Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067776-$ SiTech+ Branch STEA $87,5^{\circ} 75 \times 75$
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$5.57 \mathrm{E}-1$	$8.23 \mathrm{E}-3$	3.87E-2	6.04E-1	7.07E-3	3.29E-1	3.43E-3	-3.29E-1	$6.13 \mathrm{E}-1$
GWP-f		kg CO2 eq	$6.14 \mathrm{E}-1$	8.22E-3	$3.31 \mathrm{E}-2$	$6.55 \mathrm{E}-1$	7.06E-3	$2.54 \mathrm{E}-1$	3.43E-3	-3.64E-1	5.56E-1
GWP-b		kg CO2 eq	-5.70E-2	$4.99 \mathrm{E}-6$	2.80E-3	-5.42E-2	$4.29 \mathrm{E}-6$	7.42E-2	3.02E-6	3.45E-2	$5.45 \mathrm{E}-2$
GWP-Iuluc		kg CO2 eq	4.03E-4	$2.91 \mathrm{E}-6$	2.80E-3	3.20E-3	$2.50 \mathrm{E}-6$	3.97E-5	5.81E-8	-3.39E-4	$2.91 \mathrm{E}-3$
ODP		kg CFC11 eq	$2.71 \mathrm{E}-8$	$1.89 \mathrm{E}-9$	3.32E-9	$3.23 \mathrm{E}-8$	$1.63 \mathrm{E}-9$	5.65E-9	8.65E-11	-1.77E-8	$2.20 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$2.36 \mathrm{E}-3$	$4.68 \mathrm{E}-5$	$1.34 \mathrm{E}-4$	$2.54 \mathrm{E}-3$	4.02E-5	2.37E-4	$2.06 \mathrm{E}-6$	-1.13E-3	$1.69 \mathrm{E}-3$
EP-fw		kg P eq	1.19E-5	$6.77 \mathrm{E}-8$	5.15E-7	1.25E-5	5.81E-8	1.16E-6	$2.68 \mathrm{E}-9$	-7.00E-6	6.69E-6
EP-m		kg Neq	4.27E-4	$1.68 \mathrm{E}-5$	$2.26 \mathrm{E}-5$	4.67E-4	$1.44 \mathrm{E}-5$	7.11E-5	$1.54 \mathrm{E}-6$	-2.15E-4	$3.38 \mathrm{E}-4$
EP-T		mol Neq	$4.72 \mathrm{E}-3$	$1.85 \mathrm{E}-4$	$2.54 \mathrm{E}-4$	$5.15 \mathrm{E}-3$	$1.59 \mathrm{E}-4$	7.82E-4	$8.38 \mathrm{E}-6$	-2.41E-3	3.69E-3
POCP		kg NMVOC eq	2.04E-3	5.28E-5	7.88E-5	2.17E-3	4.53E-5	$2.44 \mathrm{E}-4$	3.14E-6	-9.93E-4	1.47E-3
ADP-mm		kg Sb eq	$2.86 \mathrm{E}-5$	2.13E-7	8.07E-7	2.97E-5	$1.83 \mathrm{E}-7$	$9.18 \mathrm{E}-7$	$2.07 \mathrm{E}-9$	-3.16E-6	$2.76 \mathrm{E}-5$
ADP-f		MJ	$2.08 \mathrm{E}+1$	1.26E-1	4.36E-1	$2.13 \mathrm{E}+1$	$1.08 \mathrm{E}-1$	7.09E-1	6.31E-3	-1.08E+1	$1.14 \mathrm{E}+1$
WDP		m3 depriv.	$4.12 \mathrm{E}-1$	3.87E-4	$1.54 \mathrm{E}-1$	$5.67 \mathrm{E}-1$	3.33E-4	1.40E-2	2.89E-5	-2.27E-1	$3.54 \mathrm{E}-1$
PM		disease inc.	2.37E-8	7.42E-10	1.34E-9	$2.57 \mathrm{E}-8$	$6.37 \mathrm{E}-10$	$3.78 \mathrm{E}-9$	$4.34 \mathrm{E}-11$	-1.20E-8	$1.82 \mathrm{E}-8$
IR		kBq U-235 eq	$1.61 \mathrm{E}-2$	5.52E-4	4.07E-4	1.70E-2	$4.74 \mathrm{E}-4$	$2.19 \mathrm{E}-3$	$2.94 \mathrm{E}-5$	-7.45E-3	$1.23 \mathrm{E}-2$
ETP-fw		ctue	$8.39 \mathrm{E}+0$	1.02E-1	$6.88 \mathrm{E}-1$	$9.19 \mathrm{E}+0$	8.80E-2	$9.05 \mathrm{E}-1$	5.87E-3	-4.21E+0	5.98E+0
HTP-c		ctun	1.87E-10	3.65E-12	3.67E-11	2.27E-10	3.13E-12	$9.52 \mathrm{E}-11$	1.53E-13	-9.65E-11	2.29E-10
HTP-nc		ctun	4.60E-9	$1.22 \mathrm{E}-10$	7.61E-10	$5.48 \mathrm{E}-9$	1.05E-10	1.21E-9	3.53E-12	-2.41E-9	$4.40 \mathrm{E}-9$
SQP		Pt	7.30E+0	1.08E-1	7.94E-2	7.49E+0	$9.27 \mathrm{E}-2$	$5.56 \mathrm{E}-1$	$1.62 \mathrm{E}-2$	-1.08E+1	$-2.65 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	1.33E+0	1.81E-3	$1.51 \mathrm{E}+0$	$2.84 \mathrm{E}+0$	1.56E-3	$3.43 \mathrm{E}-2$	$2.49 \mathrm{E}-4$	-1.90E+0	$9.76 \mathrm{E}-1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	1.33E+0	1.81E-3	$1.51 \mathrm{E}+0$	$2.84 \mathrm{E}+0$	1.56E-3	3.43E-2	$2.49 \mathrm{E}-4$	-1.90E+0	$9.76 \mathrm{E}-1$
PENRE		MJ	2.23E+1	1.34E-1	$4.76 \mathrm{E}-1$	$2.29 \mathrm{E}+1$	1.15E-1	7.56E-1	$6.70 \mathrm{E}-3$	-1.16E+1	1.22E+1
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	2.23E+1	1.34E-1	$4.76 \mathrm{E}-1$	$2.29 \mathrm{E}+1$	1.15E-1	$7.56 \mathrm{E}-1$	6.70E-3	-1.16E+1	1.22E+1
PET		MJ	$2.36 \mathrm{E}+1$	$1.36 \mathrm{E}-1$	$1.98 \mathrm{E}+0$	$2.57 \mathrm{E}+1$	1.17E-1	7.90E-1	6.95E-3	$-1.35 \mathrm{E}+1$	1.31E+1
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	6.80E-3	1.43E-5	$3.66 \mathrm{E}-3$	1.05E-2	$1.23 \mathrm{E}-5$	$4.68 \mathrm{E}-4$	7.80E-6	-4.02E-3	$6.95 \mathrm{E}-3$

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	4.09E-6	3.23E-7	$4.24 \mathrm{E}-7$	4.84E-6	2.77E-7	1.22E-6	7.58E-9	-3.49E-6	$2.85 \mathrm{E}-6$
NHWD		kg	$3.35 \mathrm{E}-2$	7.82E-3	4.13E-3	$4.55 \mathrm{E}-2$	6.72E-3	3.55E-2	2.78E-2	-1.30E-2	1.02E-1
RWD		kg	1.66E-5	$8.58 \mathrm{E}-7$	4.52E-7	1.79E-5	7.37E-7	2.80E-6	4.13E-8	-7.05E-6	1.45E-5
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

