## Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

## Ecochain

| Product: | $3067713-$ SiTech+ Bend STB $15^{\circ} 110$ |
| :--- | :--- |
| Unit: | 1 piece |
| Manufacturer: | Wavin -IT - SM Maddalena |

Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased durability, but more importantly is quiet and easy to install.
LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
wavin
An Orbia business.

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ( $\square=$ module declared, MND = module not declared).


A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential

Environmental impacts and parameters






Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

|  | Environmental impact | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GWP-total |  | kg CO2 eq | 6.77E-1 | 1.33E-2 | 4.88E-2 | 7.40E-1 | $8.82 \mathrm{E}-3$ | $3.92 \mathrm{E}-1$ | $4.25 \mathrm{E}-3$ | -4.12E-1 | $7.33 \mathrm{E}-1$ |
| GWP-f |  | kg CO2 eq | 7.48E-1 | $1.33 \mathrm{E}-2$ | 4.17E-2 | 8.03E-1 | 8.81E-3 | 3.03E-1 | $4.25 \mathrm{E}-3$ | -4.47E-1 | $6.72 \mathrm{E}-1$ |
| GWP-b |  | kg CO2 eq | -7.10E-2 | $8.06 \mathrm{E}-6$ | 3.52E-3 | -6.75E-2 | $5.35 \mathrm{E}-6$ | 8.94E-2 | $3.74 \mathrm{E}-6$ | $3.54 \mathrm{E}-2$ | 5.73E-2 |
| GWP-Iuluc |  | kg CO2 eq | $4.49 \mathrm{E}-4$ | 4.70E-6 | 3.52E-3 | $3.98 \mathrm{E}-3$ | 3.12E-6 | 4.96E-5 | $7.18 \mathrm{E}-8$ | -3.70E-4 | $3.66 \mathrm{E}-3$ |
| ODP |  | kg CFC11 eq | 2.91E-8 | 3.06E-9 | 4.19E-9 | $3.63 \mathrm{E}-8$ | 2.03E-9 | 6.96E-9 | 1.07E-10 | -2.09E-8 | $2.45 \mathrm{E}-8$ |
| AP |  | mol $\mathrm{H}+\mathrm{eq}$ | $2.84 \mathrm{E}-3$ | 7.57E-5 | $1.68 \mathrm{E}-4$ | $3.08 \mathrm{E}-3$ | 5.02E-5 | 2.91E-4 | $2.55 \mathrm{E}-6$ | -1.37E-3 | $2.05 \mathrm{E}-3$ |
| EP-fw |  | kg Peq | $1.39 \mathrm{E}-5$ | 1.09E-7 | $6.48 \mathrm{E}-7$ | $1.47 \mathrm{E}-5$ | $7.25 \mathrm{E}-8$ | 1.45E-6 | 3.31E-9 | -8.09E-6 | $8.08 \mathrm{E}-6$ |
| EP-m |  | kg Neq | 5.09E-4 | 2.71E-5 | $2.84 \mathrm{E}-5$ | 5.64E-4 | 1.80E-5 | 8.71E-5 | $1.86 \mathrm{E}-6$ | -2.60E-4 | $4.11 \mathrm{E}-4$ |
| EP-T |  | mol eq | 5.63E-3 | $2.98 \mathrm{E}-4$ | 3.20E-4 | $6.25 \mathrm{E}-3$ | $1.98 \mathrm{E}-4$ | $9.58 \mathrm{E}-4$ | $1.04 \mathrm{E}-5$ | -2.91E-3 | 4.50E-3 |
| POCP |  | kg NMVOC eq | $2.46 \mathrm{E}-3$ | $8.53 \mathrm{E}-5$ | 9.93E-5 | $2.64 \mathrm{E}-3$ | 5.66E-5 | 2.99E-4 | 3.89E-6 | -1.22E-3 | 1.78E-3 |
| ADP-mm |  | kg Sb eq | $2.94 \mathrm{E}-5$ | $3.44 \mathrm{E}-7$ | $1.02 \mathrm{E}-6$ | 3.08E-5 | $2.28 \mathrm{E}-7$ | 1.14E-6 | $2.56 \mathrm{E}-9$ | -3.71E-6 | $2.84 \mathrm{E}-5$ |
| ADP-f |  | MJ | $2.56 \mathrm{E}+1$ | 2.04E-1 | $5.49 \mathrm{E}-1$ | $2.63 \mathrm{E}+1$ | $1.35 \mathrm{E}-1$ | 8.83E-1 | 7.81E-3 | -1.34E+1 | 1.40E+1 |
| WDP |  | m3 depriv. | $5.06 \mathrm{E}-1$ | $6.26 \mathrm{E}-4$ | $1.94 \mathrm{E}-1$ | 7.00E-1 | 4.15E-4 | 1.73E-2 | 3.58E-5 | -2.74E-1 | $4.44 \mathrm{E}-1$ |
| PM |  | disease inc. | 2.80E-8 | 1.20E-9 | $1.69 \mathrm{E}-9$ | 3.09E-8 | 7.95E-10 | $4.68 \mathrm{E}-9$ | 5.37E-11 | -1.43E-8 | $2.21 \mathrm{E}-8$ |
| IR |  | kBq U-235 eq | $1.84 \mathrm{E}-2$ | 8.91E-4 | 5.12E-4 | $1.98 \mathrm{E}-2$ | 5.91E-4 | $2.71 \mathrm{E}-3$ | 3.64E-5 | -8.81E-3 | 1.43E-2 |
| ETP-fw |  | CTUe | $9.20 \mathrm{E}+0$ | $1.66 \mathrm{E}-1$ | $8.67 \mathrm{E}-1$ | $1.02 \mathrm{E}+1$ | 1.10E-1 | $1.10 \mathrm{E}+0$ | $7.10 \mathrm{E}-3$ | -4.67E+0 | $6.78 \mathrm{E}+0$ |
| HTP-c |  | cTUn | $2.22 \mathrm{E}-10$ | 5.89E-12 | $4.62 \mathrm{E}-11$ | $2.74 \mathrm{E}-10$ | $3.91 \mathrm{E}-12$ | 1.19E-10 | 1.89E-13 | -1.16E-10 | 2.81E-10 |
| HTP-nc |  | ctun | $5.46 \mathrm{E}-9$ | $1.97 \mathrm{E}-10$ | $9.58 \mathrm{E}-10$ | 6.62E-9 | 1.31E-10 | 1.50E-9 | 4.33E-12 | -2.86E-9 | $5.40 \mathrm{E}-9$ |
| SQP |  | Pt | $8.72 \mathrm{E}+0$ | $1.74 \mathrm{E}-1$ | 1.00E-1 | $9.00 \mathrm{E}+0$ | 1.16E-1 | 6.94E-1 | $2.01 \mathrm{E}-2$ | -1.21E+1 | -2.29E+0 |
|  | Resource use | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| PERE |  | MJ | $1.58 \mathrm{E}+0$ | $2.92 \mathrm{E}-3$ | 1.90E+0 | $3.49 \mathrm{E}+0$ | $1.94 \mathrm{E}-3$ | $4.28 \mathrm{E}-2$ | $3.08 \mathrm{E}-4$ | $-2.13 \mathrm{E}+0$ | $1.40 \mathrm{E}+0$ |
| PERM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PERT |  | MJ | $1.58 \mathrm{E}+0$ | $2.92 \mathrm{E}-3$ | 1.90E+0 | $3.49 \mathrm{E}+0$ | $1.94 \mathrm{E}-3$ | 4.28E-2 | 3.08E-4 | -2.13E+0 | $1.40 \mathrm{E}+0$ |
| PENRE |  | MJ | $2.74 \mathrm{E}+1$ | $2.16 \mathrm{E}-1$ | $5.99 \mathrm{E}-1$ | 2.83E+1 | $1.44 \mathrm{E}-1$ | $9.41 \mathrm{E}-1$ | 8.29E-3 | $-1.44 \mathrm{E}+1$ | 1.49E+1 |
| PENRM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PENRT |  | MJ | $2.74 \mathrm{E}+1$ | 2.16E-1 | $5.99 \mathrm{E}-1$ | $2.83 \mathrm{E}+1$ | 1.44E-1 | $9.41 \mathrm{E}-1$ | $8.29 \mathrm{E}-3$ | -1.44E+1 | 1.49E+1 |
| PET |  | MJ | $2.90 \mathrm{E}+1$ | 2.19E-1 | 2.50E+0 | 3.18E+1 | $1.46 \mathrm{E}-1$ | $9.83 \mathrm{E}-1$ | $8.60 \mathrm{E}-3$ | $-1.66 \mathrm{E}+1$ | 1.63E+1 |
| SM |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| NRSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| FW |  | m3 | $8.19 \mathrm{E}-3$ | $2.31 \mathrm{E}-5$ | $4.62 \mathrm{E}-3$ | 1.28E-2 | $1.53 \mathrm{E}-5$ | $5.64 \mathrm{E}-4$ | $9.65 \mathrm{E}-6$ | -4.75E-3 | $8.67 \mathrm{E}-3$ |


| Output flows and waste categories | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HWD | kg | 4.72E-6 | 5.21E-7 | $5.34 \mathrm{E}-7$ | 5.77E-6 | $3.46 \mathrm{E}-7$ | $1.50 \mathrm{E}-6$ | $9.38 \mathrm{E}-9$ | -4.16E-6 | 3.47E-6 |
| NHWD | kg | 3.92E-2 | 1.26E-2 | 5.20E-3 | 5.70E-2 | $8.38 \mathrm{E}-3$ | $4.39 \mathrm{E}-2$ | $3.44 \mathrm{E}-2$ | -1.56E-2 | 1.28E-1 |
| RWD | kg | 1.85E-5 | 1.39E-6 | 5.70E-7 | $2.05 \mathrm{E}-5$ | 9.20E-7 | 3.47E-6 | 5.11E-8 | -8.29E-6 | 1.67E-5 |
| CRU | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MFR | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MER | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EE | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EET | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EEE | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

