Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067802-$ SiTech+ Coupler STMM 110 S/S
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	8.13E-1	$1.75 \mathrm{E}-2$	$4.74 \mathrm{E}-2$	$8.77 \mathrm{E}-1$	1.01E-2	$4.76 \mathrm{E}-1$	4.97E-3	-4.80E-1	$8.88 \mathrm{E}-1$
GWP-f		kg CO2 eq	$8.84 \mathrm{E}-1$	$1.74 \mathrm{E}-2$	$4.06 \mathrm{E}-2$	9.42E-1	1.01E-2	3.85E-1	$4.97 \mathrm{E}-3$	-5.19E-1	$8.24 \mathrm{E}-1$
GWP-b		kg CO2 eq	-7.16E-2	1.06E-5	$3.43 \mathrm{E}-3$	-6.81E-2	$6.15 \mathrm{E}-6$	$9.07 \mathrm{E}-2$	4.39E-6	3.85E-2	$6.11 \mathrm{E}-2$
GWP-Iuluc		kg CO2 eq	5.28E-4	$6.18 \mathrm{E}-6$	$3.43 \mathrm{E}-3$	3.96E-3	$3.58 \mathrm{E}-6$	5.60E-5	$8.44 \mathrm{E}-8$	-4.03E-4	3.62E-3
ODP		kg CFC11 eq	$4.34 \mathrm{E}-8$	4.02E-9	4.07E-9	$5.15 \mathrm{E}-8$	2.33E-9	7.91E-9	1.25E-10	-2.54E-8	$3.64 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$3.43 \mathrm{E}-3$	9.94E-5	1.64E-4	3.69E-3	5.76E-5	$3.34 \mathrm{E}-4$	3.00E-6	-1.55E-3	$2.54 \mathrm{E}-3$
EP-fw		kg P eq	$1.70 \mathrm{E}-5$	$1.44 \mathrm{E}-7$	6.30E-7	$1.78 \mathrm{E}-5$	8.33E-8	$1.64 \mathrm{E}-6$	$3.89 \mathrm{E}-9$	-8.99E-6	$1.05 \mathrm{E}-5$
EP-m		kg Neq	$6.08 \mathrm{E}-4$	3.56E-5	2.76E-5	$6.71 \mathrm{E}-4$	2.06E-5	$1.00 \mathrm{E}-4$	2.33E-6	-2.94E-4	$5.00 \mathrm{E}-4$
EP-T		mol Neq	$6.73 \mathrm{E}-3$	3.92E-4	3.11E-4	$7.44 \mathrm{E}-3$	2.27E-4	1.10E-3	$1.22 \mathrm{E}-5$	-3.29E-3	$5.49 \mathrm{E}-3$
POCP		kg NMVOC eq	$2.96 \mathrm{E}-3$	$1.12 \mathrm{E}-4$	$9.65 \mathrm{E}-5$	3.17E-3	$6.50 \mathrm{E}-5$	3.42E-4	$4.55 \mathrm{E}-6$	-1.38E-3	2.20E-3
ADP-mm		kg Sb eq	5.02E-5	4.51E-7	$9.88 \mathrm{E}-7$	5.17E-5	$2.62 \mathrm{E}-7$	1.28E-6	3.00E-9	-4.73E-6	$4.85 \mathrm{E}-5$
ADP-f		MJ	3.00E+1	2.68E-1	$5.34 \mathrm{E}-1$	3.08E+1	$1.55 \mathrm{E}-1$	$9.99 \mathrm{E}-1$	$9.16 \mathrm{E}-3$	-1.53E+1	$1.66 \mathrm{E}+1$
WDP		m3 depriv.	$5.96 \mathrm{E}-1$	8.22E-4	$1.89 \mathrm{E}-1$	$7.86 \mathrm{E}-1$	$4.77 \mathrm{E}-4$	2.00E-2	4.19E-5	-3.07E-1	$4.99 \mathrm{E}-1$
PM		disease inc.	3.43E-8	$1.58 \mathrm{E}-9$	$1.64 \mathrm{E}-9$	$3.75 \mathrm{E}-8$	$9.14 \mathrm{E}-10$	$5.29 \mathrm{E}-9$	$6.29 \mathrm{E}-11$	-1.58E-8	$2.79 \mathrm{E}-8$
IR		kBq U-235 eq	$2.46 \mathrm{E}-2$	$1.17 \mathrm{E}-3$	$4.98 \mathrm{E}-4$	2.62E-2	$6.79 \mathrm{E}-4$	3.07E-3	$4.27 \mathrm{E}-5$	-9.98E-3	$2.00 \mathrm{E}-2$
ETP-fw		ctue	1.11E+1	2.17E-1	8.43E-1	$1.22 \mathrm{E}+1$	$1.26 \mathrm{E}-1$	$1.31 \mathrm{E}+0$	$8.78 \mathrm{E}-3$	-5.16E+0	$8.46 \mathrm{E}+0$
HTP-c		ctun	2.67E-10	7.74E-12	$4.49 \mathrm{E}-11$	$3.19 \mathrm{E}-10$	$4.49 \mathrm{E}-12$	$1.34 \mathrm{E}-10$	2.23E-13	-1.28E-10	3.30E-10
HTP-nc		ctun	$6.64 \mathrm{E}-9$	2.59E-10	9.32E-10	7.83E-9	$1.50 \mathrm{E}-10$	$1.72 \mathrm{E}-9$	5.19E-12	-3.19E-9	$6.52 \mathrm{E}-9$
SQP		Pt	$9.24 \mathrm{E}+0$	$2.29 \mathrm{E}-1$	$9.73 \mathrm{E}-2$	$9.56 \mathrm{E}+0$	$1.33 \mathrm{E}-1$	7.83E-1	2.35E-2	-1.27E+1	$-2.25 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.71 \mathrm{E}+0$	3.84E-3	$1.85 \mathrm{E}+0$	$3.56 \mathrm{E}+0$	$2.23 \mathrm{E}-3$	$4.85 \mathrm{E}-2$	$3.63 \mathrm{E}-4$	$-2.25 E+0$	$1.36 \mathrm{E}+0$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$1.71 \mathrm{E}+0$	3.84E-3	$1.85 \mathrm{E}+0$	$3.56 \mathrm{E}+0$	$2.23 \mathrm{E}-3$	$4.85 \mathrm{E}-2$	$3.63 \mathrm{E}-4$	-2.25E+0	$1.36 \mathrm{E}+0$
PENRE		MJ	3.22E+1	$2.84 \mathrm{E}-1$	5.83E-1	$3.30 \mathrm{E}+1$	$1.65 \mathrm{E}-1$	$1.06 \mathrm{E}+0$	$9.71 \mathrm{E}-3$	-1.65E+1	1.77E+1
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$3.22 \mathrm{E}+1$	$2.84 \mathrm{E}-1$	$5.83 \mathrm{E}-1$	$3.30 \mathrm{E}+1$	$1.65 \mathrm{E}-1$	$1.06 \mathrm{E}+0$	$9.71 \mathrm{E}-3$	-1.65E+1	1.77E+1
PET		MJ	3.39E+1	$2.88 \mathrm{E}-1$	$2.43 \mathrm{E}+0$	$3.66 \mathrm{E}+1$	$1.67 \mathrm{E}-1$	1.11E+0	$1.01 \mathrm{E}-2$	-1.88E+1	1.91E+1
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$9.92 \mathrm{E}-3$	3.03E-5	4.49E-3	1.44E-2	$1.76 \mathrm{E}-5$	6.92E-4	1.13E-5	-5.32E-3	$9.84 \mathrm{E}-3$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	$5.90 \mathrm{E}-6$	6.85E-7	5.19E-7	7.11E-6	3.97E-7	$1.72 \mathrm{E}-6$	$1.10 \mathrm{E}-8$	-4.98E-6	4.26E-6
NHWD	kg	$4.70 \mathrm{E}-2$	$1.66 \mathrm{E}-2$	$5.06 \mathrm{E}-3$	6.87E-2	$9.63 \mathrm{E}-3$	5.04E-2	4.03E-2	-1.73E-2	1.52E-1
RWD	kg	2.61E-5	1.82E-6	5.54E-7	$2.85 \mathrm{E}-5$	1.06E-6	3.91E-6	5.99E-8	-9.46E-6	$2.40 \mathrm{E}-5$
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

