Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067744-$ SiTech+ Bend STB $87,5^{\circ} 110$
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased durability, but more importantly is quiet and easy to install.
LCA standard:
Externally verified:
Issue date:
End of validity:

Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
24-11-2022
24-11-2027
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	9.68E-1	$1.77 \mathrm{E}-2$	7.15E-2	1.06E+0	$1.28 \mathrm{E}-2$	5.43E-1	$6.15 \mathrm{E}-3$	-5.99E-1	$1.02 \mathrm{E}+0$
GWP-f		kg CO2 eq	$1.07 \mathrm{E}+0$	1.77E-2	6.11E-2	$1.15 \mathrm{E}+0$	$1.28 \mathrm{E}-2$	$4.21 \mathrm{E}-1$	$6.15 \mathrm{E}-3$	-6.42E-1	$9.43 \mathrm{E}-1$
GWP-b		kg CO2 eq	-9.89E-2	$1.07 \mathrm{E}-5$	5.16E-3	-9.37E-2	7.80E-6	$1.22 \mathrm{E}-1$	$5.39 \mathrm{E}-6$	$4.34 \mathrm{E}-2$	7.21E-2
GWP-Iuluc		kg CO2 eq	$5.89 \mathrm{E}-4$	$6.25 \mathrm{E}-6$	5.16E-3	5.76E-3	$4.54 \mathrm{E}-6$	7.25E-5	$1.04 \mathrm{E}-7$	-4.80E-4	5.35E-3
ODP		kg CFC11 eq	$3.57 \mathrm{E}-8$	4.07E-9	$6.13 \mathrm{E}-9$	$4.59 \mathrm{E}-8$	$2.96 \mathrm{E}-9$	$1.01 \mathrm{E}-8$	1.55E-10	-2.89E-8	3.02E-8
AP		mol $\mathrm{H}+\mathrm{eq}$	3.98E-3	$1.01 \mathrm{E}-4$	2.47E-4	$4.33 \mathrm{E}-3$	7.31E-5	4.20E-4	3.69E-6	-1.97E-3	$2.86 \mathrm{E}-3$
EP-fw		kg Peq	1.90E-5	1.45E-7	$9.50 \mathrm{E}-7$	2.01E-5	$1.06 \mathrm{E}-7$	$2.11 \mathrm{E}-6$	$4.78 \mathrm{E}-9$	-1.11E-5	1.13E-5
EP-m		kg Neq	$7.10 \mathrm{E}-4$	3.60E-5	4.17E-5	7.88E-4	$2.62 \mathrm{E}-5$	$1.25 \mathrm{E}-4$	$2.60 \mathrm{E}-6$	-3.69E-4	$5.72 \mathrm{E}-4$
EP-T		$\mathrm{mol} \mathrm{Neq}^{\text {d }}$	7.87E-3	3.97E-4	4.68E-4	$8.74 \mathrm{E}-3$	$2.88 \mathrm{E}-4$	$1.38 \mathrm{E}-3$	$1.50 \mathrm{E}-5$	-4.13E-3	6.29E-3
POCP		kg NMVOC eq	3.46E-3	$1.13 \mathrm{E}-4$	$1.45 \mathrm{E}-4$	3.72E-3	8.24E-5	4.31E-4	$5.62 \mathrm{E}-6$	-1.75E-3	2.49E-3
ADP-mm		kg Sb eq	3.36E-5	4.57E-7	$1.49 \mathrm{E}-6$	3.56E-5	$3.32 \mathrm{E}-7$	$1.65 \mathrm{E}-6$	3.70E-9	-5.07E-6	$3.25 \mathrm{E}-5$
ADP-f		MJ	$3.68 \mathrm{E}+1$	$2.71 \mathrm{E}-1$	$8.05 \mathrm{E}-1$	$3.79 \mathrm{E}+1$	$1.97 \mathrm{E}-1$	1.29E+0	$1.13 \mathrm{E}-2$	-1.94E+1	$1.99 \mathrm{E}+1$
WDP		m3 depriv.	$7.25 \mathrm{E}-1$	$8.32 \mathrm{E}-4$	$2.85 \mathrm{E}-1$	$1.01 \mathrm{E}+0$	6.05E-4	$2.51 \mathrm{E}-2$	5.17E-5	-3.89E-1	$6.47 \mathrm{E}-1$
PM		disease inc.	3.86E-8	$1.60 \mathrm{E}-9$	$2.47 \mathrm{E}-9$	$4.27 \mathrm{E}-8$	$1.16 \mathrm{E}-9$	$6.79 \mathrm{E}-9$	$7.75 \mathrm{E}-11$	-2.00E-8	3.08E-8
IR		kBq U-235 eq	$2.45 \mathrm{E}-2$	$1.19 \mathrm{E}-3$	7.51E-4	$2.64 \mathrm{E}-2$	$8.61 \mathrm{E}-4$	$3.94 \mathrm{E}-3$	5.25E-5	-1.23E-2	1.90E-2
ETP-fw		ctue	1.19E+1	2.20E-1	1.27E+0	$1.34 \mathrm{E}+1$	$1.60 \mathrm{E}-1$	1.56E+0	$1.00 \mathrm{E}-2$	-6.17E+0	$8.95 \mathrm{E}+0$
HTP-c		cTUn	3.07E-10	7.84E-12	6.77E-11	3.83E-10	5.69E-12	$1.73 \mathrm{E}-10$	2.73E-13	-1.63E-10	3.99E-10
HTP-nc		ctun	$7.58 \mathrm{E}-9$	$2.63 \mathrm{E}-10$	1.40E-9	$9.24 \mathrm{E}-9$	1.91E-10	$2.17 \mathrm{E}-9$	6.19E-12	-4.00E-9	7.62E-9
SQP		Pt	1.19E+1	$2.32 \mathrm{E}-1$	1.47E-1	$1.23 \mathrm{E}+1$	$1.69 \mathrm{E}-1$	1.01E+0	2.90E-2	-1.59E+1	$-2.40 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$2.17 \mathrm{E}+0$	3.89E-3	$2.78 \mathrm{E}+0$	$4.96 \mathrm{E}+0$	2.83E-3	6.25E-2	4.43E-4	$-2.79 \mathrm{E}+0$	$2.23 \mathrm{E}+0$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$2.17 \mathrm{E}+0$	3.89E-3	$2.78 \mathrm{E}+0$	$4.96 \mathrm{E}+0$	$2.83 \mathrm{E}-3$	$6.25 \mathrm{E}-2$	4.43E-4	-2.79E+0	$2.23 \mathrm{E}+0$
PENRE		MJ	$3.95 \mathrm{E}+1$	$2.88 \mathrm{E}-1$	$8.78 \mathrm{E}-1$	$4.06 \mathrm{E}+1$	$2.09 \mathrm{E}-1$	$1.37 \mathrm{E}+0$	1.20E-2	-2.09E+1	$2.13 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$3.95 \mathrm{E}+1$	$2.88 \mathrm{E}-1$	$8.78 \mathrm{E}-1$	$4.06 \mathrm{E}+1$	$2.09 \mathrm{E}-1$	$1.37 \mathrm{E}+0$	1.20E-2	-2.09E+1	$2.13 \mathrm{E}+1$
PET		MJ	4.17E+1	2.92E-1	$3.66 \mathrm{E}+0$	$4.56 \mathrm{E}+1$	2.12E-1	1.43E+0	$1.24 \mathrm{E}-2$	-2.37E+1	$2.35 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$1.15 \mathrm{E}-2$	3.07E-5	$6.76 \mathrm{E}-3$	$1.83 \mathrm{E}-2$	2.23E-5	7.95E-4	$1.39 \mathrm{E}-5$	-6.64E-3	$1.25 \mathrm{E}-2$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	6.33E-6	$6.94 \mathrm{E}-7$	7.82E-7	7.80E-6	5.04E-7	$2.17 \mathrm{E}-6$	$1.35 \mathrm{E}-8$	-5.79E-6	4.70E-6
NHWD	kg	5.34E-2	$1.68 \mathrm{E}-2$	7.62E-3	7.79E-2	1.22E-2	6.36E-2	$4.98 \mathrm{E}-2$	-2.20E-2	1.81E-1
RWD	kg	2.39E-5	1.84E-6	8.35E-7	$2.66 \mathrm{E}-5$	1.34E-6	5.03E-6	$7.38 \mathrm{E}-8$	-1.15E-5	2.16E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

