Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3018300-$ Tigris PEXc/AI/PE Pipe WT 25×2.5 L=50
Unit:	1 piece
Manufacturer:	Wavin - PL - MPC

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
30-06-2023
30-06-2028
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard.

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL - MPC (2021). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - PL - MPC. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - PL - MPC.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$5.91 \mathrm{E}+1$	$1.29 \mathrm{E}+0$	$7.64 \mathrm{E}-1$	$6.11 \mathrm{E}+1$	1.16E-1	$1.85 \mathrm{E}+1$	$3.74 \mathrm{E}-1$	$7.45 \mathrm{E}+0$	$8.76 \mathrm{E}+1$
GWP-f		kg CO2 eq	6.20E+1	$1.29 \mathrm{E}+0$	$4.81 \mathrm{E}-1$	$6.38 \mathrm{E}+1$	1.16E-1	$1.49 \mathrm{E}+1$	3.72E-1	$6.47 \mathrm{E}+0$	$8.57 \mathrm{E}+1$
GWP-b		kg CO2 eq	-3.11E+0	$5.85 \mathrm{E}-4$	2.82E-1	-2.83E+0	7.02E-5	$3.62 \mathrm{E}+0$	$2.69 \mathrm{E}-3$	$9.30 \mathrm{E}-1$	$1.72 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$1.72 \mathrm{E}-1$	$4.77 \mathrm{E}-4$	$2.13 \mathrm{E}-4$	$1.73 \mathrm{E}-1$	4.09E-5	7.49E-5	1.11E-5	$5.60 \mathrm{E}-2$	$2.29 \mathrm{E}-1$
ODP		kg CFC11 eq	2.59E-6	$2.84 \mathrm{E}-7$	2.81E-8	$2.91 \mathrm{E}-6$	$2.66 \mathrm{E}-8$	3.60E-8	$1.19 \mathrm{E}-8$	-4.79E-7	$2.50 \mathrm{E}-6$
AP		mol $\mathrm{H}+\mathrm{eq}$	$3.61 \mathrm{E}-1$	7.83E-3	$1.96 \mathrm{E}-3$	$3.71 \mathrm{E}-1$	$6.59 \mathrm{E}-4$	$2.48 \mathrm{E}-3$	3.00E-4	$9.54 \mathrm{E}-2$	$4.69 \mathrm{E}-1$
EP-fw		kg P eq	$2.04 \mathrm{E}-3$	$1.29 \mathrm{E}-5$	1.30E-5	$2.07 \mathrm{E}-3$	$9.52 \mathrm{E}-7$	$3.47 \mathrm{E}-6$	$5.13 \mathrm{E}-7$	4.27E-4	$2.50 \mathrm{E}-3$
EP-m		kg N eq	$5.71 \mathrm{E}-2$	$2.71 \mathrm{E}-3$	$3.86 \mathrm{E}-4$	6.02E-2	$2.36 \mathrm{E}-4$	$1.05 \mathrm{E}-3$	$1.78 \mathrm{E}-4$	1.23E-2	$7.40 \mathrm{E}-2$
EP-T		mol Neq	$6.37 \mathrm{E}-1$	$2.99 \mathrm{E}-2$	3.59E-3	6.71E-1	2.60E-3	$1.19 \mathrm{E}-2$	$1.22 \mathrm{E}-3$	$1.36 \mathrm{E}-1$	$8.22 \mathrm{E}-1$
POCP		kg NMVOC eq	$2.07 \mathrm{E}-1$	8.51E-3	$1.16 \mathrm{E}-3$	$2.16 \mathrm{E}-1$	7.42E-4	$3.26 \mathrm{E}-3$	$4.24 \mathrm{E}-4$	3.92E-2	$2.60 \mathrm{E}-1$
ADP-mm		kg Sb eq	3.93E-4	3.24E-5	2.02E-5	4.46E-4	$2.99 \mathrm{E}-6$	3.53E-6	$2.99 \mathrm{E}-7$	-3.79E-3	-3.34E-3
ADP-f		MJ	$9.97 \mathrm{E}+2$	$1.94 \mathrm{E}+1$	$3.55 \mathrm{E}+0$	$1.02 \mathrm{E}+3$	$1.78 \mathrm{E}+0$	2.29E+0	$9.08 \mathrm{E}-1$	-1.38E+1	$1.01 \mathrm{E}+3$
WDP		m3 depriv.	$1.96 \mathrm{E}+1$	6.91E-2	9.67E-2	$1.98 \mathrm{E}+1$	$5.45 \mathrm{E}-3$	$1.09 \mathrm{E}-2$	$4.62 \mathrm{E}-3$	-5.22E-1	$1.93 \mathrm{E}+1$
PM		disease inc.	3.97E-6	$1.15 \mathrm{E}-7$	$1.93 \mathrm{E}-8$	$4.10 \mathrm{E}-6$	1.04E-8	2.80E-8	5.87E-9	1.14E-6	5.29E-6
IR		kBq U-235 eq	1.21E+0	$8.14 \mathrm{E}-2$	$5.18 \mathrm{E}-3$	$1.30 \mathrm{E}+0$	$7.76 \mathrm{E}-3$	$8.85 \mathrm{E}-3$	$4.94 \mathrm{E}-3$	8.73E-2	$1.41 \mathrm{E}+0$
ETP-fw		CTUe	1.42E+3	$1.73 \mathrm{E}+1$	1.56E+1	$1.46 \mathrm{E}+3$	$1.44 \mathrm{E}+0$	$7.60 \mathrm{E}+0$	$6.49 \mathrm{E}+2$	$2.96 \mathrm{E}+2$	$2.41 \mathrm{E}+3$
HTP-c		CTUn	$6.74 \mathrm{E}-8$	5.64E-10	8.19E-10	6.88E-8	5.13E-11	$2.20 \mathrm{E}-9$	4.27E-11	$2.10 \mathrm{E}-8$	$9.21 \mathrm{E}-8$
HTP-nc		cTUn	1.27E-6	$1.89 \mathrm{E}-8$	1.94E-8	$1.31 \mathrm{E}-6$	$1.72 \mathrm{E}-9$	$1.73 \mathrm{E}-8$	8.93E-10	$3.54 \mathrm{E}-7$	$1.68 \mathrm{E}-6$
SQP		Pt	4.22E+2	$1.67 \mathrm{E}+1$	3.06E+0	$4.42 \mathrm{E}+2$	1.52E+0	$1.54 \mathrm{E}+0$	$2.10 \mathrm{E}+0$	$-3.84 \mathrm{E}+2$	$6.31 \mathrm{E}+1$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	1.11E+2	$1.15 \mathrm{E}-3$	2.29E+1	$1.34 \mathrm{E}+2$	$2.55 \mathrm{E}-2$	$8.59 \mathrm{E}-2$	7.07E-2	-4.62E+1	$8.79 \mathrm{E}+1$
PERM		MJ	0	$2.41 \mathrm{E}-1$	0	2.41E-1	0	0	0	0	$2.41 \mathrm{E}-1$
PERT		MJ	1.11E+2	$2.42 \mathrm{E}-1$	$2.29 \mathrm{E}+1$	$1.34 \mathrm{E}+2$	$2.55 \mathrm{E}-2$	8.59E-2	7.07E-2	-4.62E+1	$8.81 \mathrm{E}+1$
PENRE		MJ	$1.07 \mathrm{E}+3$	1.81E-1	$3.83 \mathrm{E}+0$	$1.07 \mathrm{E}+3$	$1.88 \mathrm{E}+0$	2.44E+0	$9.62 \mathrm{E}-1$	-2.20E+1	$1.05 \mathrm{E}+3$
PENRM		MJ	0	$2.04 \mathrm{E}+1$	0	$2.04 \mathrm{E}+1$	0	0	0	0	$2.04 \mathrm{E}+1$
PENRT		MJ	$1.07 \mathrm{E}+3$	$2.06 \mathrm{E}+1$	3.83E+0	$1.09 \mathrm{E}+3$	$1.88 \mathrm{E}+0$	$2.44 \mathrm{E}+0$	9.62E-1	-2.20E+1	$1.07 \mathrm{E}+3$
PET		MJ	$1.18 \mathrm{E}+3$	$2.09 \mathrm{E}+1$	$2.67 \mathrm{E}+1$	$1.22 \mathrm{E}+3$	$1.91 \mathrm{E}+0$	$2.53 \mathrm{E}+0$	1.03E+0	-6.82E+1	$1.16 \mathrm{E}+3$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	5.26E-1	$2.35 \mathrm{E}-3$	$2.67 \mathrm{E}-3$	5.31E-1	$2.01 \mathrm{E}-4$	$2.67 \mathrm{E}-3$	1.15E-3	$4.40 \mathrm{E}-2$	5.80E-1

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	1.92E-2	4.89E-5	$4.04 \mathrm{E}-6$	$1.93 \mathrm{E}-2$	$4.54 \mathrm{E}-6$	8.19E-6	$1.08 \mathrm{E}-6$	-7.84E-3	$1.14 \mathrm{E}-2$
NHWD		kg	1.00E+1	1.22E+0	$6.62 \mathrm{E}-2$	$1.13 \mathrm{E}+1$	1.10E-1	$1.58 \mathrm{E}-1$	$3.53 \mathrm{E}+0$	$2.91 \mathrm{E}+0$	1.80E+1
RWD		kg	$1.29 \mathrm{E}-3$	1.28E-4	5.90E-6	1.42E-3	1.21E-5	1.21E-5	$6.09 \mathrm{E}-6$	$1.03 \mathrm{E}-4$	$1.55 \mathrm{E}-3$
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

