Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3061211-$ Tigris PEXc/AI/PE Pipe WT 16x2.0 L=5
Unit:	1 piece
Manufacturer:	Wavin - PL - MPC

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
30-06-2023
30-06-2028
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard.

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL - MPC (2021). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - PL - MPC. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - PL - MPC.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$2.88 \mathrm{E}+0$	7.14E-2	$4.26 \mathrm{E}-2$	$3.00 \mathrm{E}+0$	$7.75 \mathrm{E}-3$	$1.22 \mathrm{E}+0$	$2.72 \mathrm{E}-2$	1.91E-1	$4.44 \mathrm{E}+0$
GWP-f		kg CO2 eq	$2.99 \mathrm{E}+0$	$7.14 \mathrm{E}-2$	$2.63 \mathrm{E}-2$	$3.09 \mathrm{E}+0$	$7.75 \mathrm{E}-3$	$1.10 \mathrm{E}+0$	2.71E-2	1.91E-1	4.41E+0
GWP-b		kg CO 2 eq	-1.11E-1	3.23E-5	$1.63 \mathrm{E}-2$	-9.47E-2	$4.70 \mathrm{E}-6$	1.18E-1	1.23E-4	-2.76E-3	2.10E-2
GWP-Iuluc		kg CO2 eq	7.43E-3	$2.64 \mathrm{E}-5$	$1.08 \mathrm{E}-5$	7.47E-3	$2.74 \mathrm{E}-6$	$3.01 \mathrm{E}-6$	6.51E-7	$2.74 \mathrm{E}-3$	$1.02 \mathrm{E}-2$
ODP		kg CFC11 eq	$1.23 \mathrm{E}-7$	$1.57 \mathrm{E}-8$	$1.54 \mathrm{E}-9$	$1.40 \mathrm{E}-7$	$1.79 \mathrm{E}-9$	$1.36 \mathrm{E}-9$	$7.73 \mathrm{E}-10$	-4.20E-8	$1.02 \mathrm{E}-7$
AP		$\mathrm{mol} \mathrm{H}+\mathrm{eq}$	$1.68 \mathrm{E}-2$	4.36E-4	$9.84 \mathrm{E}-5$	$1.73 \mathrm{E}-2$	$4.41 \mathrm{E}-5$	$1.50 \mathrm{E}-4$	$1.91 \mathrm{E}-5$	$4.64 \mathrm{E}-3$	2.22E-2
EP-fw		kg Peq	$1.05 \mathrm{E}-4$	7.15E-7	6.71E-7	$1.06 \mathrm{E}-4$	$6.37 \mathrm{E}-8$	$1.57 \mathrm{E}-7$	3.01E-8	$2.43 \mathrm{E}-5$	1.30E-4
EP-m		kg Neq	$2.63 \mathrm{E}-3$	$1.51 \mathrm{E}-4$	$2.07 \mathrm{E}-5$	$2.81 \mathrm{E}-3$	1.58E-5	$6.68 \mathrm{E}-5$	$1.20 \mathrm{E}-5$	$6.08 \mathrm{E}-4$	$3.51 \mathrm{E}-3$
EP-T		mol Neq	$2.97 \mathrm{E}-2$	$1.66 \mathrm{E}-3$	$1.89 \mathrm{E}-4$	3.16E-2	$1.74 \mathrm{E}-4$	$7.59 \mathrm{E}-4$	$7.76 \mathrm{E}-5$	$6.68 \mathrm{E}-3$	3.93E-2
POCP		kg NMVOC eq	$9.75 \mathrm{E}-3$	$4.73 \mathrm{E}-4$	6.06E-5	$1.03 \mathrm{E}-2$	4.97E-5	$2.03 \mathrm{E}-4$	$2.79 \mathrm{E}-5$	$2.13 \mathrm{E}-3$	$1.27 \mathrm{E}-2$
ADP-mm		kg Sb eq	2.09E-5	$1.79 \mathrm{E}-6$	$9.73 \mathrm{E}-7$	$2.37 \mathrm{E}-5$	2.00E-7	7.95E-8	1.91E-8	-1.58E-4	$-1.34 \mathrm{E}-4$
ADP-f		MJ	$5.17 \mathrm{E}+1$	1.07E+0	$1.92 \mathrm{E}-1$	$5.30 \mathrm{E}+1$	$1.19 \mathrm{E}-1$	$8.24 \mathrm{E}-2$	5.81E-2	$1.15 \mathrm{E}+0$	$5.44 \mathrm{E}+1$
WDP		m3 depriv.	$1.08 \mathrm{E}+0$	3.82E-3	5.06E-3	1.09E+0	3.65E-4	$1.14 \mathrm{E}-3$	2.89E-4	1.45E-1	$1.24 \mathrm{E}+0$
PM		disease inc.	1.82E-7	$6.36 \mathrm{E}-9$	$1.02 \mathrm{E}-9$	$1.90 \mathrm{E}-7$	6.99E-10	$1.39 \mathrm{E}-9$	$3.84 \mathrm{E}-10$	$5.77 \mathrm{E}-8$	$2.50 \mathrm{E}-7$
IR		kBq U-235 eq	$6.76 \mathrm{E}-2$	4.50E-3	2.89E-4	$7.24 \mathrm{E}-2$	5.20E-4	2.69E-4	3.01E-4	$8.60 \mathrm{E}-3$	8.20E-2
ETP-fw		CTUe	5.98E+1	$9.55 \mathrm{E}-1$	7.79E-1	$6.16 \mathrm{E}+1$	$9.66 \mathrm{E}-2$	3.84E-1	$2.74 \mathrm{E}+1$	1.62E+1	$1.06 \mathrm{E}+2$
HTP-c		cTUn	$2.97 \mathrm{E}-9$	3.12E-11	$4.12 \mathrm{E}-11$	3.04E-9	$3.44 \mathrm{E}-12$	$1.58 \mathrm{E}-10$	$2.28 \mathrm{E}-12$	$9.64 \mathrm{E}-10$	$4.17 \mathrm{E}-9$
HTP-nc		cTun	5.64E-8	$1.04 \mathrm{E}-9$	9.64E-10	5.85E-8	$1.15 \mathrm{E}-10$	$1.14 \mathrm{E}-9$	$4.86 \mathrm{E}-11$	$1.67 \mathrm{E}-8$	7.64E-8
SQP		Pt	1.77E+1	$9.24 \mathrm{E}-1$	$1.54 \mathrm{E}-1$	$1.88 \mathrm{E}+1$	1.02E-1	$5.31 \mathrm{E}-2$	$1.40 \mathrm{E}-1$	$-1.44 \mathrm{E}+0$	1.77E+1
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	4.91E+0	7.26E-5	$1.08 \mathrm{E}+0$	$6.00 \mathrm{E}+0$	1.71E-3	3.82E-3	$3.76 \mathrm{E}-3$	$4.50 \mathrm{E}-1$	$6.46 \mathrm{E}+0$
PERM		MJ	0	$1.33 \mathrm{E}-2$	0	$1.33 \mathrm{E}-2$	0	0	0	0	$1.33 \mathrm{E}-2$
PERT		MJ	$4.91 \mathrm{E}+0$	$1.34 \mathrm{E}-2$	1.08E+0	6.01E+0	1.71E-3	3.82E-3	3.76E-3	$4.50 \mathrm{E}-1$	$6.47 \mathrm{E}+0$
PENRE		MJ	$5.53 \mathrm{E}+1$	$1.14 \mathrm{E}-2$	$2.07 \mathrm{E}-1$	$5.55 \mathrm{E}+1$	$1.26 \mathrm{E}-1$	8.81E-2	6.16E-2	7.54E-1	$5.65 \mathrm{E}+1$
PENRM		MJ	0	$1.13 \mathrm{E}+0$	0	$1.13 \mathrm{E}+0$	0	0	0	0	$1.13 \mathrm{E}+0$
PENRT		MJ	5.53E+1	$1.14 \mathrm{E}+0$	$2.07 \mathrm{E}-1$	$5.66 \mathrm{E}+1$	1.26E-1	8.81E-2	6.16E-2	7.54E-1	$5.76 \mathrm{E}+1$
PET		MJ	$6.02 \mathrm{E}+1$	$1.15 \mathrm{E}+0$	1.29E+0	$6.26 \mathrm{E}+1$	$1.28 \mathrm{E}-1$	$9.20 \mathrm{E}-2$	6.54E-2	$1.20 \mathrm{E}+0$	$6.41 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$2.74 \mathrm{E}-2$	1.30E-4	$1.40 \mathrm{E}-4$	$2.77 \mathrm{E}-2$	$1.35 \mathrm{E}-5$	2.04E-4	7.29E-5	4.97E-3	3.29E-2

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	8.14E-4	2.71E-6	2.33E-7	8.17E-4	3.04E-7	3.77E-7	6.93E-8	-3.35E-4	4.83E-4
NHWD		kg	4.55E-1	$6.75 \mathrm{E}-2$	3.81E-3	5.27E-1	7.37E-3	$9.55 \mathrm{E}-3$	$2.36 \mathrm{E}-1$	$1.34 \mathrm{E}-1$	$9.13 \mathrm{E}-1$
RWD		kg	6.95E-5	7.06E-6	3.41E-7	7.69E-5	8.09E-7	3.35E-7	3.86E-7	$8.35 \mathrm{E}-6$	8.67E-5
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

