
↑

THE STATE OF
SECRETS SPRAWL

↑

The growing problem of secrets sprawling

in corporate repositories can only be

solved by enabling collaboration

between AppSec and Developers.

Occurrences of secrets

detected per AppSec

engineer in 2021

GitGuardian · State of Secrets Sprawl

Ransomware and other large-scale cyberattacks (SolarWinds,

Colonial Pipelines) or vulnerabilities (Log4Shell) have made

headlines around the world. Software supply chain attacks

have seen their number explode, and this comes as no surprise

considering the plethora of vulnerabilities and misconfigurations

found across software development environments.

Unsurprisingly, a lot of attacks start with the compromise of a leaked

secret. Credentials are a nightmare for security engineers because

they can end up in so many places: build, monitoring,

or runtime logs, stack traces, and … git history. Our data show

the extent of publicly exposed secrets on GitHub has more than

doubled since 2020. The problem is not bound to this particular

platform, as revealed by our Docker Hub analysis.

In 2020, GitGuardian started monitoring private repositories as well,

which granted us a unique insight into what really happens behind

the scenes.

The data reveals that on average, in 2021, a typical company with

400 developers would discover 1,050 unique secrets leaked upon

scanning its repositories and commits. With each secret detected

in 13 different places on average, the amount of work required

for remediation far exceeds current AppSec capabilities:

with a security-to-developers ratio of 1:100*, 1 AppSec engineer

needs to handle 3,413 secrets occurrences on average.

This comforted our view that the only way to address the challenge

of secrets sprawling within corporate repositories is to enable

a shared responsibility between AppSec and Devs.

It’s safe to say that 2021
will go down in history
for cybersecurity experts.

* From TAG Cyber, see Methodology

https://blog.gitguardian.com/supply-chain-attack-6-steps-to-harden-your-supply-chain/?utm_medium=pdf&utm_campaign=the-state-of-secrets-sprawl-2022

GitGuardian · State of Secrets Sprawl

Public
Monitoring

Internal
Monitoring
Security teams are overwhelmed 18

A false sense of secrecy 19

Recommendations 21

Developer in the Loop 22

Solving the problem of secrets sprawl 23

How leaky was 2021? 08

Focus on cloud providers 09

Leaks correlate to popularity 10

Scanning Docker Hub 11

Fun facts 12

Where leaks come from 14

2021 breaches involving secrets leaks 15

Definitions 05

07

16

Summary 04

Let’s conclude 24

About GitGuardian 25

Methodology 26

Appendix 28

GitGuardian · State of Secrets Sprawl

A secret can be any sensitive data that we want to keep private.

When discussing secrets in the context of software development,

we refer to digital authentication credentials that grant access to

services, systems, and data. These are most commonly API keys,

usernames and passwords, or security certificates.

A secret incident is a uniquely identified security event that has

been determined to have an impact on the organization and

necessitates remediation. An incident often has multiple

occurrences across files or repositories.

A single incident generally encompasses multiple occurrences,

which are the various locations across files or repositories where

the secret was identified. Occurrences map to the magnitude of

the sprawl, and are therefore correlated to the amount of work

needed to redistribute the secret after it has been rotated.

Occurrences can be assimilated to technical debt.

Unlike traditional credentials, secrets are meant to be distributed

to developers, applications, and infrastructure systems. Adding

more of these factors will inevitably make the number of secrets

used in a development cycle increase, leading to a natural

sprawling phenomenon: secrets start to appear hardcoded in

source code. From an organization’s point of view, visibility and

control over their distribution start to degrade. This is what

secrets sprawl is all about.

Secret

Secret
incident

Secret
occurrences

Secrets
sprawl

05Definitions

GitGuardian · State of Secrets Sprawl ↑

Source code is a huge

wealth of knowledge.

It also happens to

exist on pretty much

every developer’s

workstation, which

they probably take

home with them. You

probably don’t want

your secrets being all

over the country.
Don, Security engineer

https://www.peerspot.com/product_reviews/gitguardian-internal-monitoring-review-1663876-by-don-magee

Public
Monitoring

*from the state of the Octoverse 2021

56M users

+25%repositories created last year

ON GITHUB

+23%
commits scanned by GitGuardian

https://octoverse.github.com/

Public Monitoring 08

GitGuardian · State of Secrets Sprawl ↑

How leaky was 2021?

SECRETS BY CATEGORY

Ve
rs

io
n

co
nt

ro
l p

la
tf

or
m

M
es

sa
gi

ng
 s

ys
te

m

D
ev

el
op

m
en

t
to

ol

Pr
iv

at
e

ke
y

Cl
ou

d
pr

ov
id

er

O
th

er

D
at

a
st

or
ag

e

32.8%

21%

15.2%

9.5%9.6%
8.5%

1.
4

%

* see Methodology

Over 6M secrets detected in 2021

On average, 3 commits out of 1,000 exposed at least one secret,

+50 % compared to 2020*

2x increase compared to 2020

Public Monitoring 09

GitGuardian · State of Secrets Sprawl ↑

Focus on cloud providers

AWS market dominance is reflected by the fact that in 2021, for

every 10k commits we scanned, we found on average 84 AWS IAM

credentials leaked, which is 4 times higher than Alibaba Cloud.

The growing popularity of alternatives such as our countryman �
Scaleway is observable from the charts.

AWS IAM ALIBABA CLOUD KEY SCALEWAY TOKENGOOGLE CLOUD KEY AZURE API KEY

N
U

M
B

ER
 O

F
D

ET
EC

TE
D

 S
EC

R
ET

S
PE

R
 1

0
K

 C
O

M
M

IT
S

0

25

50

75

100

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

EVOLUTION OF THE NUMBER OF DETECTED SECRETS IN 2021

Public Monitoring 10

GitGuardian · State of Secrets Sprawl ↑

It should come as no surprise that leaks are proportional to user

adoption, and this is especially true for newcomers rapidly gaining

in popularity.

Supabase, which has consistently ranked in GitHub’s top-20

fastest-growing open-source startups and launched 50,000

databases in 2021 only, is a telling example. Another one is

PlanetScale, a serverless database platform released in 2021 Q4,

which immediately started appearing on our radars.

Leaks correlate
to popularity

SUPABASEPLANETSCALE

JAN

0

0.25

0.5

0.75

1

N
U

M
B

ER
 O

F
D

ET
EC

TE
D

 S
EC

R
ET

S
PE

R
 1

0
K

 C
O

M
M

IT
S

FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

EVOLUTION OF THE NUMBER OF DETECTED SECRETS IN 2021

Public Monitoring 11

GitGuardian · State of Secrets Sprawl ↑

When it comes to open-source, GitHub certainly is the first

platform that comes to mind. Yet it is not the only resource for

code-sharing. Since Docker popularized the use of containers to

package apps, its official public registry, Docker Hub, has become

another developers’ favorite.

The layers making up Docker images are as many additional attack

surfaces that can too easily be left out of the security perimeter.

For attackers, it is yet another chance of finding an access vector,

just as demonstrated by the Codecov breach.

This motivated us to conduct our first study on the extent of

secrets sprawl in Docker Hub a few months ago. To deepen this

first estimation, we reiterated the exercise, this time with a 5x

larger sample. Here are our results:

Scanning Docker Hub

Docker Hub = 8.8M Docker images publicly available

10K
images scanned

4K
secrets

1.2K
unique

4.62%
of the images expose at least one secret

6
secrets

100
layers

EVERY

It’s therefore not surprising to find secrets in Docker Hub.

https://blog.gitguardian.com/codecov-supply-chain-breach/?utm_medium=pdf&utm_campaign=the-state-of-secrets-sprawl-2022
https://blog.gitguardian.com/hunting-for-secrets-in-docker-hub/?utm_medium=pdf&utm_campaign=the-state-of-secrets-sprawl-2022

Public Monitoring 12

GitGuardian · State of Secrets Sprawl ↑

Leaks mostly happen

on weekends…

Fun facts!

MON

-4%

0%

-2%

10%

0%

20%

2%

30%

4%

40%

TUE

JUL 27AUG 21

WED

JUL 23

THUR

AUG 18

FRI

AUG 20

SAT

JUL 6

SUN

MAR 23 JUL 26

DIFFERENCE IN SECRETS/COMMIT FOUND ACROSS THE WEEK

WORST DAYS OF THE YEAR, EXCLUDING WEEKENDS (∆ SECRETS/COMMIT)

The worst day of 2021 was

 Saturday, November 20th

(+66% secrets/commit)

3
9

%

3
1%

3
1%

2
8

%

2
7

%

2
4

%

2
4

%

2
3

%

If we exclude weekends, most leaks happen

on holidays…

Public Monitoring 13

GitGuardian · State of Secrets Sprawl ↑

We found more than

500 commit

messages

containing GitHub

personal access tokens!

GitGuardian · State of Secrets Sprawl ↑

Where leaks
come from

GitGuardian · State of Secrets Sprawl

Public Monitoring 14

↑

India

USA

Germany

France

Indonesia

Russia

Nigeria

Bangladesh

Brazil

UK

01

02

03

04

05

06

07

08

09

10

Public Monitoring 15

GitGuardian · State of Secrets Sprawl ↑

2021 breaches
involving secrets leaks

A favorite of many open-source projects, Codecov is a code

coverage tool. Between January 31st and April 1st, it was

compromised by attackers who were able to extract all of the

environment variables of Codecov’s customers. Initial access was

obtained by extracting a static GCP service account credential

from one layer of Codecov Docker image, which allowed them to

tamper with a downstream CI script. Attackers were thus able to

piggyback on Codecov to enter its users’ private code repositories,

exposing many more secrets. Read the full play-by-play.

While most of the media attention has been focusing on

streamers’ revenues, GitGuardian conducted a deep-dive review

to inspect the 6,000 git repositories of the Twitch codebase leaked

this year. Despite lots of evidence demonstrating a certain level of

AppSec maturity, nearly 7,000 secrets were uncovered, including

hundreds of AWS, Google, Stripe, and GitHub keys. We triaged

these secrets to explain how a malicious actor could easily

leverage just a few of them to get a foothold into critical systems.

To be fair, we found it quite disturbing that the main narrative

about this leak was that it didn’t present a security risk since no

significant customer data was leaked. It simply shows that the

problem of secrets sprawl is largely underplayed, even by some

security experts.

When white hat group Sakura Samurai started to scrutinize official

Indian government endpoints under a vulnerability disclosure

program, it didn’t take them too long to find leaked credentials

inside public-facing .git directories. In the end, 35 separate

instances of exposed credential pairs were reported, indicating a

massive breach affecting government systems. As detailed in our

play-by-play, the attack itself followed a well-proven

methodology that is of relatively low sophistication, making it

accessible to the widest range of hackers.

Codecov

Twitch

Indian
government

https://blog.gitguardian.com/codecov-supply-chain-breach/?utm_medium=pdf&utm_campaign=the-state-of-secrets-sprawl-2022
https://blog.gitguardian.com/security-threats-from-the-twitch-leak/#simulating-an-attack
https://blog.gitguardian.com/security-threats-from-the-twitch-leak/#simulating-an-attack
https://sakurasamurai.pro/
https://blog.gitguardian.com/indian-government-breached/#play-by-play

↑

In 2020, GitGuardian launched Internal Repositories

Monitoring for Enterprise.

Monitoring thousands of repositories in real-time

and scanning for the entire history of corporate

codebases, we gained a realistic view of the state of

application security in the DevOps era.

If there is a single conclusion to be drawn from the

data, it is that

the amount of work required

for both remediating

real-time incidents and

investigating leaks detected

in the git history (which can

still represent a threat) far

exceeds current AppSec

teams' capabilities.

Internal
Monitoring

Internal Monitoring 17

↑GitGuardian · State of Secrets Sprawl

Secrets detection is a very

essential part of security.

It’s one of the basics that

you need to cover all the

time. Otherwise, you’re

going to expose your

endpoints online and you’re

going to suffer endless

attacks. When it comes to

application development,

secrets detection is

essential to a security

program. You need to have

it. Otherwise, you’ll fail.
Abbas Haidar, Head of InfoSec

https://www.peerspot.com/products/gitguardian-internal-monitoring-reviews#review_1549914

Internal Monitoring 18

↑GitGuardian · State of Secrets Sprawl

Security teams
are overwhelmed

On average, in 2021, a typical company with 400 developers

and 4 AppSec engineers would discover

1 AppSec engineer needs to handle

3,413
secrets occurrences

on average

1,050 unique secrets leaked

upon scanning its repositories and commits.

With each secret detected in 13 different places on average,

the amount of work required for remediation far exceeds

current AppSec teams capabilities (1 AppSec engineer

for 100 developers)*.

* From TAG Cyber, see Methodology

Internal Monitoring 19

↑GitGuardian · State of Secrets Sprawl

A false sense
of secrecy

Our intuition that private repositories permeate a false sense of

secrecy, causing even more leaks to occur compared to public

ones, could be confirmed:

INCIDENTS DETECTED ON PUBLIC REPOSITORIES ARE ONLY THE TIP OF THE ICEBERG

On average, private repositories are 4x
more likely to reveal at least one incident.

Not only private repositories are more likely to be affected, but

they also reveal the real magnitude of secrets sprawl:

PRIVATEPUBLIC

MICROSOFT AZURE
STORAGE ACCOUNT KEY AWS KEYS SALESFORCE OAUTH2 KEYS OKTA TOKEN

0

5

10

20

15

25

AVERAGE NUMBER OF INCIDENTS PER ENTERPRISE REPOSITORY (SCANNED IN 2021) PER DETECTOR

Internal Monitoring 20

↑GitGuardian · State of Secrets Sprawl

I think people are getting more

aware of secrets. [. . .]

I think that it has had a positive

impact on the culture itself.

You’re only as good as the

software you write, and you’re

in for a world of hurt if you put

the keys to the castle inside of

that source code that could be

somehow reverse-engineered.

By separating the two, the

source code and the keys,

you’re one step ahead of that.

I think it’s essential.
Blake, DevSecOps engineer

https://www.peerspot.com/products/gitguardian-internal-monitoring-reviews#review_1295666

Internal Monitoring 21

↑GitGuardian · State of Secrets Sprawl

Private repositories fall too often victim of secrets sprawl,

threatening security efforts and creating unnecessary

remediation needs.

To prevent codebases from becoming hackers’ playgrounds

without overwhelming security teams, the focus needs to shift to

collaborative prevention.

Secrets leaking in source code is unavoidable, but like other

vulnerabilities, it is completely determined by endogenous

factors: more developers, requiring access to more resources,

building and deploying at a faster rate.

Recommendations

It means that with enough

discipline and education , coupled

with the right tools , it is possible to

drastically improve the situation ,

just like any technical debt.

Internal Monitoring 22

↑GitGuardian · State of Secrets Sprawl

One core feature introduced in 2021, Developer in the Loop allows

security engineers to share an incident with the developer who

committed the secret. We are firmly convinced that a Shared

Responsibility Model is key to enable application security at scale

(security teams own the process, but developers are involved),

and just a few months into the release the results already speak

for themselves:

Developer in the Loop

Involving the developer results

in an incident closing rate

72 % higher
and a Median Time to Remediate

divided by 2

Internal Monitoring 23

↑GitGuardian · State of Secrets Sprawl

Incidents detection and remediation can be shifted left at various levels

to build a layered defense all across the development cycle. Here is a

progressive approach to move forwards to a “zero secrets-in-code” policy:

Solving the problem
of secrets sprawl

1

2

3

4

5

Start by monitoring commits and merge/pull requests in real-time for all
your repositories with native VCS or CI integration, where the ultimate
threat lies (shift at team level).

 Progressively enable pre-receive checks to harden central repositories
against leaks, and “stop the bleeding”.

In the meantime, educate about using pre-commit scanning as a seatbelt
(shift at developer level).

Plan a longer-term strategy to handle older incidents discovered by
the git history scanning.

Implement a Secrets Security Champion program.

By integrating vulnerability scanning into the development

workflow, security isn't a bottleneck anymore. You can help

developers catch vulnerabilities at the earliest stage and

considerably limit remediation costs. This is even more true for

secrets detection, which is very sensitive to sprawling (as soon as a

secret enters a version control system, it should be considered

compromised and so requires remediation effort). On the other

hand, you can reduce the number of secrets entering your VCS by

better-educating developers while preserving their workflow.

Let's conclude 24

↑GitGuardian · State of Secrets Sprawl

Secrets sprawl is a growing phenomenon, not only because more

code is pushed, forked, and shared online every day, but also

because the number of building blocks making up an application is

increasing (cloud infrastructure, managed databases, SaaS

applications, open-source components, internal microservices…).

As the sprawling accelerates, version control systems are quickly

becoming a top target for hackers looking to start a supply chain

attack, as seen in multiple breaches last year. Compromising

hardcoded secrets requires no special skills, and the proliferation

of leaked secrets in public GitHub (which more than doubled since

2020) is a red flag for many application security

professionals. Public repositories must be therefore included in

the safeguarded corporate perimeter.

The situation is also true on the internal side. Private repositories

hide a huge amount of (often forgotten) secrets that could one

day be used for fraudulent purposes. Unfortunately, even if they

are aware of it, AppSec are overwhelmed by the amount of work to

be done, either to remediate incidents on-the-fly or to dig

through the stack of older but still present ones.

There is an urgency to remove secrets from source code, but to

do so requires adopting the right mindset: our experience has

shown that the only reasonable approach to deliver secure

software at scale is to share the application security responsibility

between developers, security, and ops. Enabling this model is our

mission.

Let's conclude

If you want to learn more about

how GitGuardian solutions can help

you improve on code security, don’t

hesitate to contact us .

https://www.gitguardian.com/contact-us/?utm_medium=pdf&utm_campaign=the-state-of-secrets-sprawl-2022

About GitGuardian 25

↑GitGuardian · State of Secrets Sprawl

The new ways of building software create the necessity to support

new vulnerabilities and new remediation workflows. These needs

have emerged so abruptly that they have given rise to a young and

highly fragmented DevSecOps tooling market. Solutions are

specialized based on the type of vulnerabilities being addressed:

SAST, DAST, IAST, RASP, SCA, Secrets Detection, Container Security,

and Infrastructure as Code Security. However, the market is

fragmented and tools are not well-integrated into the developers’

workflow.

GitGuardian, founded in 2017 by Jérémy Thomas and Eric Fourrier,

has emerged as the leader in secrets detection and is now focused

on providing a holistic code security platform while enabling the

Shared Responsibility Model of AppSec. The company has raised a

$56M total investment to date.

With more than 150K installs, GitGuardian is

About GitGuardian

THE #1 SECURITY APPLICATION
ON THE GITHUB MARKETPLACE.

Its enterprise-grade features truly enable AppSec and

Development teams in a collaborative manner to deliver a secret-

free code. Its detection engine is based on 350 detectors able to

catch secrets in both public and private repositories and

containers at every step of the CI/CD pipeline.

https://github.com/marketplace?category=security&query=sort%3Apopularity-desc&type=apps&verification=

26

↑GitGuardian · State of Secrets Sprawl

Taking into account statistical outliers, GitGuardian detected over

6M secrets on public GitHub in 2021. To accurately estimate the

global growth of this figure compared to the previous year, we

revised upwards our 2020 estimate (2M secrets detected) which

was conservative. The reference we took for the global volume of

secrets found in 2020 is 2.66M, leading to an increase of +125% YoY.

GitGuardian’s secrets detection engine has been running in

production since 2017, analyzing billions of commits coming from

GitHub. From day one we began to train and benchmark our

algorithms against the open-source code. It allowed GitGuardian

to build a language-agnostic secrets detection engine, integrating

new secrets or new ways of declaring secrets really fast while

keeping a really low number of false positives. We have developed

the vastest library of specific detectors being able to detect more

than 350 different types of secrets. Learn more about the inner

workings and performance benchmarking of our detection engine

in our blog.

Secrets
detection
engine

Methodology

The TAG Cyber Analyst Team conducted a study that resulted in an

average AppSec to developers ratio of 1:200, with a lower bound of

1:100. For the 2022 State of Secrets Sprawl, we used this last figure

in a conservative approach.

From the TAG Cyber report: “The TAG Cyber analysts collected data

from present or former CISOs in telecom, insurance, finance,

mobility services, R&D, and technology. In each case, the question

was posed regarding rough estimates between developers and

application security experts. Answers came back as high as 1000 to

1 and as low as 100 to 1. The average came to a roughly 200 to 1

ratio.”

AppSec to
Developers
ratio

Methodology

https://docs.gitguardian.com/secrets-detection/detectors/introduction?utm_medium=pdf&utm_campaign=the-state-of-secrets-sprawl-2022
https://blog.gitguardian.com/tag/secrets-detection/?utm_medium=pdf&utm_campaign=the-state-of-secrets-sprawl-2022
https://www.tag-cyber.com/

Methodology 27

↑GitGuardian · State of Secrets Sprawl

When users choose to monitor their repositories with GitGuardian

for the first time, they are offered to operate a historical scan

over all their repositories (the detection engine is the same

as used for GitHub Public Monitoring).

In 2021, GitGuardian Internal Monitoring detected on average

13,635 secrets occurrences per Enterprise account.

For the 60 most common secrets (see Appendix), the percentage

of private repositories exposing at least one incident is 10.6%,

and the percentage of public repositories exposing at least one

incident is 2.8%. Private repositories were 3.8 times more likely

to expose at least one secret than public repositories.

The average number of incidents per enterprise repository

(private and public) and per detector was computed

on repositories scanned at least once in 2021. For a vast majority

of our detectors, incidents were only detected on private

repositories. On the graph, we chose to display only the top four

detectors with a non-null average for public incidents.

Internal
Monitoring

For this study, we scanned:

• 10K random Docker images pulled from Docker Hub

• 65,104 tar files: 65,103 layers + images’ metadata

• 143 million documents.

Docker Hub

28

↑GitGuardian · State of Secrets Sprawl

Appendix

Appendix

Alibaba Cloud Keys MSSQL Credentials

Artifactory Token MySQL Credentials

Auth0 Keys npm Token

AWS Keys NuGet API Key

Bitbucket Keys ODBC Connection String

Cloudflare API Credentials Okta Keys

Confluent Keys Okta Token

Datadog API Credentials Oracle Credentials

DB2 Credentials PayPal OAuth2 Keys

DigitalOcean OAuth Application Keys PostgreSQL Credentials

DigitalOcean Spaces Keys Python Package Index Key

DigitalOcean Token Redis Credentials

Dropbox App Credentials Salesforce Oauth2 Keys

Facebook Access Token Salesforce Refresh Tokens

Facebook App Keys SendGrid Key

GitHub Access Token Slack App Token

GitHub App Keys Slack Application Credentials

GitHub OAuth App Keys Slack Bot Token

GitLab Enterprise Token Slack Signing Secret

GitLab Token Slack User Token

Google Cloud Keys Slack Webhook URL

HubSpot API Key SMTP credentials

Intercom Access Token Snowflake Credentials

Jira Basic Auth Splunk Authentication Token

Kubernetes Cluster Credentials Tencent Cloud Keys

LDAP Credentials Terraform Cloud Token

MariaDB Credentials Twilio Keys

Microsoft Azure Storage Account Key Twilio Master Credentials

Microsoft Teams webhook VISA Basic Auth

MongoDB Credentials Zendesk Token

List of common secrets:

↑

www.gitguardian.com

https://www.gitguardian.com/contact-us/?utm_medium=pdf&utm_campaign=the-state-of-secrets-sprawl-2022

