## Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

## Ecochain

| Product: | 3043900 - Wafix PP End Cap 50 GY |
| :--- | :--- |
| Unit: | 1 piece |
| Manufacturer: | Wavin - PL -Buk - Extra products |

Wafix PP is a versatile, uncomplicated solution for your indoor drainage. You can easily install the impact-resistant pipes even in frost. Their excellent chemical resistance makes them ideal for cast-in applications.
LCA standard:
Externally verified:
Issue date:
End of validity:

Verifier:

## EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS search mater
This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

| A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1 | C2 | C3 | C4 | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ■ | 『 | ■ | MND | ■ | ■ | ■ | ■ |
| Product stage |  |  |  |  | Use stage |  |  |  |  |  |  | End-of-Life stage |  |  |  |  |
| A1 Raw material supply A2 Transport A3 Manufacturing |  |  |  |  | B1 Use B2 Maintenance B3 Repair B4 Replacement B5 Refurbishment B6 Operational energy use B7 Operational water use |  |  |  |  |  |  | C1 De-construction demolition C2 Transport C3 Waste processing C4 Disposal |  |  |  |  |

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters




[MJ]; EEE = Exported energy electric [MJ]
Statement of Confidentiality


## Results

|  | Environmental impact | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GWP-total |  | kg CO2 eq | 2.39E-2 | 9.48E-5 | $1.45 \mathrm{E}-4$ | $2.42 \mathrm{E}-2$ | 6.06E-4 | $7.75 \mathrm{E}-2$ | $2.85 \mathrm{E}-4$ | -3.89E-2 | 6.37E-2 |
| GWP-f |  | kg CO2 eq | 7.30E-2 | $9.47 \mathrm{E}-5$ | 1.46E-4 | $7.33 \mathrm{E}-2$ | 6.05E-4 | $2.64 \mathrm{E}-2$ | $2.85 \mathrm{E}-4$ | -4.22E-2 | 5.84E-2 |
| GWP-b |  | kg CO2 eq | -4.92E-2 | $5.75 \mathrm{E}-8$ | -1.54E-6 | -4.92E-2 | $3.68 \mathrm{E}-7$ | 5.11E-2 | $2.47 \mathrm{E}-7$ | 3.33E-3 | 5.27E-3 |
| GWP-Iuluc |  | kg CO2 eq | 8.25E-5 | $3.35 \mathrm{E}-8$ | 1.49E-7 | $8.26 \mathrm{E}-5$ | $2.14 \mathrm{E}-7$ | 3.73E-6 | 5.06E-9 | -5.68E-5 | $2.98 \mathrm{E}-5$ |
| ODP |  | kg CFC11 eq | 3.23E-9 | $2.18 \mathrm{E}-11$ | 8.26E-12 | 3.26E-9 | 1.40E-10 | 5.86E-10 | 7.17E-12 | -3.16E-9 | 8.30E-10 |
| AP |  | mol H+eq | 3.11E-4 | 5.39E-7 | $1.47 \mathrm{E}-6$ | 3.13E-4 | $3.45 \mathrm{E}-6$ | $2.44 \mathrm{E}-5$ | $1.72 \mathrm{E}-7$ | -1.48E-4 | $1.93 \mathrm{E}-4$ |
| EP-fw |  | kg Peq | $1.88 \mathrm{E}-6$ | 7.79E-10 | $8.24 \mathrm{E}-9$ | $1.89 \mathrm{E}-6$ | $4.98 \mathrm{E}-9$ | 1.10E-7 | $2.29 \mathrm{E}-10$ | -1.02E-6 | $9.87 \mathrm{E}-7$ |
| EP-m |  | kg Neq | $6.08 \mathrm{E}-5$ | $1.93 \mathrm{E}-7$ | $1.55 \mathrm{E}-7$ | $6.11 \mathrm{E}-5$ | $1.23 \mathrm{E}-6$ | 7.62E-6 | 1.10E-7 | -3.20E-5 | 3.81E-5 |
| EP-T |  | mol Neq | $6.72 \mathrm{E}-4$ | $2.13 \mathrm{E}-6$ | $1.85 \mathrm{E}-6$ | 6.76E-4 | $1.36 \mathrm{E}-5$ | 8.40E-5 | $6.96 \mathrm{E}-7$ | -3.65E-4 | 4.09E-4 |
| POCP |  | kg NMVOC eq | 2.70E-4 | 6.08E-7 | 6.28E-7 | $2.71 \mathrm{E}-4$ | 3.89E-6 | 2.58E-5 | 2.61E-7 | -1.42E-4 | $1.59 \mathrm{E}-4$ |
| ADP-mm |  | kg Sb eq | 1.27E-6 | $2.45 \mathrm{E}-9$ | 1.97E-8 | $1.30 \mathrm{E}-6$ | $1.57 \mathrm{E}-8$ | $9.23 \mathrm{E}-8$ | 1.75E-10 | -3.44E-7 | 1.06E-6 |
| ADP-f |  | MJ | $2.13 \mathrm{E}+0$ | $1.45 \mathrm{E}-3$ | $1.36 \mathrm{E}-3$ | $2.13 \mathrm{E}+0$ | $9.29 \mathrm{E}-3$ | 6.92E-2 | 5.24E-4 | -1.12E+0 | 1.09E+0 |
| WDP |  | m3 depriv. | 4.47E-2 | $4.46 \mathrm{E}-6$ | 5.22E-5 | $4.48 \mathrm{E}-2$ | 2.85E-5 | 1.24E-3 | 3.36E-6 | -2.43E-2 | $2.18 \mathrm{E}-2$ |
| PM |  | disease inc. | 3.46E-9 | $8.55 \mathrm{E}-12$ | 9.08E-12 | $3.48 \mathrm{E}-9$ | 5.47E-11 | 3.83E-10 | 3.60E-12 | -1.96E-9 | $1.95 \mathrm{E}-9$ |
| IR |  | kBq U-235 eq | $1.79 \mathrm{E}-3$ | $6.35 \mathrm{E}-6$ | 1.02E-6 | 1.80E-3 | $4.06 \mathrm{E}-5$ | 2.23E-4 | $2.42 \mathrm{E}-6$ | -1.03E-3 | $1.04 \mathrm{E}-3$ |
| ETP-fw |  | cTUe | 1.28E+0 | $1.18 \mathrm{E}-3$ | 1.21E-2 | $1.30 \mathrm{E}+0$ | $7.55 \mathrm{E}-3$ | $8.24 \mathrm{E}-2$ | $4.39 \mathrm{E}-4$ | -6.39E-1 | $7.48 \mathrm{E}-1$ |
| HTP-c |  | CTUn | 5.36E-11 | 4.20E-14 | 6.17E-13 | 5.42E-11 | 2.69E-13 | 1.09E-11 | 1.33E-14 | -2.54E-11 | 4.00E-11 |
| HTP-nc |  | ctun | 8.91E-10 | $1.41 \mathrm{E}-12$ | $1.57 \mathrm{E}-11$ | 9.08E-10 | 9.00E-12 | 1.23E-10 | $2.86 \mathrm{E}-13$ | -2.82E-10 | 7.58E-10 |
| SQP |  | Pt | 4.40E+0 | $1.24 \mathrm{E}-3$ | $2.24 \mathrm{E}-3$ | $4.40 \mathrm{E}+0$ | 7.95E-3 | $5.45 \mathrm{E}-2$ | $1.34 \mathrm{E}-3$ | -4.18E+0 | $2.84 \mathrm{E}-1$ |
|  | Resource use | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| PERE |  | MJ | 8.77E-1 | 2.09E-5 | $2.40 \mathrm{E}-2$ | $9.01 \mathrm{E}-1$ | $1.33 \mathrm{E}-4$ | $3.25 \mathrm{E}-3$ | $1.99 \mathrm{E}-5$ | -6.57E-1 | $2.47 \mathrm{E}-1$ |
| PERM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PERT |  | MJ | 8.77E-1 | $2.09 \mathrm{E}-5$ | 2.40E-2 | $9.01 \mathrm{E}-1$ | $1.33 \mathrm{E}-4$ | 3.25E-3 | 1.99E-5 | -6.57E-1 | $2.47 \mathrm{E}-1$ |
| PENRE |  | MJ | $2.28 \mathrm{E}+0$ | $1.54 \mathrm{E}-3$ | $1.44 \mathrm{E}-3$ | $2.28 \mathrm{E}+0$ | $9.87 \mathrm{E}-3$ | 7.37E-2 | $5.56 \mathrm{E}-4$ | -1.20E+0 | $1.17 \mathrm{E}+0$ |
| PENRM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PENRT |  | MJ | $2.28 \mathrm{E}+0$ | $1.54 \mathrm{E}-3$ | $1.44 \mathrm{E}-3$ | $2.28 \mathrm{E}+0$ | $9.87 \mathrm{E}-3$ | 7.37E-2 | 5.56E-4 | -1.20E+0 | $1.17 \mathrm{E}+0$ |
| PET |  | MJ | $3.16 \mathrm{E}+0$ | $1.56 \mathrm{E}-3$ | $2.55 \mathrm{E}-2$ | 3.19E+0 | $1.00 \mathrm{E}-2$ | 7.69E-2 | $5.76 \mathrm{E}-4$ | $-1.86 \mathrm{E}+0$ | 1.41E+0 |
| SM |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| NRSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| FW |  | m3 | 8.30E-4 | $1.65 \mathrm{E}-7$ | $1.46 \mathrm{E}-6$ | $8.32 \mathrm{E}-4$ | $1.05 \mathrm{E}-6$ | 3.94E-5 | $6.43 \mathrm{E}-7$ | -4.51E-4 | 4.22E-4 |


|  | Output flows and waste categories | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HWD |  | kg | 7.96E-7 | $3.72 \mathrm{E}-9$ | $2.73 \mathrm{E}-13$ | 7.99E-7 | $2.38 \mathrm{E}-8$ | 1.23E-7 | $6.38 \mathrm{E}-10$ | -6.96E-7 | 2.51E-7 |
| NHWD |  | kg | $6.35 \mathrm{E}-3$ | 9.01E-5 | $1.05 \mathrm{E}-6$ | $6.44 \mathrm{E}-3$ | 5.76E-4 | $3.75 \mathrm{E}-3$ | $2.30 \mathrm{E}-3$ | -3.09E-3 | $9.98 \mathrm{E}-3$ |
| RWD |  | kg | $1.74 \mathrm{E}-6$ | $9.89 \mathrm{E}-9$ | 1.10E-13 | $1.75 \mathrm{E}-6$ | $6.32 \mathrm{E}-8$ | 2.89E-7 | 3.41E-9 | -1.05E-6 | $1.06 \mathrm{E}-6$ |
| CRU |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MFR |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MER |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EE |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EET |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EEE |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

