
Dev.Sec.Ops.
Protecting the Modern
Software Factory

Over the last 30 years, DevOps supplanted Agile, which itself had

come to revolutionize Waterfall development. Loosely coupled

microservices are now considered state-of-the-art to implement

service-oriented architectures. Development timeframes have

been compressed, deployments are done on a weekly or daily

basis, and the cloud now supports a highly dynamic supply

of computing capacity, infrastructure, storage, and network.

The DevOps philosophy has often been summarized by the slogan

“move fast and break things”, which means that because it’s

so easy to deploy source code to production, you should be using

this leverage to innovate faster, and fearlessly.

But there is a catch. DevOps organizations still need to satisfy

security and compliance criteria, because cybersecurity’s

fundamental mission remains the same: make sure things work

as they should, and only as they should. The high flexibility

and openness of modern software supply chains force us

to rethink them.

That’s the core value proposition of DevSecOps: imagine new

security solutions to better protect the modern software

factory.

However, the road is not without challenges. A partnership is

needed between development, security, and operational teams

to make security a frictionless process. Supply chains and

pipelines are becoming the preferred targets for attackers,

and have to be protected in a holistic manner.

The application security shared responsibility model is a stepping

stone on this road. It enables a platform to integrate automated

security solutions, start small, build up capabilities, install

feedback loops, and strive for continuous improvement.

Security: a next step for DevOps

Understanding the modern software factory weak spots

Security must preserve developers’ productivity

The core value proposition of DevSecOps

Challenges to overcome

Reconciliation of the Dev and Sec Teams

The need for tailored automated solutions

Lack of industry standards is a slowing factor

Shared Security Model

A new generation of DevOps-native security tools

Empowering developers beyond DevOps

DevSecOps to improve visibility, control and compliance

Conclusion

4

5

9

10

11

12

13

14

17

18

20

21

27

Security
a next step
for DevOps

DevOps is all about shipping fast. The goal is to make software

experimentation efficient – and simpler. But security remains a

bottleneck. For example, control checks might happen at the end

of delivery lifecycles. Or after a release. This creates additional

effort for development teams, which in turn, causes software

delays – and frustration.

DevSecOps promise consists literally in inserting security

principles, practices, and tools into the DevOps activity stream,

reducing risk without compromising deliverability.

01

Whitepaper | DevSecOps. Protecting the modern software factory 5/30

Security: a next step for DevOps

Modern DevOps teams understand the importance of the

software supply chain in their work. A supply chain is a broad

term encompassing a lot of different realities (open or closed

source tools, dependencies, platforms…) to describe the way

modern software is built. Formally, the software supply chain is a

logistical pathway that covers the entirety of all the hardware,

Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

Software as a Service (SaaS), tools, and practices that are brought

together to deliver software capabilities. It is a layered structure

on top of which companies can build their software factories.

It is extremely rare to see companies producing software that is

100% in-house. Most of the modern software firms are using

hundreds, if not thousands, of building blocks, from open-source

libraries and tools, deployment systems, cloud infrastructure, and

SaaS services. Each of these is in turn the final product of its own

supply chain, on which you don’t have control and very poor visibility.

Understanding the modern
software factory weak spots

Layered nature of software supply chains

Supply chains composed to build a final artifact

Whitepaper | DevSecOps. Protecting the modern software factory 6/30

Security: a next step for DevOps

CI/CD PIPELINES

CI/CD pipelines are the backbone of DevOps. They are linking

a developer’s work to its deployment to production. They are

being implemented in software factories, making the most

of cloud capabilities, to streamline four building blocks:

CASE OF SUPPLY CHAIN ATTACK

SolarWinds
The SolarWinds attack has become the poster child for

supply chain attacks because it is one of the worst-case

scenarios: the compromised system (SolarWinds Orion)

was used by tens of thousands of downstream systems

and run with privileged access to the networks.

Even more serious, users included high-profile clients

such as the US military, state departments, and some

of the biggest IT corps. All these organizations fell

victim to the Sunburst attack which used the supply

chain software to bypass state-of-the-art security

protections and remained undetected for a significant

amount of time. Read about other recent attacks

involving supply chains here.

CONTINUOUS INTEGRATION

source code in shared repositories
CONTINUOUS TESTING

automated tests after every commit

CONTINUOUS DELIVERY

one-click deploy into
production environnment

CONTINUOUS MONITORING

gather metrics about
environments and applications

These four pillars implemented together allow teams to reach

the ultimate goal of DevOps: Continuous Improvement.

https://blog.gitguardian.com/supply-chain-attack-6-steps-to-harden-your-supply-chain/#how-to-prevent-a-supply-chain-attack?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022

Whitepaper | DevSecOps. Protecting the modern software factory 7/30

Security: a next step for DevOps

Infrastructure as code
Not only products and services, but the infrastructure

itself can be the result of a CI/CD pipeline:

Infrastructure as Code or IaC is the process

of provisioning and managing infrastructure defined

through code, instead of doing so with manual

processes. With IaC, users don’t need to configure

an environment every time they want to develop, test,

or deploy software. All infrastructure parameters

are declared in files called manifests, which are

managed through version control. Manifests make

building, testing, staging, and deploying infrastructure

quicker and consistent.

Infrastructure as Code has become the de-facto

solution to meet the demands of Dev-Ops modern

rapid software development cycles.

A typical software factory

A pipeline-built cloud infrastructure

Whitepaper | DevSecOps. Protecting the modern software factory 8/30

Security: a next step for DevOps

The big advantage of these pipelines is that they enable

incremental changes to be delivered which are much easier

to design, review, ship, monitor, and roll back if necessary.

Their downside, however, is that every step of a pipeline is one

more attack surface. More worrying, these represent higher-

valued targets for malicious actors: not only can they hold

production-related credentials, but also because it’s where

an established attacker could silently modify the source code

in what is known as code tampering.

Last year hundreds of Codecov users were affected by code

tampering abusing their CI, learn more here.

As a result, supply chains are increasingly vulnerable because

of their increased openness and complexity. They leave a lot

of grey areas in traditional information security frameworks.

Pipelines and their supply chains have outpaced traditional

cybersecurity and threat modeling analysis frameworks.

Various initiatives have been recently proposed to fill this gap

(Google SLSA, MITRE ATT&CK, or NIST), yet taking action is urgent:

the intersection of a high rate of adoption, poor manageability,

and security oversight with high potential rewards have created

a unique opportunity for malicious actors.

Organizations are acknowledging this new reality and looking

to set up the right balance between productivity and resilience.

Some attack surfaces examples

https://blog.gitguardian.com/codecov-supply-chain-breach/?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://attack.mitre.org/matrices/enterprise/cloud/
https://csrc.nist.gov/Projects/devsecops

Whitepaper | DevSecOps. Protecting the modern software factory 9/30

Security: a next step for DevOps

It’s no secret that security can be a cause of friction when

developing software. When time-to-market is critical, anything

impeding velocity can be perceived as a bottleneck.

The pain points include:

Lack of security expertise, or visibility to deliver safe code

across the lifecycle. Developers are encouraged to ship faster

and remediate later.

Security ownership: Who is responsible? The cloud provider?

The open-source dependency maintainers? Organizations

often make the flawed assumption that security questions have

already been addressed by another link in the chain.

Security professionals and software engineers can act in isolation

from each other, so security is compromised by miscommunication.

Both existing API-based online applications and evolving

micro-services environments can become large-scale and highly

distributed, increasing the scope and complexity of the attack

surface.

These issues do not only create risks, they can also be the origin

of a more risk-averse attitude.

As systems expand and get more complex, as people change,

you have a natural trend towards more risks and downgraded

observability due to an increase in unknowns. Fear of missing

security coverage can impact progress, disabling or slowing

attempts at innovation.

It is clear that a more proactive approach to risk management

and security is vital to preserving the benefits of DevOps.

Security must preserve
developers’ productivity

Whitepaper | DevSecOps. Protecting the modern software factory 10/30

Security: a next step for DevOps

ACCELERATE DEPLOYMENT FREQUENCY

When security encloses the pipeline, speed will eventually

improve. You have to be realistic and accept that the early stages

of integration can be difficult. As teams learn to collaborate more

smoothly, these problems will eventually go away and only the

positive output will remain.

DECREASE TIME TO REMEDIATE CRITICAL
VULNERABILITIES

DevSecOps will drastically improve mean-time-to-remediate

thanks to automated scanning, better communication, and

a shared responsibility model. When responsibility for security

is shared across the pipeline, rather than siloed within one team,

security issues are caught earlier. This in return is directly linked

to cost efficiency, since it costs much more to fix a bug found

during regular maintenance than to fix one identified during

the design phase.

IMPROVE YOUR SECURITY POSTURE

Overall, the modern way to build software is complex.

Including security as a feature from the start is a big win for

the organization’s global security posture. It saves a lot of time

to security teams by eliminating benign issues or false positives

thanks to automated processes gating at every step. It eliminates

the need to retrofit security controls post-development. It will

create a new culture where security best practices are shared

and beneficial to all—from building, deploying, to securing

production workloads.

To operate the shift towards DevSecOps, companies must be

ready to tackle challenges.

The core value
proposition of DevSecOps

Rearchitecting the software factory to embed security is easier

said than done. It requires finding a good balance between

developers’ and security needs while preserving agility and

minimizing the risk of a security failure. But first and foremost,

teams’ objectives and priorities need to be realigned.

To do so — and without waiting for cybersecurity frameworks

to come up with a DevOps-ready security model — you should

examine what tools your organization needs and how to leverage

them to build on your present capacity and deliver value.

Challenges
to overcome

02

Whitepaper | DevSecOps. Protecting the modern software factory 12/30

Chal lenges to overcome

A survey conducted by the Ponemon Institute in 2020 was

a powerful revealer of the cultural divide existing between

developers and application security professionals. The institute

found out that the perception of this cultural divide was not only

high cohorts but also more much pronounced on the application

security side (75% vs 49% on the developers side). They were also

much more concerned about increased risk for their organization

(not surprising), and thinking that

development teams push code with known

vulnerabil ities, with many also complaining that

developers accept flaws if they believe an app

will be a big seller.

The study is a clear indication of the lack of ownership on security:

67% AppSec think their teams are responsible, while only 39%

of developers said the same for their team.

Reconciliation
of the Dev and AppSec teams

Speed is a priority

Need to remain innovative while meeting
more pressurized deadlines than ever before

 Reviewed on productivity

Think AppSec team don’t understand
the pressure to deliver and innovate

AppSec is harder than other areas of security

 The cultural divide has a serious impact
on meeting deadlines

Admit working together is difficult

Security is a priority

Need to make sure code vulnerabilities
don’t reach production

Reviewed on the number of incidents

Think developers do not have visibility
into the overall application security

Published code contains vulnerabilities

 Think the cultural divide is putting
the security of applications at risk

Admit working together is difficult

DEVELOPERS APPSEC

https://www.zeronorth.io/resource/ponemon-report-revealing-the-cultural-divide-between-application-security-and-development/

Whitepaper | DevSecOps. Protecting the modern software factory 13/30

Chal lenges to overcome

The end result is that priorities, goals, and objectives are

not aligned.

A cultural change is required to bring these opposed mission

objectives together. But culture by itself is not enough. You have

to think about integrating new tools to help break the silo.

Bringing AppSec into DevOps means you need tools that can

be completely integrated into the development workflow: IDEs,

version control systems and build tools. Then it is a matter of

smartly placing guardrails all along the path, allowing developers

to move forward with relatively low friction and high visibility.

With automated reports set up, it creates a common interface

to facilitate the exchange between application security

and developer teams while enforcing processes. It is a huge

opportunity to automate most of the low-value tasks and make

sure engineers focus on their area of expertise.

Take pentesting for example. It is a highly valuable security

practice where you can quickly gain a realistic vision of the

number and magnitude of breaches across your systems

by simulating a realistic attack. But pentesting requires days

of expert work to uncover only one attacking vector out of the

many that possibly exist. In other words, it cannot be scaled.

Defenders know how the application they are protecting works

under the hood. This is one weapon you have, that attackers don’t.

By leveraging the deep knowledge of the system developers have,

you can finally leverage your advantage position to find defects

in a faster, more efficient way. It’s only a matter of adopting

the right tools for the job.

That’s why only specially designed AppSec technologies

can enable DevSecOps.

The need for tailored
automated solutions

https://blog.gitguardian.com/how-adding-security-into-devops-accelerates-the-sdlc-pt-1/#1-3-the-security-challenges-agile-has-brought-to-the-sdlc?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022

Whitepaper | DevSecOps. Protecting the modern software factory 14/30

Chal lenges to overcome

Traditional technologies required specialized AppSec human

efforts to onboard, configure, and operate the tools, and didn’t

cover the entire software life cycle (SLC). Most checks ran just

before application deployment and, occasionally, after

deployment, which isn’t a fit for DevSecOps.

We can see DevSecOps tooling as the set of capabilities

that directly increases pipeline governance in order to reduce

application and infrastructure risk. DevSecOps tools have

capabilities that automate best practices, augment the pipeline,

and support development activities, addressing security

challenges across the software development to operations

pipeline.

Broader security tooling, such as tools for threat modeling,

application and infrastructure scanning, hardening, and event

can be seen as important inputs to DevSecOps. However, these

are not DevSecOps tools, and vendors that offer scanning tools

with an API that integrates with CI/CD are not necessarily

DevSecOps vendors.

The accelerated digitization of the world propelled by the global

pandemic has cast a crude light on one reality: cybersecurity

frameworks are lagging behind the reality of most modern

organizations, even the ones that haven’t gone 100% virtual.

This has been happening for years, but as the gaps widen between

the compliance-related security standards and the actual security

challenges on the ground, DevSecOps adoption may be hampered.

Standards are important for multiple reasons. First, a framework

is necessary to create a reference point for everyone. It encodes

knowledge so others can practically assess their security posture.

Second, they are used as the basis for compliance rules.

This means that a static, outdated, framework is doomed to cost

a lot of money to comply with little to no effect on actual security.

Lack of industry standards
is a slowing factor

Whitepaper | DevSecOps. Protecting the modern software factory 15/30

Chal lenges to overcome

Fortunately, many of the industry’s top players have been actively

working on this issue and are now pushing new, open, propositions

that could benefit the industry as a whole.

One of the most interesting has been Google’s SLSA

(Supply chain Levels for Software Artifacts), an end-to-end

framework for ensuring the integrity of software artifacts

throughout the software supply chain. This framework focuses

on identifying and mitigating issues in CI/CD pipelines and defines

4 levels of adoptable guidelines. The idea is to settle on an

industry-wide consensus over clearly defined guiding principles,

which would benefit both producers and consumers: the former

has a clear path forward to make their software more secure,

while the latter can make better decisions based on the software

package’s security posture.

Promising steps
NIST is actually working towards a DevSecOps-specific

framework, conscious that its current standards (like

the well-known Secure Software Development

Framework) are not adapted to the modern DevOps

way of building software:

“There are many existing security guidance and
practices publications from NIST and others, but they
have not yet been put into the context of DevOps.
Updating affected NIST publications so they reflect
DevOps principles would also help organizations
to make better use of their recommendations.”

The institute has also been mandated “with enhancing
cybersecurity through a variety of initiatives related
to the security and integrity of the software supply
chain” by the government’s Executive Order 14028.

https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/nist-recommendations-for-secure-devsecops/?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022
https://blog.gitguardian.com/nist-recommendations-for-secure-devsecops/?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022
https://csrc.nist.gov/Projects/ssdf
https://csrc.nist.gov/Projects/ssdf

Whitepaper | DevSecOps. Protecting the modern software factory 16/30

Chal lenges to overcome

Achieving the highest level of SLSA for most

projects may be difficult, but incremental

improvements will already go a long way

toward improving the security of the open-

source ecosystem.

Using a similar approach, security engineer Hiroki Suezawa

proposed in 2021 an ATT&CK-like matrix on CI/CD Pipeline specific

risk, several attack scenarios, and how to defend.

While there is a lot of literature on secure development, from

secure coding to securing the global lifecycle, CI/CD pipeline

or supply chain security is mostly a blind spot for most existing

frameworks. As they become more relevant for public breaches,

guidelines like SLSA will undoubtedly have a positive impact

on increasing software resiliency. Until we see more general

adoption, companies are left to build their own, DevOps-adapted,

security model.

In order to do so, they should be inspired by the nascent cloud

security model that has been elaborated to rationally and

efficiently allocate security between stakeholders.

https://github.com/rung/threat-matrix-cicd
https://github.com/rung/threat-matrix-cicd

Most cloud providers have a shared responsibility model.

The provider is only responsible for security ‘of’ the cloud,

while customers are responsible for security ‘in’ the cloud.

They provide the physical and architectural security, along

with tools to properly secure the services they offer, but it is up

to the user to configure those settings properly.

To make the parallel, DevSecOps should be implemented

in such a way that AppSec can provide Devs and Ops with the

platform and the tools they need to secure their workloads,

all along the pipeline, to finally break the security silo.

Shared
Security
Model

03

https://blog.gitguardian.com/10-rules-for-better-cloud-security/#shared-responsibility-model?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022
https://blog.gitguardian.com/devsecops-introduction-accelerating-software-development/#shared-responsibility-no-single-security-or-auditing-team?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022

Whitepaper | DevSecOps. Protecting the modern software factory 18/30

Shared Security Model

In its broadest sense, security needs to be thought along

these 5 axes:

Management and governance for guiding prioritization

and resourcing.

Application hardening, instrumenting code, remediating

vulnerabilities and highlighting and fixing poor practices.

Security testing of code and external services, including

vulnerability scanning, penetration, and regression testing.

Mitigation of infrastructure risk and verifying and applying

security mechanisms to platforms in use.

Operational security, incident and event management,

identification, diagnosis, and resolution of vulnerabilities.

As we have said, many of these areas are already evolving apace.

While automation is key, it is not the only principle.

To be successful, tooling needs to handle complexity across

development targets, work with minimal interruption

to the innovation process, and support collaboration.

This not only applies to security, engineering, and operations

professionals, but also to the management teams.

A new generation of DevOps-
native security tools

Whitepaper | DevSecOps. Protecting the modern software factory 19/30

Shared Security Model

A true DevSecOps solution can be a stand-alone tool/dashboard

or working with existing frameworks, but it needs to expand

capabilities by providing a process-level view and satisfying

criteria:

DESIGN STAGE

Supports application-specific policies and their collaborative

development, potentially stored as code.

DEVELOPMENT STAGE

Offers guardrails and potentially automated remediation,

integrating with developers’ environment (CLI or IDE plugin).

TESTING STAGE

Presents a clear view of outstanding risk based on multiple

scanning and testing sources.

DEPLOYMENT STAGE

Offers visibility to all the stakeholders so they can be sure

the artifacts align with their security policy.

Fortunately, we are seeing more and more “DevOps-native”

solutions emerge in the security field. By DevOps-native,

we unusually mean tools that are language/framework/

architecture agnostic, purposely built to be deployed in a cloud

environment, and accessible remotely. It should automatically

test any application architecture, whether it’s a single-page

application or multi-page application, a microservice, or an API.

AppSec in particular, should “speak the language” of developers,

and be accessible:

Easy onboarding and configuration.

Doesn’t require customized login/credential handlers or any other

heavy human involvement.

Covers the entire software lifecycle and be able to test any

business increment, not just a particular endpoint.

Whitepaper | DevSecOps. Protecting the modern software factory 20/30

Shared Security Model

This doesn’t mean that developers shouldn’t learn best security

practices, on the contrary, any DevSecOps platform should be able

to softly propagate best practices. For that, developers should

not be required to learn how to operate AppSec technologies.

This is why trying to retrofit ancient AppSec technologies into

a DevOps-oriented factory is not a good idea. Tools are meant

to empower people, not the contrary.

Most of the time, if developers are not using the tooling at their

disposal, it isn’t because they don’t want security, but rather

because they are too complicated.

A mindset change is necessary. Selecting the right tools

to maintain security and deliver value should be one of the top

priorities of a DevSecOps roadmap.

The idea is simple: make the safe path also the shortest.

Developers will end up taking that route naturally without even

having to make it mandatory or needing to understand the details.

For instance, Single Sign-On is a great example of an operational

side of security that everybody uses without thinking about it.

Users don’t have to type in passwords, administration is easier,

and password-based attacks are neutralized. If it actually works,

everybody wins. If we stretch the reasoning, why not consider

getting rid of patching servers with serverless if that can cover

most use-cases?

Product owners and managers have a role to play in this scenario.

Good decisions regarding product security are far more difficult

than other technical aspects, yet they should be taken. Baking

security and risk-based approaches into development are what

will empower developers to build and deploy secure, high-quality

software.

When policies and workflows are well established within

microservices and guardrails set up, developers are also

empowered to develop faster with more ownership. Operators

can be sure that their teams are consistent and comply with

established business requirements.

Empowering developers
beyond DevOps

Whitepaper | DevSecOps. Protecting the modern software factory 21/30

Shared Security Model

The road to a successful DevSecOps program is highly dependent

on increased visibility. Metrics and visibility help drive change.

Vulnerabilities ownership is enabled by sharing the reports.

Of course, the reports must be accurate and digestible in the first

place. That’s one reason why automation is key to building

a reliable security program.

DevSecOps to improve
visibility, control, and compliance

EXAMPLE

False positives
If we want developers to use scanners in their pipelines,

it is mandatory to select a tool able to maintain

a quality signal noise: because of alert fatigue,

false positives will make or break the success

of any security process. According to a 2020 report

from the Neustar International Security Council (NISC),

over one-quarter of security alerts fielded within

organizations are false positives. Despite all, achieving

zero false positives is not a panacea either, read why.

DevSecOps distinct lifecycle and operations

https://blog.gitguardian.com/application-security-program-appsec/#what-is-application-security-and-why-is-it-critical?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022
https://www.nisc.neustar/
https://blog.gitguardian.com/should-we-target-zero-false-positives/?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022

Whitepaper | DevSecOps. Protecting the modern software factory 22/30

Shared Security Model

Some success criteria include (but are not limited to):

Minimal friction between developers and security.

All vulnerabilities are tracked in the same system as normal bugs.

All vulnerabilities are processed through the same workflow

(bug bounty, pentesting, tools, internal tests).

Relevant metadata is tracked and enriched automatically

and/or by hand.

To achieve these results, there should be at least 4 stepping

stones for continuous security monitoring:

CONTINUOUS SECURITY MONITORING OF
APPLICATION/API INVENTORY

The first step in any application security program is to automate

the discovery, profiling of exactly what code you’re running across

your environments. You can’t secure what you don’t know. Your

attack surface spans production code in a variety of data centers,

virtual environments, private or public clouds, containers… All of

which may be running different versions or branches of the code.

The DevSecOps approach to this problem is to use a combination

of automated discovery and self-inventory tools. Discovery tools

help you identify what applications and APIs you have. Self-

reporting tools enable your applications to inventory themselves

and report their metadata to a central database. An up-to-date

inventory is always the starting point.

 CONTINUOUS SECURITY MONITORING FOR CUSTOM
CODE VULNERABILITIES

Next comes the continuous monitoring of all your software

for vulnerabilities throughout development, test, and operations.

Most vulnerability discovery and remediation should “shift left”

to very early in the software development process. Of course,

some applications aren’t in active development yet need

vulnerability discovery too.

01

02

Whitepaper | DevSecOps. Protecting the modern software factory 23/30

Shared Security Model

Static and dynamic scanners are your weapon of choice here.

For them to work in a modern CI/CD pipeline, they should be able

to scan any significant increment in a timely manner. Remediation

enabling tools are the primary way to empower developers

to fix vulnerabilities themselves and check in clean code.

Because they also require significant triage effort for every scan,

accuracy is a prominent factor.

A low-hanging fruit
One special note about a typical, potentially

devastating, vulnerability that can be monitored at this

stage: unmanaged secrets and poor privileged access

controls. Secrets may include privileged account

credentials, SSH Keys, APIs tokens… and may be used

by humans or non-humans (e.g., applications,

containers, microservices, and cloud instances).

Most facets of DevOps are highly interconnected

and utilize secrets: a typical DevOps environment may

leverage several dozen tools that all require secrets

management. Additionally, to help expedite workflows,

DevOps teams may allow almost unrestricted access

to privileged accounts (root, admin…), by multiple

individuals, who may share credentials — a practice

that virtually eliminates the possibility of a clean

audit trail. Various orchestration, configuration other

DevOps tools may also be granted vast privileges.

Inadequate secrets management is a common

shortcoming of DevOps environments, providing

an avenue for attackers to tamper with controls,

disrupt operations, steal information, and basically

own an organization’s IT infrastructure. With privileged

access rights in hand, a hacker or piece of malware

can gain full control of the systems and data,

so it’s essential for organizations to rein in excessive

privilege rights and access.

24/30

Shared Security Model

 CONTINUOUS SECURITY MONITORING FOR OPEN
SOURCE VULNERABILITIES AND LICENSE VIOLATIONS

The use of open-source software (OSS) is exploding, and DevOps

companies are highly leveraging these powerful libraries.

Every time you add a library, you take on the risk that there

is a security vulnerability (or multiple vulnerabilities) lurking

in that code.

Since the typical modern application has hundreds of these

components and dozens of new vulnerabilities are disclosed every

week, the risk and work both add up quickly. Fortunately, there

are many solutions available for continuously monitoring your

applications for library problems. The best will not only track your

libraries, report vulnerabilities, and report license violations but

will also tell you exactly why each library is included and whether

it is actually invoked at runtime. Without this knowledge, you will

waste a lot of time updating libraries that can’t be exploited.

CONTINUOUS ATTACK MONITORING AND RUNTIME
EXPLOIT PREVENTION

Finally, don’t forget about continuously monitoring and protecting

your applications in production. Even the best software projects

and security teams miss vulnerabilities. And even if they were

perfect, new library vulnerabilities are frequently discovered.

04

03

Whitepaper | DevSecOps. Protecting the modern software factory

Whitepaper | DevSecOps. Protecting the modern software factory 25/30

Shared Security Model

Simply knowing who is attacking you, what types of attack vectors

they are using, and which systems they are targeting is itself

valuable. This threat intelligence will inform your threat modeling

and security architecture process and help you make smart

decisions.

Example: The legacy web app firewall (WAF) approach can only

use HTTP information to differentiate attacks from legitimate

transactions. With modern application protocols and data

formats, this approach is extremely noisy and time-consuming.

The modern approach is to use Runtime Application Self-

Protection (RASP), which instruments applications, directly

measures attacks from the prevents exploits from within.

CASE OF A MAJOR OPEN-SOURCE COMPONENT VULNERABILITY

Log4Shell
Log4Shell is a software vulnerability in Apache Log4j 2,

a popular open-source Java library for logging error

messages in applications. It was publicly disclosed

on 9 December 2021 with a CVSS severity rating of 10,

the highest available score. What makes Log4Shell

so dangerous is how ubiquitous the Log4j 2 library is:

it’s present in major platforms from Amazon Web

Services to VMware, and services large and small.

The ease of exploiting the vulnerability compounds

its impact. Attackers can remotely take over any

internet-connected service that uses certain versions

of the Log4j library anywhere in the software stack.

Whitepaper | DevSecOps. Protecting the modern software factory 26/30

Shared Security Model

Supply chain controls

Here is an example of what DevSecOps controls can look like

when implemented all along the pipeline:

Automation is not only a matter of saving time, it is also essential

in maintaining consistency between the distinct steps. Without it,

security would not be reusable, scalable, and we would not be able

to gather metrics on a centralized platform.

https://blog.gitguardian.com/devsecops-introduction-accelerating-software-development/#devsecops-benefits?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022

Security can’t scale if it’s siloed, and slowing down the

development process is no longer an option in a world led by

DevOps innovation. The design and implementation of security

controls are bound to evolve. DevSecOps promises to ensure cloud

software factories are well-protected against the emerging threat

of supply chain attacks, but also that developers will be

empowered to build and run safer software.

A lot can be improved on these fronts, and for that application

security, development and operational teams need to take over

a new generation of DevOps-native security tools. They are

the gateway to creating an automated, tailored detection and

remediation system. This security guardrail is integrated and

unified to protect every step of the software development cycle,

which in the DevOps era tends to be assimilated to CI/CD pipelines.

When security is rethought as a partnership between

stakeholders, who are the different teams collaborating

to produce software, a flywheel effect can take place: reduced

friction leads to better communication and visibility, automating

of more best practices, easing the work of each other while

improving security, fewer defects, and so less friction and better

productivity for all. This is how security will finally benefit from

feedback loops and strive for continuous improvement.

Conclusion

Whitepaper | DevSecOps. Protecting the modern software factory 28/30

Conclusion

The new ways of building software create the necessity to support

new vulnerabilities and new remediation workflows. These needs

have emerged so abruptly that they have given rise to a young and

highly fragmented DevSecOps tooling market. Solutions are

specialized based on the type of vulnerabilities being addressed:

SAST, DAST, IAST, RASP, SCA, Secrets Detection, Container Security,

and Infrastructure as Code Security. However, the market is

fragmented and tools are not well-integrated into the developers’

workflow.

GitGuardian, founded in 2017 by Jérémy Thomas and Eric Fourrier,

has emerged as the leader in secrets detection and is now focused

on providing a holistic code security platform while enabling the

Shared Responsibility Model of AppSec. The company has raised a

$56M total investment to date.

With more than 150K installs, GitGuardian is the n°1 security

application on the GitHub Marketplace. Its enterprise-grade

features truly enable AppSec and Development teams in a

collaborative manner to deliver a secret-free code. Its detection

engine is based on 350 detectors able to catch secrets in both

public and private repositories and containers at every step

of the CI/CD pipeline.

GitGuardian monitors every step of the pipeline

About GitGuardian

Whitepaper | DevSecOps. Protecting the modern software factory 29/30

Conclusion

GitGuardian’s mission is ambitious

but is built on a very simple

philosophy at its core. Developing

and launching secure applications

must be a shared responsibility

between Dev, Sec, and Cloud Ops.

Developers, in particular, want

a wingman at every step of the SDLC

to help them write more secure

code without limiting their

productivity. And as defining threat

signatures and keeping pace with

the thousands of technologies that

developers use will always be

a never-ending battle, we have

already laid the foundation of

a powerful and flexible code security

framework that can be extended

rapidly to encode a wide variety

of vulnerabilities.

Jérémy Thomas, GitGuardian CEO

GitGuardian is a global cybersecurity startup focusing on code

security solutions for the DevOps generation. A leader in the

market of secrets detection and remediation, its solutions are

already used by hundreds of thousands of developers in all

industries.

www.gitguardian.com

© 2022 GitGuardian. All Rights Reserved.

https://www.gitguardian.com/contact-us?utm_medium=pdf&utm_campaign=whitepaper-devsecops-2022

