Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3041228-$ Tigris PEXc/AI/PE Pipe WT 32×3.0 L=5
Unit:	1 piece
Manufacturer:	Wavin - PL - MPC

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
30-06-2023
30-06-2028
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard.

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL - MPC (2021). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - PL - MPC. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - PL - MPC.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	1.03E+1	$2.28 \mathrm{E}-1$	$1.48 \mathrm{E}-1$	$1.07 \mathrm{E}+1$	$2.62 \mathrm{E}-2$	4.00E+0	$8.68 \mathrm{E}-2$	$1.40 \mathrm{E}+0$	$1.62 \mathrm{E}+1$
GWP-f		kg CO2 eq	1.08E+1	$2.28 \mathrm{E}-1$	$9.23 \mathrm{E}-2$	1.11E+1	2.62E-2	$3.50 \mathrm{E}+0$	$8.65 \mathrm{E}-2$	$1.40 \mathrm{E}+0$	$1.61 \mathrm{E}+1$
GWP-b		kg CO2 eq	-4.96E-1	$1.05 \mathrm{E}-4$	5.56E-2	-4.40E-1	$1.59 \mathrm{E}-5$	$4.93 \mathrm{E}-1$	4.84E-4	-1.10E-2	4.24E-2
GWP-Iuluc		kg CO2 eq	$2.92 \mathrm{E}-2$	$8.35 \mathrm{E}-5$	3.96E-5	$2.94 \mathrm{E}-2$	$9.28 \mathrm{E}-6$	$1.08 \mathrm{E}-5$	$2.31 \mathrm{E}-6$	1.12E-2	$4.06 \mathrm{E}-2$
ODP		kg CFC11 eq	$4.54 \mathrm{E}-7$	5.03E-8	$5.41 \mathrm{E}-9$	$5.10 \mathrm{E}-7$	$6.04 \mathrm{E}-9$	4.90E-9	$2.64 \mathrm{E}-9$	-1.08E-7	4.16E-7
AP		mol $\mathrm{H}+\mathrm{eq}$	$6.33 \mathrm{E}-2$	$1.32 \mathrm{E}-3$	3.62E-4	6.50E-2	$1.49 \mathrm{E}-4$	$5.04 \mathrm{E}-4$	$6.60 \mathrm{E}-5$	$1.94 \mathrm{E}-2$	$8.51 \mathrm{E}-2$
EP-fw		kg Peq	$3.58 \mathrm{E}-4$	2.30E-6	$2.43 \mathrm{E}-6$	3.63E-4	$2.16 \mathrm{E}-7$	5.52E-7	$1.07 \mathrm{E}-7$	9.98E-5	4.63E-4
EP-m		kg N eq	$9.89 \mathrm{E}-3$	$4.66 \mathrm{E}-4$	7.34E-5	$1.04 \mathrm{E}-2$	5.35E-5	$2.24 \mathrm{E}-4$	$4.06 \mathrm{E}-5$	2.63E-3	$1.34 \mathrm{E}-2$
EP-T		mol Neq	1.11E-1	$5.14 \mathrm{E}-3$	6.77E-4	1.17E-1	5.89E-4	$2.54 \mathrm{E}-3$	$2.67 \mathrm{E}-4$	$2.89 \mathrm{E}-2$	$1.49 \mathrm{E}-1$
POCP		kg NMVOC eq	3.57E-2	$1.47 \mathrm{E}-3$	$2.18 \mathrm{E}-4$	3.74E-2	1.68E-4	6.82E-4	$9.44 \mathrm{E}-5$	$9.23 \mathrm{E}-3$	$4.76 \mathrm{E}-2$
ADP-mm		kg Sb eq	7.19E-5	$5.78 \mathrm{E}-6$	3.66E-6	8.13E-5	$6.78 \mathrm{E}-7$	2.96E-7	$6.58 \mathrm{E}-8$	-6.45E-4	-5.63E-4
ADP-f		MJ	$1.71 \mathrm{E}+2$	$3.44 \mathrm{E}+0$	$6.78 \mathrm{E}-1$	$1.75 \mathrm{E}+2$	4.03E-1	$2.97 \mathrm{E}-1$	$2.00 \mathrm{E}-1$	$1.53 \mathrm{E}+1$	$1.91 \mathrm{E}+2$
WDP		m3 depriv.	$3.58 \mathrm{E}+0$	$1.23 \mathrm{E}-2$	1.82E-2	3.61E+0	$1.24 \mathrm{E}-3$	3.14E-3	9.90E-4	$6.21 \mathrm{E}-1$	4.23E+0
PM		disease inc.	7.06E-7	2.05E-8	3.64E-9	7.31E-7	2.37E-9	4.84E-9	$1.31 \mathrm{E}-9$	2.37E-7	$9.76 \mathrm{E}-7$
IR		kBq U-235 eq	$2.37 \mathrm{E}-1$	$1.44 \mathrm{E}-2$	$1.00 \mathrm{E}-3$	$2.52 \mathrm{E}-1$	$1.76 \mathrm{E}-3$	$9.88 \mathrm{E}-4$	1.05E-3	3.80E-2	$2.94 \mathrm{E}-1$
ETP-fw		ctue	$2.34 \mathrm{E}+2$	3.07E+0	$2.87 \mathrm{E}+0$	2.40E+2	3.27E-1	$1.35 \mathrm{E}+0$	$1.12 \mathrm{E}+2$	$6.67 \mathrm{E}+1$	4.20E+2
HTP-c		CTUn	$1.17 \mathrm{E}-8$	9.95E-11	1.51E-10	$1.19 \mathrm{E}-8$	$1.16 \mathrm{E}-11$	$5.17 \mathrm{E}-10$	8.40E-12	3.97E-9	$1.65 \mathrm{E}-8$
HTP-nc		cTUn	2.20E-7	3.35E-9	3.56E-9	$2.27 \mathrm{E}-7$	3.90E-10	$3.74 \mathrm{E}-9$	$1.77 \mathrm{E}-10$	$6.86 \mathrm{E}-8$	3.00E-7
SQP		Pt	7.07E+1	$2.98 \mathrm{E}+0$	5.65E-1	7.42E+1	$3.44 \mathrm{E}-1$	2.02E-1	$4.74 \mathrm{E}-1$	$-5.77 \mathrm{E}+0$	$6.95 \mathrm{E}+1$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	1.90E+1	0	4.11E+0	$2.32 \mathrm{E}+1$	5.78E-3	$1.34 \mathrm{E}-2$	$1.39 \mathrm{E}-2$	$1.82 \mathrm{E}+0$	$2.50 \mathrm{E}+1$
PERM		MJ	0	4.30E-2	0	$4.30 \mathrm{E}-2$	0	0	0	0	4.30E-2
PERT		MJ	1.90E+1	4.30E-2	4.11E+0	$2.32 \mathrm{E}+1$	5.78E-3	1.34E-2	$1.39 \mathrm{E}-2$	$1.82 \mathrm{E}+0$	$2.51 \mathrm{E}+1$
PENRE		MJ	1.82E+2	0	7.30E-1	$1.83 \mathrm{E}+2$	4.27E-1	3.17E-1	2.12E-1	$1.48 \mathrm{E}+1$	$1.99 \mathrm{E}+2$
PENRM		MJ	0	$3.65 \mathrm{E}+0$	0	3.65E+0	0	0	0	0	$3.65 \mathrm{E}+0$
PENRT		MJ	1.82E+2	$3.65 \mathrm{E}+0$	7.30E-1	$1.87 \mathrm{E}+2$	4.27E-1	3.17E-1	$2.12 \mathrm{E}-1$	$1.48 \mathrm{E}+1$	$2.02 \mathrm{E}+2$
PET		MJ	2.01E+2	$3.69 \mathrm{E}+0$	$4.84 \mathrm{E}+0$	$2.10 \mathrm{E}+2$	$4.33 \mathrm{E}-1$	$3.31 \mathrm{E}-1$	$2.26 \mathrm{E}-1$	1.67E+1	2.27E+2
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$9.65 \mathrm{E}-2$	4.19E-4	5.02E-4	$9.74 \mathrm{E}-2$	$4.56 \mathrm{E}-5$	$6.61 \mathrm{E}-4$	$2.51 \mathrm{E}-4$	$2.10 \mathrm{E}-2$	$1.19 \mathrm{E}-1$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	3.31E-3	8.71E-6	7.95E-7	3.32E-3	$1.03 \mathrm{E}-6$	$1.28 \mathrm{E}-6$	2.38E-7	-1.35E-3	1.97E-3
NHWD	kg	$1.76 \mathrm{E}+0$	2.18E-1	$1.30 \mathrm{E}-2$	$1.99 \mathrm{E}+0$	$2.50 \mathrm{E}-2$	3.45E-2	8.00E-1	5.49E-1	$3.40 \mathrm{E}+0$
RWD	kg	2.42E-4	$2.26 \mathrm{E}-5$	1.16E-6	$2.65 \mathrm{E}-4$	$2.74 \mathrm{E}-6$	1.25E-6	$1.33 \mathrm{E}-6$	3.81E-5	$3.09 \mathrm{E}-4$
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

