Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3041230-$ Tigris PEXc/AI/PE Pipe WT 50x4.5 L=5
Unit:	1 piece
Manufacturer:	Wavin - PL - MPC

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
30-06-2023
30-06-2028
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard.

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL - MPC (2021). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - PL - MPC. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - PL - MPC.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	2.87E+1	$3.61 \mathrm{E}-1$	$4.04 \mathrm{E}-1$	$2.95 \mathrm{E}+1$	$6.94 \mathrm{E}-2$	$1.05 \mathrm{E}+1$	$2.25 \mathrm{E}-1$	4.53E+0	$4.48 \mathrm{E}+1$
GWP-f		kg CO2 eq	3.01E+1	$3.61 \mathrm{E}-1$	$2.56 \mathrm{E}-1$	$3.08 \mathrm{E}+1$	6.93E-2	$9.06 \mathrm{E}+0$	$2.24 \mathrm{E}-1$	$4.53 \mathrm{E}+0$	$4.46 \mathrm{E}+1$
GWP-b		kg CO2 eq	-1.51E+0	$1.67 \mathrm{E}-4$	$1.48 \mathrm{E}-1$	$-1.36 \mathrm{E}+0$	$4.21 \mathrm{E}-5$	$1.48 \mathrm{E}+0$	$1.34 \mathrm{E}-3$	-3.02E-2	8.99E-2
GWP-Iuluc		kg CO2 eq	$8.17 \mathrm{E}-2$	$1.32 \mathrm{E}-4$	$1.16 \mathrm{E}-4$	$8.19 \mathrm{E}-2$	$2.45 \mathrm{E}-5$	$2.73 \mathrm{E}-5$	$6.20 \mathrm{E}-6$	$3.14 \mathrm{E}-2$	1.13E-1
ODP		kg CFC11 eq	1.47E-6	7.97E-8	1.50E-8	1.56E-6	$1.60 \mathrm{E}-8$	1.25E-8	7.02E-9	-2.50E-7	$1.35 \mathrm{E}-6$
AP		mol $\mathrm{H}+\mathrm{eq}$	$1.79 \mathrm{E}-1$	$2.09 \mathrm{E}-3$	$1.07 \mathrm{E}-3$	$1.82 \mathrm{E}-1$	$3.95 \mathrm{E}-4$	$1.32 \mathrm{E}-3$	$1.75 \mathrm{E}-4$	$5.51 \mathrm{E}-2$	$2.39 \mathrm{E}-1$
EP-fw		kg P eq	9.69E-4	3.64E-6	7.07E-6	9.80E-4	5.71E-7	$1.41 \mathrm{E}-6$	2.87E-7	2.82E-4	1.26E-3
EP-m		kg N eq	$2.91 \mathrm{E}-2$	$7.38 \mathrm{E}-4$	$2.06 \mathrm{E}-4$	3.01E-2	$1.41 \mathrm{E}-4$	5.88E-4	$1.04 \mathrm{E}-4$	$7.53 \mathrm{E}-3$	$3.84 \mathrm{E}-2$
EP-T		mol Neq	3.26E-1	$8.13 \mathrm{E}-3$	$1.93 \mathrm{E}-3$	$3.36 \mathrm{E}-1$	$1.56 \mathrm{E}-3$	$6.68 \mathrm{E}-3$	$7.11 \mathrm{E}-4$	8.27E-2	$4.28 \mathrm{E}-1$
POCP		kg NMVOC eq	$1.03 \mathrm{E}-1$	$2.32 \mathrm{E}-3$	6.24E-4	$1.06 \mathrm{E}-1$	$4.45 \mathrm{E}-4$	$1.79 \mathrm{E}-3$	$2.50 \mathrm{E}-4$	$2.66 \mathrm{E}-2$	$1.35 \mathrm{E}-1$
ADP-mm		kg Sb eq	$2.17 \mathrm{E}-4$	$9.14 \mathrm{E}-6$	1.12E-5	$2.38 \mathrm{E}-4$	$1.79 \mathrm{E}-6$	7.86E-7	$1.75 \mathrm{E}-7$	-1.81E-3	-1.56E-3
ADP-f		MJ	$4.57 \mathrm{E}+2$	5.44E+0	$1.90 \mathrm{E}+0$	4.64E+2	$1.06 \mathrm{E}+0$	7.91E-1	$5.32 \mathrm{E}-1$	$5.55 \mathrm{E}+1$	5.22E+2
WDP		m3 depriv.	$9.09 \mathrm{E}+0$	$1.95 \mathrm{E}-2$	$5.21 \mathrm{E}-2$	$9.17 \mathrm{E}+0$	3.27E-3	$6.37 \mathrm{E}-3$	$2.65 \mathrm{E}-3$	$1.85 \mathrm{E}+0$	1.10E+1
PM		disease inc.	2.04E-6	3.24E-8	1.04E-8	2.09E-6	$6.26 \mathrm{E}-9$	$1.29 \mathrm{E}-8$	3.48E-9	$6.68 \mathrm{E}-7$	$2.78 \mathrm{E}-6$
IR		kBq U-235 eq	7.05E-1	$2.28 \mathrm{E}-2$	$2.74 \mathrm{E}-3$	7.31E-1	4.65E-3	$2.64 \mathrm{E}-3$	2.82E-3	1.11E-1	8.51E-1
ETP-fw		CTUe	$6.62 \mathrm{E}+2$	$4.85 \mathrm{E}+0$	$8.50 \mathrm{E}+0$	$6.75 \mathrm{E}+2$	8.64E-1	$3.31 \mathrm{E}+0$	$3.13 \mathrm{E}+2$	$1.88 \mathrm{E}+2$	$1.18 \mathrm{E}+3$
HTP-c		CTUn	$3.28 \mathrm{E}-8$	1.57E-10	$4.47 \mathrm{E}-10$	3.34E-8	$3.08 \mathrm{E}-11$	$1.36 \mathrm{E}-9$	$2.28 \mathrm{E}-11$	$1.12 \mathrm{E}-8$	$4.60 \mathrm{E}-8$
HTP-nc		cTUn	$6.24 \mathrm{E}-7$	$5.31 \mathrm{E}-9$	1.06E-8	$6.40 \mathrm{E}-7$	$1.03 \mathrm{E}-9$	$9.68 \mathrm{E}-9$	$4.79 \mathrm{E}-10$	$1.93 \mathrm{E}-7$	$8.45 \mathrm{E}-7$
SQP		Pt	$2.19 \mathrm{E}+2$	4.72E+0	1.67E+0	2.26E+2	9.11E-1	5.56E-1	$1.25 \mathrm{E}+0$	-1.77E+1	$2.11 \mathrm{E}+2$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	5.42E+1	0	1.27E+1	$6.69 \mathrm{E}+1$	$1.53 \mathrm{E}-2$	3.41E-2	3.77E-2	4.80E+0	7.18E+1
PERM		MJ	0	6.81E-2	0	6.81E-2	0	0	0	0	6.81E-2
PERT		MJ	5.42E+1	6.81E-2	$1.27 \mathrm{E}+1$	$6.69 \mathrm{E}+1$	$1.53 \mathrm{E}-2$	3.41E-2	3.77E-2	$4.80 \mathrm{E}+0$	7.18E+1
PENRE		MJ	4.87E+2	0	$2.05 \mathrm{E}+0$	$4.90 \mathrm{E}+2$	$1.13 \mathrm{E}+0$	$8.45 \mathrm{E}-1$	$5.63 \mathrm{E}-1$	$5.55 \mathrm{E}+1$	$5.48 \mathrm{E}+2$
PENRM		MJ	0	$5.78 \mathrm{E}+0$	0	$5.78 \mathrm{E}+0$	0	0	0	0	$5.78 \mathrm{E}+0$
PENRT		MJ	4.87E+2	$5.78 \mathrm{E}+0$	$2.05 \mathrm{E}+0$	4.95E+2	$1.13 \mathrm{E}+0$	$8.45 \mathrm{E}-1$	$5.63 \mathrm{E}-1$	$5.55 \mathrm{E}+1$	$5.53 \mathrm{E}+2$
PET		MJ	$5.42 \mathrm{E}+2$	$5.85 \mathrm{E}+0$	1.47E+1	$5.62 \mathrm{E}+2$	$1.15 \mathrm{E}+0$	8.80E-1	$6.01 \mathrm{E}-1$	$6.03 \mathrm{E}+1$	$6.25 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	2.58E-1	$6.63 \mathrm{E}-4$	1.44E-3	$2.60 \mathrm{E}-1$	$1.20 \mathrm{E}-4$	1.70E-3	$6.69 \mathrm{E}-4$	$6.05 \mathrm{E}-2$	3.23E-1

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	9.31E-3	$1.38 \mathrm{E}-5$	2.11E-6	$9.32 \mathrm{E}-3$	2.72E-6	$3.36 \mathrm{E}-6$	6.32E-7	$-3.78 \mathrm{E}-3$	$5.55 \mathrm{E}-3$
NHWD		kg	5.82E+0	3.45E-1	3.47E-2	6.20E+0	6.60E-2	$9.46 \mathrm{E}-2$	2.12E+0	1.54E+0	$1.00 \mathrm{E}+1$
RWD		kg	7.54E-4	3.57E-5	3.09E-6	7.93E-4	7.24E-6	$3.40 \mathrm{E}-6$	3.55E-6	$1.12 \mathrm{E}-4$	$9.18 \mathrm{E}-4$
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

