Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067751-$ SiTech+ Branch STEA $45^{\circ} 50 \times 50$
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

LCA standard: Standard database: Externally verified: Issue date: End of validity:
Verifier:O4Worldwide - Ecoinvent v 3.6 Cut-Off

Yes
24-11-2022
24-11-2027
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$2.88 \mathrm{E}-1$	$6.40 \mathrm{E}-3$	$1.89 \mathrm{E}-2$	3.14E-1	3.53E-3	$1.75 \mathrm{E}-1$	$1.74 \mathrm{E}-3$	-1.65E-1	3.29E-1
GWP-f		kg CO 2 eq	3.17E-1	$6.39 \mathrm{E}-3$	1.62E-2	3.39E-1	3.53E-3	1.37E-1	$1.74 \mathrm{E}-3$	-1.86E-1	2.96E-1
GWP-b		kg CO2 eq	-2.87E-2	3.88E-6	$1.37 \mathrm{E}-3$	-2.73E-2	$2.14 \mathrm{E}-6$	3.85E-2	$1.54 \mathrm{E}-6$	$2.05 \mathrm{E}-2$	3.17E-2
GWP-Iuluc		kg CO2 eq	$2.27 \mathrm{E}-4$	$2.26 \mathrm{E}-6$	$1.37 \mathrm{E}-3$	1.60E-3	$1.25 \mathrm{E}-6$	1.97E-5	$2.95 \mathrm{E}-8$	-1.91E-4	$1.43 \mathrm{E}-3$
ODP		kg CFC11 eq	$1.65 \mathrm{E}-8$	1.47E-9	$1.62 \mathrm{E}-9$	$1.96 \mathrm{E}-8$	$8.14 \mathrm{E}-10$	$2.86 \mathrm{E}-9$	$4.39 \mathrm{E}-11$	-9.51E-9	$1.38 \mathrm{E}-8$
AP		$\mathrm{mol} \mathrm{H}+\mathrm{eq}$	$1.25 \mathrm{E}-3$	3.64E-5	6.53E-5	$1.35 \mathrm{E}-3$	2.01E-5	1.20E-4	$1.05 \mathrm{E}-6$	-5.77E-4	$9.13 \mathrm{E}-4$
EP-fw		kg P eq	6.46E-6	$5.26 \mathrm{E}-8$	$2.51 \mathrm{E}-7$	6.77E-6	$2.91 \mathrm{E}-8$	5.78E-7	$1.36 \mathrm{E}-9$	-3.77E-6	$3.61 \mathrm{E}-6$
EP-m		kg Neq	$2.27 \mathrm{E}-4$	$1.30 \mathrm{E}-5$	1.10E-5	$2.51 \mathrm{E}-4$	7.20E-6	3.63E-5	8.21E-7	-1.11E-4	1.84E-4
EP-T		mol Neq	$2.50 \mathrm{E}-3$	$1.44 \mathrm{E}-4$	1.24E-4	$2.76 \mathrm{E}-3$	7.93E-5	3.99E-4	$4.25 \mathrm{E}-6$	-1.25E-3	2.00E-3
POCP		kg NMVOC eq	$1.07 \mathrm{E}-3$	$4.10 \mathrm{E}-5$	$3.85 \mathrm{E}-5$	$1.15 \mathrm{E}-3$	$2.27 \mathrm{E}-5$	1.24E-4	$1.59 \mathrm{E}-6$	-5.05E-4	7.91E-4
ADP-mm		kg Sb eq	$1.85 \mathrm{E}-5$	1.65E-7	3.94E-7	1.91E-5	$9.14 \mathrm{E}-8$	4.62E-7	$1.05 \mathrm{E}-9$	-1.73E-6	$1.79 \mathrm{E}-5$
ADP-f		MJ	$1.06 \mathrm{E}+1$	$9.81 \mathrm{E}-2$	$2.13 \mathrm{E}-1$	1.09E+1	$5.42 \mathrm{E}-2$	3.55E-1	3.20E-3	-5.42E+0	5.90E+0
WDP		m3 depriv.	$2.11 \mathrm{E}-1$	3.01E-4	7.53E-2	$2.87 \mathrm{E}-1$	$1.66 \mathrm{E}-4$	7.05E-3	1.47E-5	-1.17E-1	$1.77 \mathrm{E}-1$
PM		disease inc.	$1.27 \mathrm{E}-8$	5.77E-10	$6.54 \mathrm{E}-10$	1.40E-8	$3.19 \mathrm{E}-10$	1.90E-9	2.20E-11	-6.26E-9	$9.93 \mathrm{E}-9$
IR		kBq U-235 eq	$9.07 \mathrm{E}-3$	$4.29 \mathrm{E}-4$	1.99E-4	$9.70 \mathrm{E}-3$	$2.37 \mathrm{E}-4$	$1.10 \mathrm{E}-3$	$1.49 \mathrm{E}-5$	-3.94E-3	$7.11 \mathrm{E}-3$
ETP-fw		ctue	4.82E+0	7.97E-2	$3.36 \mathrm{E}-1$	5.23E+0	$4.40 \mathrm{E}-2$	$4.71 \mathrm{E}-1$	3.09E-3	-2.35E+0	3.40E+0
HTP-c		CTUn	9.99E-11	$2.84 \mathrm{E}-12$	1.79E-11	1.21E-10	1.57E-12	4.75E-11	7.79E-14	-5.01E-11	1.20E-10
HTP-nc		cTUn	$2.46 \mathrm{E}-9$	9.50E-11	3.72E-10	2.93E-9	5.25E-11	6.11E-10	1.82E-12	-1.26E-9	$2.33 \mathrm{E}-9$
SQP		Pt	$3.84 \mathrm{E}+0$	8.39E-2	$3.88 \mathrm{E}-2$	$3.96 \mathrm{E}+0$	$4.64 \mathrm{E}-2$	$2.77 \mathrm{E}-1$	8.22E-3	-5.97E+0	$-1.68 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	7.03E-1	1.41E-3	7.37E-1	1.44E+0	$7.78 \mathrm{E}-4$	1.71E-2	$1.27 \mathrm{E}-4$	-1.05E+0	4.04E-1
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	7.03E-1	1.41E-3	7.37E-1	1.44E+0	$7.78 \mathrm{E}-4$	1.71E-2	$1.27 \mathrm{E}-4$	-1.05E+0	$4.04 \mathrm{E}-1$
PENRE		MJ	1.14E+1	1.04E-1	$2.32 \mathrm{E}-1$	1.17E+1	$5.76 \mathrm{E}-2$	$3.78 \mathrm{E}-1$	3.40E-3	$-5.85 \mathrm{E}+0$	6.30E+0
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	1.14E+1	1.04E-1	$2.32 \mathrm{E}-1$	1.17E+1	5.76E-2	$3.78 \mathrm{E}-1$	3.40E-3	-5.85E+0	6.30E+0
PET		MJ	1.21E+1	1.06E-1	$9.69 \mathrm{E}-1$	1.31E+1	5.83E-2	3.95E-1	3.53E-3	-6.90E+0	6.70E+0
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$3.58 \mathrm{E}-3$	1.11E-5	$1.79 \mathrm{E}-3$	$5.38 \mathrm{E}-3$	6.14E-6	$2.46 \mathrm{E}-4$	3.96E-6	-2.12E-3	3.52E-3

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	2.27E-6	2.51E-7	2.07E-7	$2.73 \mathrm{E}-6$	1.39E-7	6.20E-7	3.85E-9	-1.86E-6	1.64E-6
NHWD	kg	1.82E-2	6.08E-3	2.02E-3	$2.63 \mathrm{E}-2$	$3.36 \mathrm{E}-3$	$1.79 \mathrm{E}-2$	1.41E-2	-6.74E-3	$5.49 \mathrm{E}-2$
RWD	kg	$9.69 \mathrm{E}-6$	$6.67 \mathrm{E}-7$	2.21E-7	1.06E-5	3.69E-7	$1.41 \mathrm{E}-6$	2.10E-8	-3.75E-6	$8.62 \mathrm{E}-6$
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

