Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067742-$ SiTech+ Bend STB $87,5^{\circ} 75$
Unit:	1 piece
Manufacturer:	Wavin -IT - SM Maddalena

Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased durability, but more importantly is quiet and easy to install.
LCA standard: Standard database: Externally verified: Issue date: End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
24-11-2022
24-11-2027
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	3.68E-1	$6.16 \mathrm{E}-3$	$2.70 \mathrm{E}-2$	4.01E-1	$4.90 \mathrm{E}-3$	$2.39 \mathrm{E}-1$	$2.36 \mathrm{E}-3$	-2.28E-1	$4.19 \mathrm{E}-1$
GWP-f		kg CO 2 eq	$4.25 \mathrm{E}-1$	6.16E-3	2.31E-2	$4.54 \mathrm{E}-1$	4.90E-3	1.68E-1	$2.36 \mathrm{E}-3$	-2.55E-1	3.74E-1
GWP-b		kg CO2 eq	-5.73E-2	$3.74 \mathrm{E}-6$	$1.95 \mathrm{E}-3$	-5.53E-2	$2.98 \mathrm{E}-6$	7.10E-2	$2.07 \mathrm{E}-6$	$2.74 \mathrm{E}-2$	4.31E-2
GWP-luluc		kg CO2 eq	$3.01 \mathrm{E}-4$	$2.18 \mathrm{E}-6$	$1.95 \mathrm{E}-3$	$2.25 \mathrm{E}-3$	$1.73 \mathrm{E}-6$	$2.79 \mathrm{E}-5$	3.99E-8	-2.68E-4	2.02E-3
ODP		kg CFC11 eq	$1.71 \mathrm{E}-8$	1.42E-9	$2.32 \mathrm{E}-9$	$2.08 \mathrm{E}-8$	$1.13 \mathrm{E}-9$	4.00E-9	$5.94 \mathrm{E}-11$	-1.24E-8	$1.36 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$1.63 \mathrm{E}-3$	3.51E-5	9.32E-5	$1.75 \mathrm{E}-3$	2.79E-5	1.66E-4	$1.42 \mathrm{E}-6$	-8.17E-4	1.13E-3
EP-fw		kg Peq	8.29E-6	5.07E-8	3.59E-7	$8.70 \mathrm{E}-6$	$4.03 \mathrm{E}-8$	$8.14 \mathrm{E}-7$	$1.84 \mathrm{E}-9$	-5.28E-6	4.27E-6
EP-m		kg Neq	3.00E-4	1.25E-5	$1.57 \mathrm{E}-5$	$3.28 \mathrm{E}-4$	9.99E-6	5.01E-5	$1.02 \mathrm{E}-6$	-1.57E-4	2.32E-4
EP-T		mol Neq	3.30E-3	$1.38 \mathrm{E}-4$	$1.77 \mathrm{E}-4$	$3.61 \mathrm{E}-3$	$1.10 \mathrm{E}-4$	5.51E-4	5.76E-6	-1.77E-3	2.51E-3
POCP		kg NMVOC eq	$1.41 \mathrm{E}-3$	3.95E-5	5.50E-5	$1.50 \mathrm{E}-3$	3.15E-5	1.72E-4	$2.16 \mathrm{E}-6$	-7.20E-4	9.89E-4
ADP-mm		kg Sb eq	$1.59 \mathrm{E}-5$	1.59E-7	5.63E-7	$1.66 \mathrm{E}-5$	1.27E-7	6.50E-7	$1.42 \mathrm{E}-9$	-2.14E-6	1.53E-5
ADP-f		MJ	$1.44 \mathrm{E}+1$	$9.45 \mathrm{E}-2$	$3.04 \mathrm{E}-1$	$1.48 \mathrm{E}+1$	$7.52 \mathrm{E}-2$	5.00E-1	$4.34 \mathrm{E}-3$	-7.56E+0	7.77E+0
WDP		m3 depriv.	$2.84 \mathrm{E}-1$	$2.90 \mathrm{E}-4$	$1.08 \mathrm{E}-1$	$3.92 \mathrm{E}-1$	$2.31 \mathrm{E}-4$	$9.69 \mathrm{E}-3$	$1.99 \mathrm{E}-5$	-1.64E-1	$2.38 \mathrm{E}-1$
PM		disease inc.	$1.64 \mathrm{E}-8$	5.56E-10	$9.34 \mathrm{E}-10$	$1.79 \mathrm{E}-8$	$4.42 \mathrm{E}-10$	2.67E-9	$2.98 \mathrm{E}-11$	-8.98E-9	1.21E-8
IR		kBq U-235 eq	$1.06 \mathrm{E}-2$	4.13E-4	$2.84 \mathrm{E}-4$	1.13E-2	3.29E-4	$1.55 \mathrm{E}-3$	2.02E-5	-5.49E-3	7.68E-3
ETP-fw		ctue	$6.11 \mathrm{E}+0$	7.67E-2	$4.80 \mathrm{E}-1$	$6.67 \mathrm{E}+0$	6.11E-2	$6.24 \mathrm{E}-1$	3.92E-3	$-3.25 \mathrm{E}+0$	4.11E+0
HTP-c		cTUn	$1.34 \mathrm{E}-10$	2.73E-12	$2.56 \mathrm{E}-11$	1.63E-10	2.17E-12	$6.73 \mathrm{E}-11$	1.05E-13	$-7.54 \mathrm{E}-11$	$1.57 \mathrm{E}-10$
HTP-nc		cTUn	3.19E-9	$9.15 \mathrm{E}-11$	5.31E-10	3.81E-9	7.28E-11	8.49E-10	$2.40 \mathrm{E}-12$	-1.80E-9	$2.94 \mathrm{E}-9$
SQP		Pt	$6.65 \mathrm{E}+0$	$8.09 \mathrm{E}-2$	5.54E-2	$6.79 \mathrm{E}+0$	$6.43 \mathrm{E}-2$	3.92E-1	1.11E-2	$-9.38 \mathrm{E}+0$	-2.13E+0
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.16 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	1.05E+0	$2.22 \mathrm{E}+0$	$1.08 \mathrm{E}-3$	$2.41 \mathrm{E}-2$	1.71E-4	$-1.62 \mathrm{E}+0$	$6.17 \mathrm{E}-1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$1.16 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	1.05E+0	$2.22 \mathrm{E}+0$	1.08E-3	$2.41 \mathrm{E}-2$	1.71E-4	$-1.62 \mathrm{E}+0$	6.17E-1
PENRE		MJ	$1.54 \mathrm{E}+1$	1.00E-1	3.32E-1	$1.58 \mathrm{E}+1$	7.98E-2	$5.32 \mathrm{E}-1$	$4.60 \mathrm{E}-3$	-8.14E+0	8.30E+0
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$1.54 \mathrm{E}+1$	1.00E-1	3.32E-1	$1.58 \mathrm{E}+1$	7.98E-2	5.32E-1	4.60E-3	-8.14E+0	$8.30 \mathrm{E}+0$
PET		MJ	$1.66 \mathrm{E}+1$	1.02E-1	1.38E+0	$1.80 \mathrm{E}+1$	8.09E-2	5.56E-1	4.77E-3	-9.77E+0	8.92E+0
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	4.65E-3	1.07E-5	$2.56 \mathrm{E}-3$	7.22E-3	$8.51 \mathrm{E}-6$	3.15E-4	5.36E-6	-2.95E-3	$4.60 \mathrm{E}-3$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	$2.86 \mathrm{E}-6$	2.42E-7	$2.96 \mathrm{E}-7$	3.40E-6	1.92E-7	$8.58 \mathrm{E}-7$	5.21E-9	-2.50E-6	1.95E-6
NHWD	kg	$2.38 \mathrm{E}-2$	$5.86 \mathrm{E}-3$	$2.88 \mathrm{E}-3$	3.25E-2	4.66E-3	$2.48 \mathrm{E}-2$	1.91E-2	-1.00E-2	7.11E-2
RWD	kg	1.06E-5	6.43E-7	3.16E-7	1.16E-5	5.11E-7	1.98E-6	$2.84 \mathrm{E}-8$	-5.19E-6	8.94E-6
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

