Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067774-$ SiTech+ Branch STEA $87,5^{\circ} 50 \times 50$
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased durability, but more importantly is quiet and easy to install.
LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Verifier. Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potentia

Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$2.60 \mathrm{E}-1$	$6.05 \mathrm{E}-3$	$1.70 \mathrm{E}-2$	$2.83 \mathrm{E}-1$	3.17E-3	$1.64 \mathrm{E}-1$	$1.56 \mathrm{E}-3$	-1.48E-1	3.04E-1
GWP-f		kg CO2 eq	2.89E-1	6.04E-3	$1.45 \mathrm{E}-2$	3.09E-1	3.16E-3	$1.26 \mathrm{E}-1$	$1.56 \mathrm{E}-3$	-1.68E-1	$2.72 \mathrm{E}-1$
GWP-b		kg CO2 eq	-2.88E-2	3.67E-6	1.23E-3	-2.76E-2	1.92E-6	$3.85 \mathrm{E}-2$	$1.38 \mathrm{E}-6$	$2.05 \mathrm{E}-2$	3.15E-2
GWP-Iuluc		kg CO2 eq	2.20E-4	$2.14 \mathrm{E}-6$	$1.23 \mathrm{E}-3$	$1.45 \mathrm{E}-3$	$1.12 \mathrm{E}-6$	1.76E-5	$2.66 \mathrm{E}-8$	-1.88E-4	$1.28 \mathrm{E}-3$
ODP		kg CFC11 eq	1.61E-8	$1.39 \mathrm{E}-9$	1.46E-9	1.89E-8	7.29E-10	2.59E-9	$3.95 \mathrm{E}-11$	-8.88E-9	$1.34 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$1.15 \mathrm{E}-3$	3.44E-5	5.85E-5	$1.24 \mathrm{E}-3$	1.80E-5	1.09E-4	$9.45 \mathrm{E}-7$	-5.29E-4	$8.41 \mathrm{E}-4$
EP-fw		kg P eq	6.06E-6	$4.97 \mathrm{E}-8$	$2.25 \mathrm{E}-7$	$6.34 \mathrm{E}-6$	$2.60 \mathrm{E}-8$	5.18E-7	$1.23 \mathrm{E}-9$	-3.58E-6	3.30E-6
EP-m		kg Neq	$2.10 \mathrm{E}-4$	$1.23 \mathrm{E}-5$	9.89E-6	$2.33 \mathrm{E}-4$	$6.45 \mathrm{E}-6$	3.30E-5	7.53E-7	-1.03E-4	$1.70 \mathrm{E}-4$
EP-T		mol Neq	2.31E-3	$1.36 \mathrm{E}-4$	1.11E-4	$2.56 \mathrm{E}-3$	7.11E-5	$3.63 \mathrm{E}-4$	3.83E-6	-1.15E-3	$1.85 \mathrm{E}-3$
POCP		kg NMVOC eq	9.83E-4	3.88E-5	3.45E-5	1.06E-3	2.03E-5	1.12E-4	1.43E-6	-4.62E-4	7.28E-4
ADP-mm		kg Sb eq	$1.82 \mathrm{E}-5$	1.56E-7	$3.53 \mathrm{E}-7$	1.87E-5	$8.18 \mathrm{E}-8$	4.17E-7	$9.46 \mathrm{E}-10$	-1.62E-6	$1.76 \mathrm{E}-5$
ADP-f		MJ	$9.59 \mathrm{E}+0$	$9.28 \mathrm{E}-2$	1.91E-1	$9.88 \mathrm{E}+0$	$4.86 \mathrm{E}-2$	3.19E-1	2.89E-3	-4.88E+0	5.36E+0
WDP		m3 depriv.	1.92E-1	$2.85 \mathrm{E}-4$	$6.76 \mathrm{E}-2$	$2.59 \mathrm{E}-1$	$1.49 \mathrm{E}-4$	$6.34 \mathrm{E}-3$	$1.32 \mathrm{E}-5$	-1.08E-1	$1.58 \mathrm{E}-1$
PM		disease inc.	$1.19 \mathrm{E}-8$	5.46E-10	5.86E-10	1.30E-8	$2.86 \mathrm{E}-10$	$1.71 \mathrm{E}-9$	$1.98 \mathrm{E}-11$	-5.85E-9	$9.16 \mathrm{E}-9$
IR		kBq U-235 eq	8.57E-3	$4.06 \mathrm{E}-4$	$1.78 \mathrm{E}-4$	$9.15 \mathrm{E}-3$	2.12E-4	$9.89 \mathrm{E}-4$	$1.35 \mathrm{E}-5$	-3.69E-3	$6.68 \mathrm{E}-3$
ETP-fw		ctue	$4.68 \mathrm{E}+0$	$7.54 \mathrm{E}-2$	$3.01 \mathrm{E}-1$	5.05E+0	$3.94 \mathrm{E}-2$	4.31E-1	$2.83 \mathrm{E}-3$	-2.28E+0	$3.25 \mathrm{E}+0$
HTP-c		ctun	$9.37 \mathrm{E}-11$	$2.68 \mathrm{E}-12$	1.61E-11	1.12E-10	1.40E-12	$4.27 \mathrm{E}-11$	7.03E-14	-4.73E-11	1.09E-10
HTP-nc		ctun	$2.29 \mathrm{E}-9$	8.98E-11	$3.33 \mathrm{E}-10$	2.71E-9	4.70E-11	$5.51 \mathrm{E}-10$	$1.65 \mathrm{E}-12$	-1.18E-9	$2.13 \mathrm{E}-9$
SQP		Pt	$3.80 \mathrm{E}+0$	$7.94 \mathrm{E}-2$	$3.48 \mathrm{E}-2$	$3.92 \mathrm{E}+0$	$4.15 \mathrm{E}-2$	$2.48 \mathrm{E}-1$	7.40E-3	-5.96E+0	$-1.74 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$6.89 \mathrm{E}-1$	$1.33 \mathrm{E}-3$	$6.61 \mathrm{E}-1$	$1.35 \mathrm{E}+0$	6.97E-4	1.53E-2	1.15E-4	-1.05E+0	$3.19 \mathrm{E}-1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$6.89 \mathrm{E}-1$	$1.33 \mathrm{E}-3$	$6.61 \mathrm{E}-1$	$1.35 \mathrm{E}+0$	6.97E-4	1.53E-2	1.15E-4	-1.05E+0	$3.19 \mathrm{E}-1$
PENRE		MJ	$1.03 \mathrm{E}+1$	$9.85 \mathrm{E}-2$	$2.08 \mathrm{E}-1$	1.06E+1	5.16E-2	3.40E-1	3.06E-3	-5.27E+0	$5.72 \mathrm{E}+0$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$1.03 \mathrm{E}+1$	$9.85 \mathrm{E}-2$	2.08E-1	1.06E+1	5.16E-2	3.40E-1	3.06E-3	-5.27E+0	5.72E+0
PET		MJ	$1.10 \mathrm{E}+1$	$9.99 \mathrm{E}-2$	8.69E-1	1.19E+1	5.22E-2	$3.55 \mathrm{E}-1$	3.18E-3	$-6.31 \mathrm{E}+0$	$6.04 \mathrm{E}+0$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	3.29E-3	$1.05 \mathrm{E}-5$	1.60E-3	4.91E-3	5.49E-6	$2.25 \mathrm{E}-4$	3.57E-6	-1.98E-3	3.16E-3

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	2.16E-6	2.37E-7	1.86E-7	$2.58 \mathrm{E}-6$	1.24E-7	5.62E-7	3.46E-9	-1.73E-6	1.54E-6
NHWD		kg	$1.72 \mathrm{E}-2$	$5.75 \mathrm{E}-3$	1.81E-3	$2.47 \mathrm{E}-2$	3.01E-3	1.61E-2	1.27E-2	-6.32E-3	5.03E-2
RWD		kg	$9.26 \mathrm{E}-6$	6.31E-7	1.98E-7	1.01E-5	3.30E-7	1.27E-6	1.89E-8	-3.53E-6	8.18E-6
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

