express Extension for A		Tuesday, Sep 29 2015	
PC17			
Circular		Highlighted	
Diameter (ft)	= 1.25	Depth (ft)	= 0.84
		Q (cfs)	= 5.950
		Area (sqft)	= 0.88
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.77
Slope (%)	= 1.00	Wetted Perim (ft)	= 2.41
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.99
		Top Width (ft)	= 1.17
Calculations		EGL (ft)	= 1.55
Compute by:	Known Q		
Known Q (cfs)	= 5.95		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PDI				
Circular		Highlighted		
Diameter (ft)	= 1.25	Depth (ft)	= 0.90	
		Q (cfs)	= 10.24	
		Area (sqft)	= 0.95	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 10.80	
Slope (%)	= 2.40	Wetted Perim (ft)	= 2.54	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.19	
		Top Width (ft)	= 1.12	
Calculations		EGL (ft)	= 2.71	
Compute by:	Known Q			
Known Q (cfs)	= 10.24			

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.			Tuesday, Sep 29 2015	
PD3				
Circular		Highlighted		
Diameter (ft)	= 1.00	Depth (ft)	= 0.69	
		Q (cfs)	= 3.880	
		Area (sqft)	= 0.58	
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.69	
Slope (%)	= 1.30	Wetted Perim (ft)	= 1.96	
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.84	
		Top Width (ft)	= 0.92	
Calculations		EGL (ft)	= 1.39	
Compute by:	Known Q			
Known Q (cfs)	= 3.88			

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Sep 29 2015

PD2

Circular		Highlighted	
Diameter (ft)	= 1.25	Depth (ft)	= 0.84
		Q (cfs)	= 7.610
		Area (sqft)	= 0.88
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.66
Slope (%)	= 1.60	Wetted Perim (ft)	= 2.41
N-Value	= 0.011	Crit Depth, Yc (ft)	= 1.10
		Top Width (ft)	= 1.17
Calculations		EGL (ft)	= 2.01
Compute by:	Known Q		
Known Q (cfs)	= 7.61		

Hydraflow Express Extension	for Autodesk® AutoCAD® Civil 3D® by A	utodesk, Inc.	Tuesday, Sep 29 2015
PD4			
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.73
		Q (cfs)	= 3.880
		Area (sqft)	= 0.61
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.31
Slope (%)	= 1.10	Wetted Perim (ft)	= 2.05
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.84
		Top Width (ft)	= 0.89
Calculations		EGL (ft)	= 1.35
Compute by:	Known Q		
Known Q (cfs)	= 3.88		

KELLY ENGINEERING GROUP, INC. Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment E TSS Removal

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

		Location:	Stormwater Management Po	ond		
		В	C TSS Demovel	D Storting TSS	E	F
		BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
	neet	Street Sweeping - 5%	0.05	1.00	0.05	0.95
loval	orksł	Deep Sump and Hooded Catch Basin	0.25	0.95	0.24	0.71
Rem	on W	Constructed Stormwater Wetland	0.80	0.71	0.57	0.14
TSS	culati	Infiltration Basin	0.80	0.14	0.11	0.03
	Cal		0.00	0.03	0.00	0.03
			Total T	SS Removal =	97%	Separate Form Needs to be Completed for Each Outlet or BMP Train
		Project:	2015-042			
		Prepared By:	Kelly Engineering Group,Inc.		*Equals remaining load from	n previous BMP (E)
		Date:	9/25/2015		which enters the BMP	, ,
Non-aut must be	omate used	ed TSS Calculation Sheet if Proprietary BMP Proposed				

1. From MassDEP Stormwater Handbook Vol. 1

Mass. Dept. of Environmental Protection

Version 1, Automated: Mar. 4, 2008

E - 1

<u>1" WATER QUALITY VOLUME (STORMWATWER MANAGEMENT POND)</u>

Paved area(including sidewalks) = 322,584 s.f.

Required Water Quality Volume = 322,584 s.f. x 1''/12 = 26,882 cu.ft.

Volume provided in Sediment Forebay = 3,600 cu. ft. Volume provided in Water Quality Forebay = 24,243 cu. ft.

Total Provided Water Quality Volume = 27,843 cu. ft.

*See Calculations by Contech for Water Quality Volume for other paved not routed to stormwater pond.

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Pond No. 2 - Water Quality

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 269.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	269.00	14,943	0	0	
1.00	270.00	16,573	15,749	15,749	
1.50	270.50	17,409	8,494	24,243	

Culvert / Orifice Structures

Culvert / Ori	fice Structu	res			Weir Structu	ires			
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 0.00	0.00	0.00	0.00
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .000	.000	.000	n/a					
Orifice Coeff.	= 0.00	0.00	0.00	0.00	Exfil.(in/hr)	= 0.000 (by	/Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

	j	J											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	269.00											0.000
1.00	15,749	270.00											0.000
1.50	24,243	270.50											0.000

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Pond No. 3 - Sediment Forebay

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 270.00 ft

Stage / Storage Table

Stage (ft)	Elevation (f	t)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total sto	orage (cuft)			
0.00 1.00	270.00 271.00		3,146 4,075		0 3,600	3,	0 600			
Culvert / Orif	ice Structure	es			Weir Structu	res				
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00	
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00	
No. Barrels	= 0	0	0	0	Weir Coeff.	= 0.00	0.00	0.00	0.00	
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=				
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No	
Slope (%)	= 0.00	0.00	0.00	n/a	-					
N-Value	= .000	.000	.000	n/a						
Orifice Coeff.	= 0.00	0.00	0.00	0.00	Exfil.(in/hr)	= 0.000 (by	y Wet area)			
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00	· · ·			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

enge,													
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	270.00											0.000
1.00	3,600	271.00											0.000

CDS ESTIMATED NET ANNUAL TSS REDUCTION BASED ON THE RATIONAL RAINFALL METHOD

ASHLAND RAIL TRANSIT APARTMENTS ASHLAND, MA for SYSTEM: WQD 2

ENGINEERED SOLUTIONS

Area	0.26	acres		CDS Model		
Weighted C	0.90			2015-4		
Тс	6	minutes		CDS Treatment Capacity		
				1.4	cfs	
<u>Rainfall</u>	Percent	Cumulative	<u>Total</u>		<u>Removal</u>	Incremental
Intensity ¹	<u>Rainfall</u>	<u>Rainfall</u>	Flowrate	Treated Flowrate (cfs)	Efficiency	Bomoval (%)
(in/hr)	Volume ¹	Volume	<u>(cfs)</u>		<u>(%)</u>	Kemoval (70)
0.02	10.2%	10.2%	0.00	0.00	97.0	9.9
0.04	9.6%	19.8%	0.01	0.01	96.8	9.3
0.06	9.4%	29.3%	0.01	0.01	96.5	9.1
0.08	7.7%	37.0%	0.02	0.02	96.3	7.4
0.10	8.6%	45.6%	0.02	0.02	96.1	8.2
0.12	6.3%	51.9%	0.03	0.03	95.9	6.0
0.14	4.7%	56.5%	0.03	0.03	95.6	4.5
0.16	4.6%	61.2%	0.04	0.04	95.4	4.4
0.18	3.5%	64.7%	0.04	0.04	95.2	3.4
0.20	4.3%	69.1%	0.05	0.05	94.9	4.1
0.25	8.0%	77.1%	0.06	0.06	94.4	7.5
0.30	5.6%	82.7%	0.07	0.07	93.8	5.2
0.35	4.4%	87.0%	0.08	0.08	93.2	4.1
0.40	2.5%	89.5%	0.09	0.09	92.7	2.3
0.45	2.5%	92.1%	0.11	0.11	92.1	2.3
0.50	1.4%	93.5%	0.12	0.12	91.5	1.3
0.75	5.0%	98.5%	0.18	0.18	88.7	4.5
1.00	1.0%	99.5%	0.23	0.23	85.8	0.9
1.50	0.0%	99.5%	0.35	0.35	80.1	0.0
2.00	0.0%	99.5%	0.47	0.47	74.4	0.0
3.00	0.5%	100.0%	0.70	0.70	63.1	0.3
						94.9
				Removal Efficiency	Adjustment ² =	6.5%
				Predicted % Annual Ra	infall Treated =	93.5%
			Predicted	Net Annual Load Remov	al Efficiency =	88.4%
1 - Based on 10	vears of hourly	precipitation data	from NCDC	Station 770, Boston WSFO	AP. Suffolk Co	untv. MA
2 - Reduction du	ie to use of 60-n	ninute data for a	site that has a	a time of concentration less	than 30-minute	S.

CDS ESTIMATED NET ANNUAL TSS REDUCTION BASED ON THE RATIONAL RAINFALL METHOD

ASHLAND RAIL TRANSIT APARTMENTS ASHLAND, MA for SYSTEM: WQD 1

ENGINEERED SOLUTIONS

Area	0.36	acres		CDS Model		
Weighted C	0.90			2015-4		
Tc	6	minutes		CDS Treatment Capacity		
				1.4	cfs	
<u>Rainfall</u>	Percent	Cumulative	Total		Removal	Incromontal
Intensity ¹	<u>Rainfall</u>	Rainfall	Flowrate	Treated Flowrate (cfs)	Efficiency	Bomoval (%)
(in/hr)	Volume ¹	Volume	<u>(cfs)</u>		<u>(%)</u>	Removal (%)
0.02	10.2%	10.2%	0.01	0.01	96.9	9.9
0.04	9.6%	19.8%	0.01	0.01	96.6	9.3
0.06	9.4%	29.3%	0.02	0.02	96.3	9.1
0.08	7.7%	37.0%	0.03	0.03	96.0	7.4
0.10	8.6%	45.6%	0.03	0.03	95.6	8.2
0.12	6.3%	51.9%	0.04	0.04	95.3	6.0
0.14	4.7%	56.5%	0.05	0.05	95.0	4.4
0.16	4.6%	61.2%	0.05	0.05	94.7	4.4
0.18	3.5%	64.7%	0.06	0.06	94.4	3.3
0.20	4.3%	69.1%	0.06	0.06	94.1	4.1
0.25	8.0%	77.1%	0.08	0.08	93.3	7.5
0.30	5.6%	82.7%	0.10	0.10	92.5	5.2
0.35	4.4%	87.0%	0.11	0.11	91.7	4.0
0.40	2.5%	89.5%	0.13	0.13	90.9	2.3
0.45	2.5%	92.1%	0.15	0.15	90.1	2.3
0.50	1.4%	93.5%	0.16	0.16	89.3	1.2
0.75	5.0%	98.5%	0.24	0.24	85.4	4.3
1.00	1.0%	99.5%	0.32	0.32	81.5	0.8
1.50	0.0%	99.5%	0.49	0.49	73.6	0.0
2.00	0.0%	99.5%	0.65	0.65	65.7	0.0
3.00	0.5%	100.0%	0.97	0.97	49.9	0.2
						94.0
				Removal Efficiency	Adjustment ² =	6.5%
				Predicted % Annual Ra	infall Treated =	93.5%
			Predicted	d Net Annual Load Remov	al Efficiency =	87.5%
1 - Based on 10	vears of hourly	precipitation data	a from NCDC	Station 770, Boston WSFO	AP. Suffolk Co	untv. MA
2 - Reduction du	le to use of 60-r	ninute data for a	site that has a	time of concentration less	than 30-minute	s,,,

Page 1 of 1

Project: Ashland Rail Transit Apartments Location: Ashland, MA Prepared For: Kelly Engineering Group

- **<u>Purpose:</u>** To calculate the water quality flow rate (WQF) over a given site area. In this situation the WQF is derived from the first 1.0" of runoff.
- **<u>Reference:</u>** Massachusetts Dept. of Environmental Protection Wetlands Program / United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual

Given:	Structure Name	Impv. (acres)	A (miles ²)	t _c (min)	t _c (hr)	WQV (in)
	WQD1	0.36	0.0005658	6.0	0.100	1.00
	WQD2	0.26	0.0004062	6.0	0.100	1.00

Procedure:

Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabular form so is preferred. Using the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu is expressed in the following units: cfs/mi²/watershed inches (csm/in).

Structure Name	qu (csm/in.)
WQD1	774.00
WQD2	774.00

1. Compute Q Rate using the following equation:

$$Q_1 = (qu) (A) (WQV)$$

where:

 Q_1 = flow fate associated with first 1.0" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1.0" in this case)

Structure		
Name	Q_1	(cfs)
WQD1		0.44
WQD2		0.31
ASHLAND RAIL TRANSIT APARTMENTS STORMWATER MANAGEMENT SYSTEM OPERATION AND MAINTENANCE PLAN & LONG-TERM POLLUTION PREVENTION PLAN 09/28/15

Prepared by:

KELLY ENGINEERING GROUP, INC. Zero Campanelli Drive Braintree, Massachusetts 02184

OWNER AND RESPONSIBLE PARTY: Campanelli Acquisitions II, LLC PO Box 850985 Braintree, MA 02185

Note: If ownership of this property changes then the new owner becomes the responsible party. The Owner may assign responsibility to a tenant on the property.

1

Introduction

Considerable time, effort and cost has been spent in the design and construction of the stormwater management system for this development. The stormwater management system consists of a number of Best Management Practices (BMP's). These BMP's combine to ensure that storm runoff from the site will not damage the sensitive environmental resources surrounding the site. In order to ensure that these BMP's operate as designed it is very important that the procedures in this operation and maintenance plan be followed. Most of these operation procedures require observation and measurement; however, at certain times more extensive maintenance measures may be needed. The following is an itemization of each of these BMP's and their maintenance needs.

The party responsible for maintenance should contract with a maintenance organization capable of performing the more extensive measures such as pumping of catch basin sumps, etc.

BMP No. 1 – Paved Road Surface/Parking Lot Area:

- Regularly pick up and remove litter from the parking lot area, landscaped islands and perimeter landscaped areas and water quality areas.
- The paved area is to be swept a minimum of two times per year, at least once during April and again during September with a high efficiency vacuum sweeper or a regenerative air sweeper. If a mechanical sweeper is used, the paved area is to be swept a minimum of once a month.

BMP No. 2 - Deep Sump Catch Basins:

- Basins are to be inspected 4 times per year.
 - 1. Verify that tees are secure and free-flowing.
 - 2. Measure depth of sediment below water line.
- Basins are to be cleaned whenever sediment and hydrocarbons are observed. Basins are to be cleaned a minimum of twice per year. One of these cleanings shall occur before April 15th of each year and one shall occur before September 15th of each year. Basins may be cleaned either using a clamshell or a vacuum pump.
- All liquid shall be pumped from the sump of each basin at least once per year.
- All sediments and hydrocarbons should be properly handled and disposed of, in accordance with local, state and federal guidelines and regulations.

Note: See catch basin detail for explanation of terms.

BMP No. 3 – Contech Water Quality Inlets:

- Basins are to be inspected 4 times per year by owner or designee.
 - 1. Verify that tees are secure and free-flowing.
 - 2. Measure depth of sediment below water line.
- Basins are to be cleaned whenever 18" of sediment and hydrocarbons are observed. Basins are to be cleaned a minimum of twice per year. One of these cleanings shall occur before April 15th of each year and one shall occur before September 15th of each year. Basins may be cleaned either using a clamshell or a vacuum pump.

- All liquid shall be pumped from the sump of each basin at least once per year.
- All sediments and hydrocarbons shall be properly handled and disposed of, in accordance with local, state and federal guidelines and regulations.

If any problems are encountered with the Contech Units, contact the manufacturer.

BMP No. 4 - Subsurface Recharge:

- The inlet pipe and observation basin shall be inspected 4 times a year. Any accumulated debris shall be removed.
- Inspect recharge facilities following a rainfall event greater than 2.5 inches in a 24 hour period.
- If standing water is observed for more than 48 hours following a storm event, immediately retain a qualified professional to assess whether infiltration function has been lost and develop recommended corrective actions.

BMP No. 5 – Constructed Stormwater Wetland & Level Spreaders:

• On a regular basis, as required by growing conditions, those portions of the side slopes that are planted with grass shall be mowed and otherwise maintained in such a manner as to maintain a dense cover of grass.

Any area of erosion or other conditions of slope instability shall be corrected at the time they occur.

• Inlet and outlet structures.

On a regular basis, the inlet pipe and outlet structure shall be checked for debris and removed as necessary to ensure unobstructed flow of water through the water quality pond. Impoundment embankments and outlet structures should be inspected at least once annually by a qualified professional for structural integrity and for any conditions which could adversely affect their function.

• Recharge Pond.

Inspect recharge pond once per year and following a rainfall event greater than 2.5 inches in a 24 hour period. Remove sediment annually. If standing water is observed for more than 48 hours following a storm event, immediately retain a qualified professional to assess whether infiltration function has been lost and develop recommended corrective actions.

Snow Removal:

- There shall be no plowing or stock piling of snow within all resource areas and any area subject to the jurisdiction of local and state regulations without the prior written permission from state or local approving authority.
- Road salts and de-icing materials shall be stored on impervious pads and covered to protect from wind and precipitation.
- No de-icing materials shall be stored nor used within all resource areas and any area subject to the jurisdiction of local and state regulations without the prior written permission from state or local approving authority.
- No de-icing materials shall be stored within Zone I, Zone II, Zone A, and 200 feet from a river or estuary.

Storage and Use of Chemicals:

- No pesticides, herbicides, nor insecticides shall be stored nor used within all resource areas and any area subject to the jurisdiction of local and state regulations without the prior written permission from state or local approving authority.
- Chemical storage on site shall be limited. Any chemicals that must be stored shall be stored in a secure area in accordance with Local and State regulations.

Hazardous Waste:

- Containment In the event of a discharge or spill of oil or another hazardous material, outlets to stormwater management systems shall be plugged so that hazardous material do not enter resource areas.
- Reporting In the event of a discharge or spill of oil or another hazardous material, responsible facility personnel, oil spill and/or hazardous material removal organizations, federal, state, and local regulatory agencies, the Town of Ashland Board of Health, fire and police departments, and the EPA National Response Center 1-800-424-8802 shall be rapidly notified.
- Hazardous Waste All hazardous waste materials will be disposed of in the manner specified by local, state and/or federal regulations and by the manufacturer of such products.
- There shall be no illicit discharges to the stormwater management system.

Material and Waste Storage, Handling and Management:

• All waste materials will be collected and stored in a securely lidded metal dumpster from a solid waste management company licensed to do business by the state and the town. The dumpster will comply with all local and state solid waste management regulations.

Training for Long Term Pollution Prevention Plan:

• All staff or personnel involved and responsible for implementing the Stormwater Management System Operations and Maintenance Plan and the Long-Term Pollution Prevention Plan shall be properly trained as required under the DEP Stormwater Management Regulations. Training shall be documented with records kept with other stormwater maintenance records.

Operation and maintenance of septic systems:

• Septic systems shall be properly maintained according to manufacturer's specifications.

Pet Waste Management:

- Pooper-scooper laws for pets shall be followed.
- Never dump pet waste into storm drains, catch basins, or the drainage system.
- Pet waste shall be scooped up and disposed of properly in the garbage.

Lawn and Garden activities:

- There shall be no exterior storage of fertilizers, pesticides, herbicides, or insecticides. No pesticides, herbicides, nor insecticides shall be stored nor used within any resource areas its buffers, and any area subject to the jurisdiction of local and state regulations without the prior written permission from state or local approving authority.
- Fertilizers and pesticides shall be applied properly, sparingly, and outside any resource areas and its

buffers.

To reduce the impact of fertilizers, consider the following tips;

- Don't fertilize before a rain storm.
- Consider using organic fertilizers. They release nutrients more slowly.
- Test soils before applying fertilizers. Some soils may not need fertilizers. A standard soil test costs \$9.00. (Call the UMass Extension Soil Testing Lab at 413-545-2311 or download a soil test order form at http://www.umass.edu/plsoils/soiltest/.)

Ashland Rail Trai	nsit									
Apartments										
PROJECT LOCATION	N: Ashland Ra	ail Transit A	partments,	Ashland, MA						
STORMWATER ANA	GEMENI	BESIMA	BEST MANAGEMENT PRACTICES - INSPECTION SCHEDULE AND EVALUATION CHECKLIST							
Best Management Practice	Inspection Frequency (1)	Date I	Inspector	Minimum Maintenance and Key Items to Check (1)	Cleaning/Repair Needed yes no (list items)	Date of Cleaning /Repair	Perform ed By			
Street Sweeping	4x per year			Vacuum sweeper						
Deep Sump and Hooded Catch Basins	4x per year			Remove sediment 1x per year or if >6"						
Detention Pond Sediment Forebay Constructed Wetland Recharge ponds Level Spreaders	2x per year first year, annually thereafter			Inspect inlets, vegetated, overflow discharge pipes, drain time less than 4 days						
CDS water Quality device	2x per year			Per manufacturer Requirements						
Subsurface Recharge Systems	2x per year			Inspect after 2.5" rain in 24 hours, drain time less than 3 days						
(1) Refer to the C maintenance	Dperation and of specific B	Maintenan MP's.	ce Plan for	recommendations regarding frequency of i	nspections and					
recommendations re	garding frequ	ency for in	spection an	d maintenance of specific BMPs.						
	1		[1					
Stormwater Control	Manager/Envi	ronmental	Monitor:	Sta	mp/Signature	1	<u> </u>			

KELLY ENGINEERING GROUP, INC. Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment F Miscellaneous

NRCS	APPROX.	TARGET DEPTH
HYDROLOGIC	SOIL TEXTURE	FACTOR (F)
SOIL TYPE		Incrok (I)
А	sand	0.6-inch
В	loam	0.35-inch
С	silty loam	0.25-inch
D	clay	0.1-inch

Attention must be given to ensure consistency in units. In particular, the Target Depth Factors must be converted to feet.

When a site contains multiple Hydrologic Soil Groups, determine the *Required Recharge Volume* for each impervious area by Hydrologic Soil Group and then add the volumes together.

Example: Assume a ten (10) acre site. 5.0 acres are proposed to be developed for a retail use. A section of the entrance roadway is to be bridged over a stream that is classified as land under water. As such, the bridging is subject to the Wetlands Protection Act Regulations, and the Stormwater Management Standards apply to stormwater runoff from all proposed roads, parking areas, and rooftops. Of the 5.0 acres proposed to be developed, 2 acres of impervious surfaces are proposed atop Hydrologic Soil Group (HSG) "A" soils, 1 acre of impervious surfaces atop HSG "B" soil, 1.5 acres of impervious surfaces atop HSG "C" soil, and 0.5 acres are proposed to be landscaped area. The remaining 5.0 acres, located on HSG "A" soil, are proposed to remain forested. Determine the *Required Recharge Volume*.

Solution: The Required Recharge Volume is determined only for the impervious surfaces. The 5.0-acre forested area and the 0.5-acre landscaped area are not impervious areas. Although converted from forest, landscaped area is pervious area for purposes of Standard 3. Use Equation (1) to determine the Required Recharge Volume for each Hydrologic Soil Group covered by impervious area. Add together the Required Recharge Volumes determined for each HSG.

Rv = F x impervious area

 $Rv = [(F_{HSG "A"}) (Area_1)] + [(F_{HSG "B"}) (Area_2)] + [(F_{HSG "C"})(Area_3)] + [(F_{HSG "D"})(Area_4)] Equation (2)$

Rv = [(0.6-in/12)(2 acres)] + [(0.35-in/12)(1 acre)] + [(0.25-in/12)(1.5 acres)] + [(0.1-in/12)(0 acres)]

 $Rv = 0.1605 \ acre-feet$

Rv = 0.1605 acre-feet x 43560 square feet/acre-feet = 6,991 cubic feet or 258.9 cubic yards

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

Type III 24-hr Rainfall=1.29"

Table 2.3.3. 1982 Rawls Rates¹⁸

Texture Class	NRCS Hydrologic Soil Group (HSG)	Infiltration Rate Inches/Hour
Sand	A	8.27
Loamy Sand	А	2.41
Sandy Loam	В	1.02
Loam	В	0.52
Silt Loam	С	0.27
Sandy Clay Loam	С	0.17
Clay Loam	D	0.09
Silty Clay Loam	D	0.06
Sandy Clay	D	0.05
Silty Clay	D	0.04
Clay	D	0.02

¹⁸ Rawls, Brakensiek and Saxton, 1982

Volume 3: Documenting Compliance with the Massachusetts Stormwater Management Standards

USDA Natural Resources

Conservation Service

5/18/27018 Page 1 of 5

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — Middlesex County, Massachusetts (MA017)								
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI				
1	Water		19.6	1.7%				
6A	Scarboro mucky fine sandy loam, 0 to 3 percent slopes	A/D	17.3	1.5%				
30B	Raynham silt loam, 0 to 5 percent slopes	C/D	1.5	0.1%				
32B	Wareham loamy fine sand, 0 to 5 percent slopes	A/D	3.2	0.3%				
51A	Swansea muck, 0 to 1 percent slopes	B/D	3.7	0.3%				
52A	Freetown muck, 0 to 1 percent slopes	A/D	26.4	2.2%				
53A	Freetown muck, ponded, 0 to 1 percent slopes MLRA 144A	A/D	38.1	3.2%				
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	22.0	1.9%				
73B	Whitman fine sandy loam, 0 to 5 percent slopes, extremely stony	D	51.1	4.3%				
104C	Hollis-Rock outcrop- Charlton complex, 3 to 15 percent slopes	A	9.5	0.8%				
106C	Narragansett-Hollis- Rock outcrop complex, 3 to 15 percent slopes	A	25.7	2.2%				
106D	Narragansett-Hollis- Rock outcrop complex, 15 to 25 percent slopes	A	3.6	0.3%				
253B	Hinckley loamy sand, 3 to 8 percent slopes	A	10.0	0.8%				
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	15.5	1.3%				
260B	Sudbury fine sandy loam, 3 to 8 percent slopes	В	32.6	2.7%				
305B	Paxton fine sandy loam, 3 to 8 percent slopes	С	21.3	1.8%				

5/18/2015

Hydrolog	Hydrologic Soil Group— Summary by Map Unit — Middlesex County, Massachusetts (MA017)								
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI					
305C	Paxton fine sandy loam, 8 to 15 percent slopes	D	12.2	1.0%					
307B	Paxton fine sandy loam, 3 to 8 percent slopes, extremely stony	D	25.0	2.1%					
307C	Paxton fine sandy loam, 8 to 15 percent slopes, extremely stony	D	30.6	2.6%					
307D	Paxton fine sandy loam, 15 to 25 percent slopes, extremely stony	D	52.5	4.4%					
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	C/D	81.3	6.8%					
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	C/D	76.6	6.4%					
317B	Scituate fine sandy loam, 3 to 8 percent slopes, extremely stony	D	7.4	0.6%					
335B	Rainbow silt loam, 3 to 8 percent slopes	C/D	11.0	0.9%					
336B	Rainbow silt loam, 3 to 8 percent slopes, very stony	C/D	40.5	3.4%					
415B	Narragansett silt loam, 3 to 8 percent slopes	A	32.1	2.7%					
416B	Narragansett silt loam, 3 to 8 percent slopes, very stony	A	155.7	13.1%					
416C	Narragansett silt loam, 8 to 15 percent slopes, very stony	A	48.3	4.1%					
416D	Narragansett silt loam, 15 to 25 percent slopes, very stony	A	14.9	1.3%					
422C	Canton fine sandy loam, 8 to 15 percent slopes, extremely stony	A	0.6	0.1%					
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	58.8	4.9%					
653	Udorthents, sandy		25.0	2.1%					
654	Udorthents, loamy		68.4	5.8%					
655	Udorthents, wet substratum		6.6	0.6%					

Hydrologic Soil Group— Summary by Map Unit — Middlesex County, Massachusetts (MA017)								
Map unit symbol	Map unit name	Acres in AOI	Percent of AOI					
656 Udorthents-Urban land complex			141.1	11.9%				
Totals for Area of Intere	est	1,189.8	100.0%					

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

USDA Natural Resources

Conservation Service

Depth to Water Table—Middlesex County, Massachusetts

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 12, 2014—Sep 28, 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Natural Resources Conservation Service

25 - 50

50 - 100

100 - 150

150 - 200

Not rated or not available

> 200

25 - 50 50 - 100

100 - 150

150 - 200 > 200

Soil Rating Points 0 - 25

أقدرانكم

11. A

فيراج

أقصالكم

an ai

Depth to Water Table

Depth to Water Table— Summary by Map Unit — Middlesex County, Massachusetts (MA017)								
Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI				
1	Water	>200	19.6	1.7%				
6A	Scarboro mucky fine sandy loam, 0 to 3 percent slopes	0	17.3	1.5%				
30B	Raynham silt loam, 0 to 5 percent slopes	23	1.5	0.1%				
32B	Wareham loamy fine sand, 0 to 5 percent slopes	23	3.2	0.3%				
51A	Swansea muck, 0 to 1 percent slopes	0	3.7	0.3%				
52A	Freetown muck, 0 to 1 percent slopes	0	26.4	2.2%				
53A	Freetown muck, ponded, 0 to 1 percent slopes MLRA 144A	0	38.1	3.2%				
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	23	22.0	1.9%				
73B	Whitman fine sandy loam, 0 to 5 percent slopes, extremely stony	0	51.1	4.3%				
104C	Hollis-Rock outcrop- Charlton complex, 3 to 15 percent slopes	>200	9.5	0.8%				
106C	Narragansett-Hollis- Rock outcrop complex, 3 to 15 percent slopes	>200	25.7	2.2%				
106D	Narragansett-Hollis- Rock outcrop complex, 15 to 25 percent slopes	>200	3.6	0.3%				
253B	Hinckley loamy sand, 3 to 8 percent slopes	>200	10.0	0.8%				
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	>200	15.5	1.3%				
260B	Sudbury fine sandy loam, 3 to 8 percent slopes	69	32.6	2.7%				
305B	Paxton fine sandy loam, 3 to 8 percent slopes	61	21.3	1.8%				

5/18/2015

Depth to	Depth to Water Table— Summary by Map Unit — Middlesex County, Massachusetts (MA017)								
Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI					
305C	Paxton fine sandy loam, 8 to 15 percent slopes	50	12.2	1.0%					
307B	Paxton fine sandy loam, 3 to 8 percent slopes, extremely stony	50	25.0	2.1%					
307C	Paxton fine sandy loam, 8 to 15 percent slopes, extremely stony	50	30.6	2.6%					
307D	Paxton fine sandy loam, 15 to 25 percent slopes, extremely stony	50	52.5	4.4%					
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	46	81.3	6.8%					
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	46	76.6	6.4%					
317B	Scituate fine sandy loam, 3 to 8 percent slopes, extremely stony	50	7.4	0.6%					
335B	Rainbow silt loam, 3 to 8 percent slopes	50	11.0	0.9%					
336B	Rainbow silt loam, 3 to 8 percent slopes, very stony	50	40.5	3.4%					
415B	Narragansett silt loam, 3 to 8 percent slopes	>200	32.1	2.7%					
416B	Narragansett silt loam, 3 to 8 percent slopes, very stony	>200	155.7	13.1%					
416C	Narragansett silt loam, 8 to 15 percent slopes, very stony	>200	48.3	4.1%					
416D	Narragansett silt loam, 15 to 25 percent slopes, very stony	>200	14.9	1.3%					
422C	Canton fine sandy loam, 8 to 15 percent slopes, extremely stony	>200	0.6	0.1%					
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	>200	58.8	4.9%					
653	Udorthents, sandy	>200	25.0	2.1%					
654	Udorthents, loamy	>200	68.4	5.8%					
655	Udorthents, wet substratum	>200	6.6	0.6%					

Depth to Water Table— Summary by Map Unit — Middlesex County, Massachusetts (MA017)									
Map unit symbol	Map unit name	Acres in AOI	Percent of AOI						
656 Udorthents-Urban land complex		>200	141.1	11.9%					
Totals for Area of Intere	est	1,189.8	100.0%						

Description

"Water table" refers to a saturated zone in the soil. It occurs during specified months. Estimates of the upper limit are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

Rating Options

Units of Measure: centimeters Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Lower Interpret Nulls as Zero: No Beginning Month: January Ending Month: December

Summary of Previous Soil Explorations:

As noted in the Stormwater Management Summary the project proposed to modify a previous approval. The 2007 SWM Report included hundreds of test holes and borings. Kelly Engineering Group, Inc. have chosen to provide a portions of the previous soil testing that demonstrate that the NRCS soils mapping is accurate and the proposed recharge components will have more than 2' separation to seasonal high groundwater. The attached Soil Exploration Exhibit shows the extend of the previous soil testing with a summary of results including depth to refusal, water, and percolation rate.

			THE GEO	TECHN	ICAL	GROU	P, INC.					
	Test P	it Log		- PROJ	ECT -		Test Pit N	Vo.	TGG-20	Page 1 of 2		
		&	Jeffe	rson at As	hland St	ation	Date		1/	9/02		
	Percolation Test			Ashland, MA			File No.	File No. Y1503.01		503.01		
Contrac	tor	Titan	Contractors	Make / N	Make / Model			Cat. 330 Tracked Excavator				
Operator			Dave	Capacity	// Reach	<u>۱</u>		2± Cub	nic Yards/21:	± Feet		
Engineer		Bob Bosselr	man/Jeremy Haugh	Ground	Elevatio	n			270± Feet			
Weather	•	32 De	grees, Cloudy	Time Sta	arted &	Completed	<u> </u> .	1315 H	10urs/ 1415 k	loure		
Depth	Strata Change/	-Soil (Burmiste	Description- r Class. System)	Excav. Effort	Boulde Coun	er Note. t No.		PERC	SLATION 1	ſEST		
1	Forest Mat 0.5	*		E				ŀ	lole Size			
2	Subsoil	Orange, fine and SILT, lit Gravel, little	to coarse SAND tle fine to coarse Roots.	E	2±A 1±C		Existing G	àround	Surface			
3	3.0											
4	-					3,4				▲ 42±"		
5	-	Brown, fine 1	to medium SAND	D				. ≁	12±"			
6	 		ome (*) Oravei.							P	12±"	
7	_									and the state of t		
8	Glacial						Time Hrs-Min-≦	Эес	Elapsed Time (Min)	Water Level Depth (Inches)		
9	Till	Tan five to coarse GAND	Tan five to coarge SAND						14:34-00 (1/10	0/02)	0	9.0
	-							15-34-00 (1/10	0102)	60	8.75	
10				COARGE SAND				07-54-00 (1/1	(1102)	1040	6.0	
11		little fine to little Silt.	coarse Gravel,	D	12±A 1±B	8						
12												
13]											
14												
Test Pit #	Plan Boul Olas 13± 18±2	<u>der Class</u> is 3° A 36* B	Proportions Used Trace (TR)=0-10% Utitle (LI)=10-20%	Abbrevia F=Fine M=Medium C=Coarse	<u>dicms</u>	Excavation Effort E=Easy M=Moderate		Pei	rcolation R	äte		
E/W≐ Vołum⊛=	cu.yd > 36	Ċ	Soma (SO)=20-35% And=35-50%	F/M⇒ Fine to F/C≠Fine to (Medium Doarse	D=Dilficult	1 IWe(9, -	0,42,=	>30 min / inc			
Remarks: 1. Test pit 2. Ground 3. Percol:	Black, fime to terminated at Awater was not a ation test perfor	o coaraq SAND, s 16.5± fest. med from about (bome Raata, some Leave he time of the test pit. 3.5± to 4.5± feet.	s. Ottla Silt, tr 4. Sample: 3. A 4-inc The well (race (-) fine no. 5-1 obiz h dianseter contained p	tio coarse Gra ained from abo PVC well was i perforations fro	wei, ut 3.5± to 4.5± f notalled upon cor orr about 2± to 1	feet. mpletion (18.5± feet	of the test pit.	F - 16		

	T	14 1			FCT		Tost Dit No	τ.	20.7					
	lest P	n Log	1.55	- FRUJ	LUI -	angeretaidte. Ioc	Date	10	7102					
	Daraclet	α lion Test	Jeffe	Ashland, MA			File No	1/ V10	503.01					
ontrac	tor	Titan Cont	actore	Make / A	Aodel		Cat 3	30 Tracked Ex	cavator					
nerato	r	Dave		Capacity	/ Reach		2+ 0	ubic Yarda/21	+ Feet					
nainee	r	Bob Bosselman/	John Fedirko	Ground	Elevation			276± Feet	- 1 - 1 - 1					
/eathe	r	32 Degrees, R	ain/Snow	Time Sta	arted & Co	mpleted	1430) hours/ 1530	hours					
Depth	Strata Change/	-Soil Desc (Burmister Cla	ription- ss. System)	Excav. Effort	Boulder Count	Note. No.	PER	COLATION	rest					
1	Forest Mat 0.5	*		E				Hole Size						
2	Subsoil	Orange, fine to co and fine to coars trace Silt.	e Gravel,	E			Existing Groun	d Surface						
3														
4	Sand and Gravel	Tan, fine to coare and medium to co trace Silt.	e GRAVEL Darse SAND,	М	4±A	1, 2			42:					
5	5.0			-				12"						
6	Sand	Tan, fine to coars little fine to coars	e SAND, se Gravel,	E					1 16					
7	7.0	trace Silt.							J 10:					
8							Time Hrs-Min-Sec	Elapsed Time (Miri)	Water Lev Depth					
9		C					_ 15:10:00	<u>0</u>	(inches) 12					
10	Bouldary Glacial Till	Gray, fine to coarse SAND, and fine to coarse GRAVEL, trace (+) Silt.		y Gray, the to coarse SAND, and fine to coarse GRAVEL, trace (+) Silt.	and fine to coarse GRAVEL, trace (+) Silt.	and fine to coarse GRAVEL, trace (+) Silt.	and fine to coarse GRAVEL, trace (+) Silt.	ray, fine to coarse SAND, ind fine to coarse GRAVEL, race (+) Silt.	D	10±A 4±B		15:15:00 15:21: 3 6	<u>5.0</u> 11.6	9
11		Long A			3±C									
12														
13	13.5													
14		Refusal at 13.5± 1	eet. MI			5.4								
est Pit P I/S= /W= 1 olume=	Plan Boul ر 6*-18 4± >36* cu.yd >36*	der Class Prop S A Little S6* B Some C And=	ortions Used (TRJ=0-10% (LI)=10-20% (SO)=20-35% 35-50%	Abbrevia F=Fine M=Medium C=Coarse F/M= Fine to F/C=Fine to C	ttions Medium Coarse D	Excavation Effort =Easy 1=Moderate =Difficult	F Time(9"-6")/3"=	arcolation R	ate min / inch					

Sample no. 5-1 obtained from percolation test hole.
 Groundwater was not encountered at the time to the test pit.

A 4-inch diameter PVC well was installed upon completion of the test pit. The well contained perforations from about 2± to 13.5± feet. F - 17

		TH	IE GEO	TECHN	ICAL	GROUP	, INC.		
	Test P	it Log		- PROJ	ECT -		Test Pit No.	T	GG-8
		&	Jeffe	rson at As	hland Sta	tion	Date	1	17102.
	Percolat	ion Test		Ashland	I, MA		File No. Y1503.01		
Contrac	tor	Titan Contr.	actors	Make / M	ödel		Cat. 3	30 Tracked E	xcavator
Operato	ir	Dave		Capacity	/ Reach		2±0	ubic Yards/21	± Feet
Enginee	or 👘	Bob Bosselman/J	lohn Fedirko	Ground	Elevation			276± Feet	
Weathe	r	32 Degrees, R.	ain/Snow	Time Sta	arted & C	ompleted	131	5 hours/ 1415	hours
Depth	Strata Change/	-Soil Descr (Burmister Clas	iption- s. System)	Excav. Effort	Boulder Count	Note. No.	PER	COLATION	TEST
1	Forest Mat	*	CAND	E				Hole Size	
0	Subsoil	Orange, fine to co and SILT, trace Ro	arse SANU pots.	E					
2	2.0						Existing Grour	nd Surface	
	Sand	Tan, fine to coarse	SAND,	E					
3	3.0	little fine to coars little Silt.	e Gravel,						
4						1, 2		12"	42±"
6	Bouldary Glacial Till	Tan, fine SAND and (-) fine to coarse GRAYEL, little (-) Silt.		Tan, fine SAND z coarse GRAYEL,	Bouldary Glacial TillTan, fine SAND and (-) fine to coarse GRAYEL, little (-) Silt.D $10 \pm A$ $3 \pm C$		L_		↓ 18±"
8							Time Hrss-Min-Sec	Elapsied Time (Min)	Water Level Depth
9		~					13:40:00	0	(Inches) 12
10	10.0						<u>13:50:00</u> 14:02:18	10,0 22.3	96
11	1////	Refusal at 10± fee	et,			3,4,5			
12									
13	-								
14									
<u>Test Pit F</u> N/S= 1 E/W= Volume=	Plan Boul 4±' 6'-11 6±' 18'-5 cu.yd 36	der Class Prop s A Linte (36* B Some C And=	ortions Used (TR)=0-10% L%=10-20% (SO)=20-35% IS-50%	Abbrevia F=Fine M=Medium C=Coarse F/M= Fine to F/C=Fine to	Medium Coarse	Excavation Effort E=Easy M=Moderata D=Dithicult	Time(9"-6")/3":	Percolation F = 4.1	tate min / inch
Remark 1. Percole	(5: [*] Black, fir ation test perfor	ne to coarse SAND, some med from about 4± to 5 ad from correlation test.	: Organico, little ± feet. hole	Siit. 4. Ref 5. A4	usal to the c Finch diame	xsavator bucke ter PVC well wa	t on apparent bedroc s installed upon comp	k at 10± feet detion of the tee	t oit.

^{3.} Groundwater was not encountered at the time to the test pit.

F - 18

The well contained perforations from about $1.5\pm$ to $10\pm$ feet.

THE GEOTECHNICAL GROUP, INC.													
Test Boring Log					- PRC Jefferson at A Ashla			DJECT - Ashland Station and, MA		Boring No.	B-106		
										Sheet 1 of 1			
										File No. ¥1503.02			
										Review by:	ew by: Mark Zambernardi		
Boring Co. Soil Explorati					on Corporation			Boring Location:		See Exploration Location Plan			
Foreman Mike C					amacho			d Elev.		266± teet			
IGG Observer Jerem					y Haugh Mainteachtachtachtachtachtachtachtachtachtacht			Date Start > End //16/02					
Sampling Protocol					d using 4 inch inside vered using a 2-inch Lb. hammer falling 30			Date Time Donth to Bottom Donth to Water			Deeth to Water	Dom	
diameter hollow stem augers. Samples were recov O.D. split spoon sampler, driven by blows of a 140 inches.								Comp.		11.5'±		3	
			Sample Data				Strata			Compla	Departmen		
	No.	Depth	Blows per 6 in.	Pen.	Rec.	Rem	Change			Sample Description			
	5-1	0.0-2.0	3-7-6-3	24	14		0.3* **		**				
						1	Subsoil _3.0		Silt, trace Organics.				
5							Glacial Till		Very dense, gray-tan, fine to medium SAND and fine to coarse GRAVEL, trace (+) Silt.				
	5-2	5.0-5.5	80/6"	6	3								
							1.111						
							10.0						
10	C 7	10.0.10.0	30.00/5"	11	11		Weathered		Vand	المعرف المعال محمد	Face Francisco (
	5-5	10.0-10.9	30-9075				Bedrock 11.5		and fine GRAVEL, some Silt.				
	-						Refusal		Refusal to augers and split spoon sampler at 11.5± feet.				
	¢												
20				n i									
			1	-	-								
和													
の調査													
25													
The fair													
				rindrate a sign			1						
Rer	narks:	*Forest	: Mat **Black, fi	ne to co	arse Si	AND, so	me Root	s and Lea	ives, litt	le Silt.			
 Augers grinding on apparent cobbles from 2± to 11.5± feet. Refusal to augers at 11.5± feet on apparent ledge. Groundwater was not encountered at the time of boring. 													

