Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067753-$ SiTech+ Branch STEA $45^{\circ} 75 \times 75$
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena
Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased	
durability, but more importantly is quiet and easy to install.	

LCA standard:
Standard database:
Externally verified:
Issue date:
End of validity:

Verifier:
EN15804 A2 (2019)
Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
24-11-2022
24-11-2027
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard.

A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
\square	V	■	MND	■	『	■	\square									
Product stage					Use stage							End-of-Life stage				
A1 Raw material supply A2 Transport A3 Manufacturing					B1 Use B2 Maintenance B3 Repair B4 Replacement B5 Refurbishment B6 Operational energy use B7 Operational water use							C1 De-construction demolition C2 Transport C3 Waste processing C4 Disposal				

[^0]D Reuse- Recovery- Recycling- potential

Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	6.53E-1	$9.79 \mathrm{E}-3$	$4.64 \mathrm{E}-2$	7.09E-1	8.44E-3	3.85E-1	$4.08 \mathrm{E}-3$	-3.93E-1	7.14E-1
GWP-f		kg CO2 eq	7.24E-1	$9.78 \mathrm{E}-3$	3.97E-2	7.73E-1	8.43E-3	$2.95 \mathrm{E}-1$	$4.08 \mathrm{E}-3$	-4.32E-1	$6.49 \mathrm{E}-1$
GWP-b		kg CO2 eq	-7.12E-2	5.94E-6	3.35E-3	-6.78E-2	5.12E-6	$9.08 \mathrm{E}-2$	$3.59 \mathrm{E}-6$	3.87E-2	6.17E-2
GWP-luluc		kg CO2 eq	4.62E-4	$3.46 \mathrm{E}-6$	$3.35 \mathrm{E}-3$	3.81E-3	$2.98 \mathrm{E}-6$	$4.75 \mathrm{E}-5$	$6.89 \mathrm{E}-8$	-3.89E-4	$3.48 \mathrm{E}-3$
ODP		kg CFC11 eq	$2.96 \mathrm{E}-8$	$2.26 \mathrm{E}-9$	$3.98 \mathrm{E}-9$	$3.59 \mathrm{E}-8$	$1.94 \mathrm{E}-9$	6.73E-9	1.03E-10	-2.06E-8	$2.40 \mathrm{E}-8$
AP		$\mathrm{mol} \mathrm{H}+\mathrm{eq}$	$2.76 \mathrm{E}-3$	$5.57 \mathrm{E}-5$	$1.60 \mathrm{E}-4$	$2.98 \mathrm{E}-3$	4.80E-5	2.81E-4	$2.45 \mathrm{E}-6$	-1.34E-3	$1.97 \mathrm{E}-3$
EP-fw		kg P eq	1.38E-5	8.05E-8	6.16E-7	$1.45 \mathrm{E}-5$	6.94E-8	$1.39 \mathrm{E}-6$	3.18E-9	-8.17E-6	$7.74 \mathrm{E}-6$
EP-m		kg N eq	4.99E-4	$1.99 \mathrm{E}-5$	$2.70 \mathrm{E}-5$	$5.46 \mathrm{E}-4$	$1.72 \mathrm{E}-5$	8.43E-5	$1.80 \mathrm{E}-6$	-2.55E-4	3.95E-4
EP-T		mol Neq	5.51E-3	$2.20 \mathrm{E}-4$	3.04E-4	$6.04 \mathrm{E}-3$	1.89E-4	$9.27 \mathrm{E}-4$	$9.95 \mathrm{E}-6$	-2.86E-3	$4.31 \mathrm{E}-3$
POCP		kg NMVOC eq	$2.39 \mathrm{E}-3$	$6.28 \mathrm{E}-5$	$9.44 \mathrm{E}-5$	$2.55 \mathrm{E}-3$	5.41E-5	2.89E-4	$3.73 \mathrm{E}-6$	-1.18E-3	$1.71 \mathrm{E}-3$
ADP-mm		kg Sb eq	3.01E-5	$2.53 \mathrm{E}-7$	$9.66 \mathrm{E}-7$	3.13E-5	$2.18 \mathrm{E}-7$	$1.10 \mathrm{E}-6$	$2.46 \mathrm{E}-9$	-3.65E-6	$2.90 \mathrm{E}-5$
ADP-f		MJ	$2.46 \mathrm{E}+1$	$1.50 \mathrm{E}-1$	$5.22 \mathrm{E}-1$	$2.53 \mathrm{E}+1$	$1.29 \mathrm{E}-1$	$8.48 \mathrm{E}-1$	$7.49 \mathrm{E}-3$	-1.29E+1	$1.34 \mathrm{E}+1$
WDP		m3 depriv.	4.87E-1	$4.61 \mathrm{E}-4$	1.85E-1	$6.72 \mathrm{E}-1$	3.97E-4	$1.66 \mathrm{E}-2$	$3.43 \mathrm{E}-5$	-2.69E-1	$4.21 \mathrm{E}-1$
PM		disease inc.	$2.75 \mathrm{E}-8$	8.83E-10	1.60E-9	$3.00 \mathrm{E}-8$	7.61E-10	4.51E-9	$5.15 \mathrm{E}-11$	-1.41E-8	$2.12 \mathrm{E}-8$
IR		kBq U-235 eq	1.82E-2	6.57E-4	4.87E-4	$1.94 \mathrm{E}-2$	$5.66 \mathrm{E}-4$	$2.61 \mathrm{E}-3$	3.49E-5	-8.75E-3	$1.38 \mathrm{E}-2$
ETP-fw		CTUe	9.51E+0	$1.22 \mathrm{E}-1$	$8.24 \mathrm{E}-1$	$1.05 \mathrm{E}+1$	1.05E-1	$1.06 \mathrm{E}+0$	$6.86 \mathrm{E}-3$	-4.84E+0	$6.79 \mathrm{E}+0$
HTP-c		CTUh	$2.19 \mathrm{E}-10$	$4.34 \mathrm{E}-12$	$4.39 \mathrm{E}-11$	$2.67 \mathrm{E}-10$	$3.74 \mathrm{E}-12$	1.14E-10	1.82E-13	-1.15E-10	$2.70 \mathrm{E}-10$
HTP-nc		CTUh	5.36E-9	1.45E-10	9.11E-10	$6.41 \mathrm{E}-9$	1.25E-10	$1.44 \mathrm{E}-9$	4.17E-12	-2.84E-9	$5.15 \mathrm{E}-9$
SQP		Pt	8.83E+0	$1.29 \mathrm{E}-1$	$9.51 \mathrm{E}-2$	$9.06 \mathrm{E}+0$	$1.11 \mathrm{E}-1$	$6.66 \mathrm{E}-1$	$1.92 \mathrm{E}-2$	-1.27E+1	$-2.82 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.60 \mathrm{E}+0$	$2.16 \mathrm{E}-3$	1.81E+0	$3.41 \mathrm{E}+0$	$1.86 \mathrm{E}-3$	$4.10 \mathrm{E}-2$	$2.95 \mathrm{E}-4$	$-2.23 \mathrm{E}+0$	1.23E+0
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	1.60E+0	$2.16 \mathrm{E}-3$	1.81E+0	$3.41 \mathrm{E}+0$	1.86E-3	4.10E-2	$2.95 \mathrm{E}-4$	$-2.23 E+0$	$1.23 \mathrm{E}+0$
PENRE		MJ	$2.64 \mathrm{E}+1$	1.59E-1	5.70E-1	$2.71 \mathrm{E}+1$	$1.37 \mathrm{E}-1$	$9.03 \mathrm{E}-1$	$7.95 \mathrm{E}-3$	-1.39E+1	$1.43 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$2.64 \mathrm{E}+1$	1.59E-1	5.70E-1	$2.71 \mathrm{E}+1$	$1.37 \mathrm{E}-1$	$9.03 \mathrm{E}-1$	$7.95 \mathrm{E}-3$	-1.39E+1	$1.43 \mathrm{E}+1$
PET		MJ	$2.80 \mathrm{E}+1$	$1.62 \mathrm{E}-1$	$2.38 \mathrm{E}+0$	$3.06 \mathrm{E}+1$	$1.39 \mathrm{E}-1$	$9.44 \mathrm{E}-1$	$8.25 \mathrm{E}-3$	-1.61E+1	$1.56 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	7.96E-3	1.70E-5	4.39E-3	$1.24 \mathrm{E}-2$	$1.46 \mathrm{E}-5$	5.47E-4	$9.26 \mathrm{E}-6$	-4.72E-3	$8.22 \mathrm{E}-3$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	$4.70 \mathrm{E}-6$	3.84E-7	5.07E-7	5.59E-6	3.31E-7	$1.45 \mathrm{E}-6$	9.00E-9	-4.09E-6	3.29E-6
NHWD	kg	$3.88 \mathrm{E}-2$	$9.31 \mathrm{E}-3$	$4.95 \mathrm{E}-3$	5.31E-2	8.02E-3	4.22E-2	3.30E-2	-1.54E-2	$1.21 \mathrm{E}-1$
RWD	kg	1.86E-5	$1.02 \mathrm{E}-6$	5.42E-7	2.01E-5	8.80E-7	$3.34 \mathrm{E}-6$	$4.90 \mathrm{E}-8$	-8.25E-6	1.61E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

[^0]: A5 Assembly / Construction installation process

