Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3072958-$ Tigris PEXc/AI/PE Pipe WT 16×2.0 L=3
Unit:	1 piece
Manufacturer:	Wavin - PL - MPC

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
30-06-2023
30-06-2028
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard.

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL - MPC (2021). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - PL - MPC. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - PL - MPC.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$1.75 \mathrm{E}+0$	$4.29 \mathrm{E}-2$	$2.60 \mathrm{E}-2$	1.82E+0	$4.67 \mathrm{E}-3$	7.26E-1	$1.64 \mathrm{E}-2$	1.11E-1	$2.68 \mathrm{E}+0$
GWP-f		kg CO2 eq	$1.80 \mathrm{E}+0$	$4.28 \mathrm{E}-2$	1.62E-2	$1.86 \mathrm{E}+0$	$4.66 \mathrm{E}-3$	$6.66 \mathrm{E}-1$	$1.63 \mathrm{E}-2$	$1.12 \mathrm{E}-1$	$2.66 \mathrm{E}+0$
GWP-b		kg CO2 eq	-5.49E-2	1.94E-5	$9.78 \mathrm{E}-3$	-4.51E-2	$2.83 \mathrm{E}-6$	5.92E-2	7.38E-5	-1.65E-3	$1.25 \mathrm{E}-2$
GWP-Iuluc		kg CO2 eq	$4.46 \mathrm{E}-3$	$1.59 \mathrm{E}-5$	6.98E-6	$4.48 \mathrm{E}-3$	$1.65 \mathrm{E}-6$	$1.82 \mathrm{E}-6$	3.91E-7	$1.64 \mathrm{E}-3$	$6.13 \mathrm{E}-3$
ODP		kg CFC11 eq	7.37E-8	$9.44 \mathrm{E}-9$	$9.51 \mathrm{E}-10$	$8.41 \mathrm{E}-8$	$1.07 \mathrm{E}-9$	8.17E-10	$4.65 \mathrm{E}-10$	-2.56E-8	$6.09 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	1.01E-2	$2.62 \mathrm{E}-4$	$6.38 \mathrm{E}-5$	$1.04 \mathrm{E}-2$	$2.66 \mathrm{E}-5$	8.98E-5	1.15E-5	$2.79 \mathrm{E}-3$	$1.33 \mathrm{E}-2$
EP-fw		kg P eq	$6.30 \mathrm{E}-5$	$4.29 \mathrm{E}-7$	$4.29 \mathrm{E}-7$	6.38E-5	$3.84 \mathrm{E}-8$	$9.46 \mathrm{E}-8$	1.81E-8	$1.46 \mathrm{E}-5$	7.85E-5
EP-m		kg N eq	$1.58 \mathrm{E}-3$	$9.05 \mathrm{E}-5$	$1.29 \mathrm{E}-5$	$1.69 \mathrm{E}-3$	$9.51 \mathrm{E}-6$	$4.01 \mathrm{E}-5$	$7.23 \mathrm{E}-6$	$3.66 \mathrm{E}-4$	$2.11 \mathrm{E}-3$
EP-T		mol Neq	$1.79 \mathrm{E}-2$	$9.98 \mathrm{E}-4$	$1.19 \mathrm{E}-4$	1.90E-2	$1.05 \mathrm{E}-4$	$4.55 \mathrm{E}-4$	$4.67 \mathrm{E}-5$	$4.03 \mathrm{E}-3$	$2.36 \mathrm{E}-2$
POCP		kg NMVOC eq	5.87E-3	$2.84 \mathrm{E}-4$	$3.84 \mathrm{E}-5$	6.19E-3	2.99E-5	$1.22 \mathrm{E}-4$	1.68E-5	$1.28 \mathrm{E}-3$	$7.64 \mathrm{E}-3$
ADP-mm		kg Sb eq	1.26E-5	$1.08 \mathrm{E}-6$	6.46E-7	$1.43 \mathrm{E}-5$	1.21E-7	$4.77 \mathrm{E}-8$	$1.15 \mathrm{E}-8$	-9.49E-5	-8.05E-5
ADP-f		MJ	3.12E+1	$6.45 \mathrm{E}-1$	$1.19 \mathrm{E}-1$	$3.20 \mathrm{E}+1$	7.16E-2	$4.95 \mathrm{E}-2$	$3.50 \mathrm{E}-2$	$6.58 \mathrm{E}-1$	$3.28 \mathrm{E}+1$
WDP		m3 depriv.	6.52E-1	2.29E-3	3.20E-3	$6.58 \mathrm{E}-1$	2.20E-4	6.93E-4	$1.74 \mathrm{E}-4$	$8.76 \mathrm{E}-2$	7.47E-1
PM		disease inc.	1.09E-7	3.82E-9	6.42E-10	$1.14 \mathrm{E}-7$	4.21E-10	8.37E-10	$2.31 \mathrm{E}-10$	3.47E-8	1.50E-7
IR		kBq U-235 eq	4.07E-2	$2.70 \mathrm{E}-3$	1.77E-4	$4.36 \mathrm{E}-2$	3.13E-4	1.61E-4	1.81E-4	5.17E-3	$4.94 \mathrm{E}-2$
ETP-fw		CTUe	3.60E+1	$5.73 \mathrm{E}-1$	5.06E-1	$3.70 \mathrm{E}+1$	5.81E-2	$2.32 \mathrm{E}-1$	1.65E+1	$9.75 \mathrm{E}+0$	$6.35 \mathrm{E}+1$
HTP-c		CTUn	$1.78 \mathrm{E}-9$	1.87E-11	2.67E-11	1.82E-9	2.07E-12	9.47E-11	1.37E-12	5.79E-10	2.50E-9
HTP-nc		cTUn	$3.39 \mathrm{E}-8$	6.26E-10	6.28E-10	3.51E-8	6.93E-11	6.91E-10	$2.92 \mathrm{E}-11$	$1.00 \mathrm{E}-8$	$4.60 \mathrm{E}-8$
SQP		Pt	$9.59 \mathrm{E}+0$	$5.55 \mathrm{E}-1$	9.97E-2	$1.02 \mathrm{E}+1$	$6.13 \mathrm{E}-2$	3.19E-2	8.40E-2	-6.33E-1	$9.79 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$2.80 \mathrm{E}+0$	$4.35 \mathrm{E}-5$	7.26E-1	3.52E+0	$1.03 \mathrm{E}-3$	$2.30 \mathrm{E}-3$	$2.26 \mathrm{E}-3$	3.17E-1	$3.85 \mathrm{E}+0$
PERM		MJ	0	$7.99 \mathrm{E}-3$	0	7.99E-3	0	0	0	0	$7.99 \mathrm{E}-3$
PERT		MJ	$2.80 \mathrm{E}+0$	8.03E-3	7.26E-1	3.53E+0	1.03E-3	$2.30 \mathrm{E}-3$	2.26E-3	3.17E-1	$3.85 \mathrm{E}+0$
PENRE		MJ	$3.33 \mathrm{E}+1$	6.86E-3	$1.28 \mathrm{E}-1$	$3.35 \mathrm{E}+1$	7.60E-2	5.30E-2	3.71E-2	4.17E-1	$3.41 \mathrm{E}+1$
PENRM		MJ	0	$6.78 \mathrm{E}-1$	0	$6.78 \mathrm{E}-1$	0	0	0	0	$6.78 \mathrm{E}-1$
PENRT		MJ	$3.33 \mathrm{E}+1$	6.84E-1	$1.28 \mathrm{E}-1$	$3.42 \mathrm{E}+1$	7.60E-2	5.30E-2	3.71E-2	4.17E-1	3.47E+1
PET		MJ	3.61E+1	$6.93 \mathrm{E}-1$	$8.55 \mathrm{E}-1$	$3.77 \mathrm{E}+1$	$7.70 \mathrm{E}-2$	$5.53 \mathrm{E}-2$	$3.93 \mathrm{E}-2$	$7.34 \mathrm{E}-1$	$3.86 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	1.65E-2	7.81E-5	$8.84 \mathrm{E}-5$	1.67E-2	$8.10 \mathrm{E}-6$	1.23E-4	$4.39 \mathrm{E}-5$	$2.99 \mathrm{E}-3$	$1.99 \mathrm{E}-2$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	4.88E-4	1.62E-6	$1.40 \mathrm{E}-7$	4.90E-4	1.83E-7	2.27E-7	4.17E-8	-2.01E-4	2.89E-4
NHWD	kg	$2.73 \mathrm{E}-1$	4.05E-2	$2.29 \mathrm{E}-3$	3.16E-1	$4.44 \mathrm{E}-3$	5.77E-3	1.42E-1	8.02E-2	5.49E-1
RWD	kg	4.18E-5	$4.24 \mathrm{E}-6$	$2.04 \mathrm{E}-7$	4.62E-5	4.87E-7	$2.00 \mathrm{E}-7$	$2.33 \mathrm{E}-7$	5.01E-6	5.22E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

