## Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

## Ecochain

| Product: | $3067752-$ SiTech+ Branch Reduced STEA $45^{\circ}$ 75X50 |
| :--- | :--- |
| Unit: | 1 piece |
| Manufacturer: | Wavin - IT - SM Maddalena |

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ( $\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$


A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters






Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

|  | Environmental impact | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GWP-total |  | kg CO2 eq | $4.68 \mathrm{E}-1$ | $8.28 \mathrm{E}-3$ | $3.27 \mathrm{E}-2$ | 5.09E-1 | 5.97E-3 | 2.90E-1 | $2.90 \mathrm{E}-3$ | -2.77E-1 | 5.31E-1 |
| GWP-f |  | kg CO2 eq | $5.25 \mathrm{E}-1$ | 8.27E-3 | 2.80E-2 | $5.61 \mathrm{E}-1$ | 5.97E-3 | $2.16 \mathrm{E}-1$ | $2.90 \mathrm{E}-3$ | -3.12E-1 | $4.74 \mathrm{E}-1$ |
| GWP-b |  | kg CO2 eq | -5.72E-2 | 5.02E-6 | $2.36 \mathrm{E}-3$ | -5.48E-2 | 3.62E-6 | 7.42E-2 | $2.56 \mathrm{E}-6$ | 3.47E-2 | $5.41 \mathrm{E}-2$ |
| GWP-Iuluc |  | kg CO2 eq | 3.76E-4 | 2.93E-6 | $2.36 \mathrm{E}-3$ | $2.74 \mathrm{E}-3$ | $2.11 \mathrm{E}-6$ | 3.37E-5 | 4.91E-8 | -3.29E-4 | $2.45 \mathrm{E}-3$ |
| ODP |  | kg CFC11 eq | $2.38 \mathrm{E}-8$ | 1.91E-9 | 2.81E-9 | $2.85 \mathrm{E}-8$ | $1.38 \mathrm{E}-9$ | 4.86E-9 | 7.31E-11 | -1.55E-8 | $1.93 \mathrm{E}-8$ |
| AP |  | mol $\mathrm{H}+\mathrm{eq}$ | 2.03E-3 | 4.71E-5 | $1.13 \mathrm{E}-4$ | $2.19 \mathrm{E}-3$ | 3.40E-5 | 2.03E-4 | $1.75 \mathrm{E}-6$ | -9.87E-4 | $1.45 \mathrm{E}-3$ |
| EP-fw |  | kg Peq | $1.05 \mathrm{E}-5$ | $6.80 \mathrm{E}-8$ | $4.35 \mathrm{E}-7$ | $1.10 \mathrm{E}-5$ | $4.91 \mathrm{E}-8$ | 9.86E-7 | 2.26E-9 | -6.45E-6 | 5.55E-6 |
| EP-m |  | kg Neq | 3.73E-4 | 1.69E-5 | 1.91E-5 | 4.09E-4 | $1.22 \mathrm{E}-5$ | 6.12E-5 | 1.31E-6 | -1.90E-4 | $2.94 \mathrm{E}-4$ |
| EP-T |  | mol eq | 4.10E-3 | 1.86E-4 | $2.14 \mathrm{E}-4$ | 4.50E-3 | $1.34 \mathrm{E}-4$ | 6.73E-4 | 7.09E-6 | -2.13E-3 | 3.18E-3 |
| POCP |  | kg NMVOC eq | $1.75 \mathrm{E}-3$ | 5.31E-5 | 6.66E-5 | $1.87 \mathrm{E}-3$ | 3.83E-5 | 2.10E-4 | $2.65 \mathrm{E}-6$ | -8.66E-4 | 1.26E-3 |
| ADP-mm |  | kg Sb eq | $2.44 \mathrm{E}-5$ | $2.14 \mathrm{E}-7$ | 6.82E-7 | 2.53E-5 | $1.54 \mathrm{E}-7$ | 7.88E-7 | $1.75 \mathrm{E}-9$ | -2.73E-6 | $2.35 \mathrm{E}-5$ |
| ADP-f |  | MJ | 1.77E+1 | 1.27E-1 | 3.68E-1 | $1.82 \mathrm{E}+1$ | $9.16 \mathrm{E}-2$ | 6.05E-1 | $5.34 \mathrm{E}-3$ | -9.19E+0 | 9.67E+0 |
| WDP |  | m3 depriv. | $3.51 \mathrm{E}-1$ | 3.90E-4 | $1.30 \mathrm{E}-1$ | $4.81 \mathrm{E}-1$ | $2.81 \mathrm{E}-4$ | 1.18E-2 | $2.44 \mathrm{E}-5$ | -2.00E-1 | $2.93 \mathrm{E}-1$ |
| PM |  | disease inc. | 2.06E-8 | 7.46E-10 | 1.13E-9 | 2.25E-8 | 5.39E-10 | 3.24E-9 | 3.67E-11 | -1.08E-8 | $1.55 \mathrm{E}-8$ |
| IR |  | kBq U-235 eq | $1.39 \mathrm{E}-2$ | 5.55E-4 | $3.44 \mathrm{E}-4$ | $1.48 \mathrm{E}-2$ | $4.00 \mathrm{E}-4$ | 1.87E-3 | $2.49 \mathrm{E}-5$ | -6.70E-3 | $1.04 \mathrm{E}-2$ |
| ETP-fw |  | CTUe | 7.82E+0 | $1.03 \mathrm{E}-1$ | 5.81E-1 | 8.50E+0 | $7.44 \mathrm{E}-2$ | 7.76E-1 | $4.97 \mathrm{E}-3$ | -4.01E+0 | $5.35 \mathrm{E}+0$ |
| HTP-c |  | cTUn | $1.65 \mathrm{E}-10$ | 3.67E-12 | 3.10E-11 | 1.99E-10 | $2.65 \mathrm{E}-12$ | 8.13E-11 | 1.30E-13 | -8.80E-11 | $1.96 \mathrm{E}-10$ |
| HTP-nc |  | ctun | 4.00E-9 | 1.23E-10 | $6.43 \mathrm{E}-10$ | $4.76 \mathrm{E}-9$ | 8.87E-11 | 1.03E-9 | $2.99 \mathrm{E}-12$ | -2.17E-9 | $3.72 \mathrm{E}-9$ |
| SQP |  | Pt | 7.15E+0 | $1.09 \mathrm{E}-1$ | $6.71 \mathrm{E}-2$ | 7.33E+0 | $7.84 \mathrm{E}-2$ | 4.73E-1 | 1.37E-2 | -1.08E+1 | $-2.86 \mathrm{E}+0$ |
|  | Resource use | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| PERE |  | MJ | 1.28E+0 | 1.82E-3 | 1.27E+0 | $2.56 \mathrm{E}+0$ | 1.31E-3 | $2.91 \mathrm{E}-2$ | $2.11 \mathrm{E}-4$ | $-1.88 \mathrm{E}+0$ | 7.07E-1 |
| PERM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PERT |  | MJ | 1.28E+0 | 1.82E-3 | 1.27E+0 | $2.56 \mathrm{E}+0$ | 1.31E-3 | 2.91E-2 | 2.11E-4 | $-1.88 \mathrm{E}+0$ | 7.07E-1 |
| PENRE |  | MJ | $1.89 \mathrm{E}+1$ | $1.35 \mathrm{E}-1$ | 4.02E-1 | $1.95 \mathrm{E}+1$ | $9.73 \mathrm{E}-2$ | $6.45 \mathrm{E}-1$ | $5.66 \mathrm{E}-3$ | -9.90E+0 | $1.03 \mathrm{E}+1$ |
| PENRM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PENRT |  | MJ | 1.89E+1 | $1.35 \mathrm{E}-1$ | $4.02 \mathrm{E}-1$ | $1.95 \mathrm{E}+1$ | $9.73 \mathrm{E}-2$ | 6.45E-1 | 5.66E-3 | -9.90E+0 | $1.03 \mathrm{E}+1$ |
| PET |  | MJ | $2.02 \mathrm{E}+1$ | 1.37E-1 | 1.68E+0 | 2.20E+1 | $9.86 \mathrm{E}-2$ | $6.74 \mathrm{E}-1$ | 5.87E-3 | -1.18E+1 | $1.10 \mathrm{E}+1$ |
| SM |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| NRSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| FW |  | m3 | 5.83E-3 | $1.44 \mathrm{E}-5$ | 3.10E-3 | $8.94 \mathrm{E}-3$ | $1.04 \mathrm{E}-5$ | 3.98E-4 | $6.60 \mathrm{E}-6$ | -3.62E-3 | $5.74 \mathrm{E}-3$ |


|  | Output flows and waste categories | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HWD |  | kg | 3.63E-6 | 3.25E-7 | $3.58 \mathrm{E}-7$ | 4.31E-6 | $2.34 \mathrm{E}-7$ | 1.05E-6 | 6.41E-9 | -3.07E-6 | 2.53E-6 |
| NHWD |  | kg | 2.97E-2 | 7.87E-3 | 3.49E-3 | 4.11E-2 | $5.68 \mathrm{E}-3$ | 3.02E-2 | $2.35 \mathrm{E}-2$ | -1.18E-2 | 8.87E-2 |
| RWD |  | kg | 1.44E-5 | 8.63E-7 | 3.82E-7 | 1.56E-5 | $6.23 \mathrm{E}-7$ | 2.40E-6 | 3.49E-8 | -6.35E-6 | 1.24E-5 |
| CRU |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MFR |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MER |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EE |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EET |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EEE |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

