Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	3067804 - SiTech+ Coupler STMM 160 S/S
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		$\mathrm{kg} \mathrm{CO2} \mathrm{eq}$	$1.79 \mathrm{E}+0$	$2.64 \mathrm{E}-2$	$1.19 \mathrm{E}-1$	1.94E+0	$2.23 \mathrm{E}-2$	1.11E+0	$1.10 \mathrm{E}-2$	-1.07E+0	$2.02 \mathrm{E}+0$
GWP-f		kg CO2 eq	$1.98 \mathrm{E}+0$	$2.64 \mathrm{E}-2$	1.02E-1	$2.11 \mathrm{E}+0$	2.22E-2	8.81E-1	$1.10 \mathrm{E}-2$	-1.15E+0	1.87E+0
GWP-b		kg CO 2 eq	-1.88E-1	$1.60 \mathrm{E}-5$	8.61E-3	-1.79E-1	$1.35 \mathrm{E}-5$	$2.30 \mathrm{E}-1$	9.73E-6	8.76E-2	$1.39 \mathrm{E}-1$
GWP-Iuluc		kg CO2 eq	1.22E-3	$9.34 \mathrm{E}-6$	8.61E-3	$9.84 \mathrm{E}-3$	$7.87 \mathrm{E}-6$	$1.23 \mathrm{E}-4$	$1.87 \mathrm{E}-7$	-9.21E-4	$9.05 \mathrm{E}-3$
ODP		kg CFC11 eq	$1.06 \mathrm{E}-7$	6.08E-9	1.02E-8	$1.22 \mathrm{E}-7$	5.13E-9	$1.74 \mathrm{E}-8$	$2.78 \mathrm{E}-10$	-5.81E-8	$8.68 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$7.78 \mathrm{E}-3$	$1.50 \mathrm{E}-4$	$4.11 \mathrm{E}-4$	$8.34 \mathrm{E}-3$	$1.27 \mathrm{E}-4$	$7.37 \mathrm{E}-4$	$6.64 \mathrm{E}-6$	-3.44E-3	$5.77 \mathrm{E}-3$
EP-fw		kg P eq	3.90E-5	2.17E-7	$1.58 \mathrm{E}-6$	4.08E-5	$1.83 \mathrm{E}-7$	$3.58 \mathrm{E}-6$	$8.62 \mathrm{E}-9$	-2.02E-5	$2.44 \mathrm{E}-5$
EP-m		kg Neq	$1.38 \mathrm{E}-3$	$5.38 \mathrm{E}-5$	6.95E-5	$1.50 \mathrm{E}-3$	4.53E-5	$2.22 \mathrm{E}-4$	$5.29 \mathrm{E}-6$	-6.56E-4	$1.12 \mathrm{E}-3$
EP-T		$\mathrm{mol} \mathrm{Neq}^{\text {d }}$	1.53E-2	5.93E-4	7.81E-4	$1.67 \mathrm{E}-2$	5.00E-4	$2.44 \mathrm{E}-3$	2.70E-5	-7.35E-3	$1.23 \mathrm{E}-2$
POCP		kg NMVOC eq	6.69E-3	$1.70 \mathrm{E}-4$	$2.42 \mathrm{E}-4$	$7.11 \mathrm{E}-3$	1.43E-4	7.57E-4	$1.01 \mathrm{E}-5$	-3.06E-3	$4.96 \mathrm{E}-3$
ADP-mm		kg Sb eq	1.27E-4	6.83E-7	$2.48 \mathrm{E}-6$	1.30E-4	5.76E-7	$2.81 \mathrm{E}-6$	$6.65 \mathrm{E}-9$	-1.09E-5	$1.22 \mathrm{E}-4$
ADP-f		MJ	$6.67 \mathrm{E}+1$	$4.05 \mathrm{E}-1$	$1.34 \mathrm{E}+0$	$6.84 \mathrm{E}+1$	3.42E-1	$2.19 \mathrm{E}+0$	$2.03 \mathrm{E}-2$	-3.38E+1	$3.72 \mathrm{E}+1$
WDP		m3 depriv.	$1.33 \mathrm{E}+0$	$1.24 \mathrm{E}-3$	$4.75 \mathrm{E}-1$	1.80E+0	$1.05 \mathrm{E}-3$	$4.42 \mathrm{E}-2$	9.30E-5	-6.77E-1	$1.17 \mathrm{E}+0$
PM		disease inc.	7.87E-8	$2.38 \mathrm{E}-9$	4.12E-9	8.52E-8	2.01E-9	$1.16 \mathrm{E}-8$	$1.39 \mathrm{E}-10$	-3.56E-8	$6.35 \mathrm{E}-8$
IR		kBq U-235 eq	$5.76 \mathrm{E}-2$	$1.77 \mathrm{E}-3$	1.25E-3	$6.07 \mathrm{E}-2$	$1.49 \mathrm{E}-3$	$6.73 \mathrm{E}-3$	$9.47 \mathrm{E}-5$	$-2.24 \mathrm{E}-2$	$4.66 \mathrm{E}-2$
ETP-fw		CTUe	$2.58 \mathrm{E}+1$	3.29E-1	2.12E+0	$2.82 \mathrm{E}+1$	$2.77 \mathrm{E}-1$	2.92E+0	$1.99 \mathrm{E}-2$	-1.17E+1	$1.98 \mathrm{E}+1$
HTP-c		CTUn	$6.24 \mathrm{E}-10$	1.17E-11	1.13E-10	7.49E-10	9.87E-12	2.93E-10	4.94E-13	-2.94E-10	7.58E-10
HTP-nc		cTun	$1.52 \mathrm{E}-8$	3.92E-10	$2.34 \mathrm{E}-9$	1.80E-8	3.31E-10	$3.78 \mathrm{E}-9$	1.16E-11	-7.15E-9	$1.50 \mathrm{E}-8$
SQP		Pt	$2.32 \mathrm{E}+1$	$3.47 \mathrm{E}-1$	$2.44 \mathrm{E}-1$	$2.38 \mathrm{E}+1$	$2.92 \mathrm{E}-1$	1.71E+0	$5.21 \mathrm{E}-2$	-3.06E+1	$-4.83 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$4.18 \mathrm{E}+0$	5.81E-3	$4.64 \mathrm{E}+0$	8.83E+0	$4.90 \mathrm{E}-3$	1.06E-1	8.07E-4	$-5.36 \mathrm{E}+0$	$3.58 \mathrm{E}+0$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$4.18 \mathrm{E}+0$	$5.81 \mathrm{E}-3$	$4.64 \mathrm{E}+0$	$8.83 \mathrm{E}+0$	4.90E-3	$1.06 \mathrm{E}-1$	8.07E-4	$-5.36 \mathrm{E}+0$	$3.58 \mathrm{E}+0$
PENRE		MJ	7.15E+1	$4.30 \mathrm{E}-1$	$1.46 \mathrm{E}+0$	$7.34 \mathrm{E}+1$	3.63E-1	2.33E+0	$2.15 \mathrm{E}-2$	-3.65E+1	$3.97 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	7.15E+1	4.30E-1	1.46E+0	$7.34 \mathrm{E}+1$	3.63E-1	$2.33 \mathrm{E}+0$	$2.15 \mathrm{E}-2$	-3.65E+1	$3.97 \mathrm{E}+1$
PET		MJ	7.57E+1	$4.36 \mathrm{E}-1$	$6.11 \mathrm{E}+0$	8.22E+1	3.67E-1	2.44E+0	2.23E-2	-4.18E+1	4.32E+1
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	2.24E-2	$4.59 \mathrm{E}-5$	$1.13 \mathrm{E}-2$	3.37E-2	$3.86 \mathrm{E}-5$	$1.56 \mathrm{E}-3$	2.51E-5	-1.18E-2	$2.36 \mathrm{E}-2$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	$1.40 \mathrm{E}-5$	$1.04 \mathrm{E}-6$	$1.30 \mathrm{E}-6$	$1.64 \mathrm{E}-5$	$8.73 \mathrm{E}-7$	3.81E-6	$2.44 \mathrm{E}-8$	-1.14E-5	9.68E-6
NHWD	kg	$1.10 \mathrm{E}-1$	$2.51 \mathrm{E}-2$	$1.27 \mathrm{E}-2$	$1.48 \mathrm{E}-1$	2.12E-2	$1.11 \mathrm{E}-1$	8.94E-2	-3.94E-2	3.31E-1
RWD	kg	$6.23 \mathrm{E}-5$	2.76E-6	$1.39 \mathrm{E}-6$	6.64E-5	2.32E-6	8.59E-6	$1.33 \mathrm{E}-7$	-2.13E-5	5.61E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

