Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3003265-$ PVC Endcap GY 110 +Inspection cover
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS SEARCH Myll̈=

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	6.88E-1	$1.02 \mathrm{E}-2$	$1.45 \mathrm{E}-4$	6.99E-1	$8.64 \mathrm{E}-3$	$4.14 \mathrm{E}-1$	$2.90 \mathrm{E}-3$	-3.85E-1	7.39E-1
GWP-f		kg CO2 eq	7.81E-1	$1.02 \mathrm{E}-2$	$1.46 \mathrm{E}-4$	7.91E-1	8.63E-3	3.01E-1	$2.90 \mathrm{E}-3$	-4.14E-1	6.90E-1
GWP-b		kg CO2 eq	-9.31E-2	6.20E-6	-1.54E-6	-9.31E-2	$5.24 \mathrm{E}-6$	$1.14 \mathrm{E}-1$	$3.58 \mathrm{E}-6$	2.91E-2	$4.95 \mathrm{E}-2$
GWP-luluc		kg CO2 eq	8.69E-4	3.61E-6	1.49E-7	8.72E-4	3.06E-6	$1.06 \mathrm{E}-4$	7.50E-8	-5.01E-4	4.80E-4
ODP		$\mathrm{kg} \mathrm{CFC11} \mathrm{eq}$	3.76E-7	$2.35 \mathrm{E}-9$	$8.26 \mathrm{E}-12$	3.78E-7	$1.99 \mathrm{E}-9$	$2.93 \mathrm{E}-8$	$1.05 \mathrm{E}-10$	-1.87E-7	$2.23 \mathrm{E}-7$
AP		mol $\mathrm{H}+\mathrm{eq}$	3.81E-3	5.81E-5	$1.47 \mathrm{E}-6$	3.87E-3	4.92E-5	$5.09 \mathrm{E}-4$	$2.57 \mathrm{E}-6$	-1.62E-3	2.81E-3
EP-fw		kg Peq	3.59E-5	8.40E-8	$8.24 \mathrm{E}-9$	3.60E-5	7.10E-8	$3.55 \mathrm{E}-6$	$3.39 \mathrm{E}-9$	-1.66E-5	2.29E-5
EP-m		kg Neq	6.77E-4	2.08E-5	$1.55 \mathrm{E}-7$	6.98E-4	$1.76 \mathrm{E}-5$	$1.26 \mathrm{E}-4$	$1.78 \mathrm{E}-6$	-2.99E-4	5.45E-4
EP-T		mol Neq	7.37E-3	$2.29 \mathrm{E}-4$	$1.85 \mathrm{E}-6$	7.60E-3	$1.94 \mathrm{E}-4$	$1.39 \mathrm{E}-3$	1.02E-5	-3.25E-3	5.95E-3
POCP		kg NMVOC eq	$2.47 \mathrm{E}-3$	6.55E-5	6.28E-7	$2.53 \mathrm{E}-3$	5.54E-5	$4.15 \mathrm{E}-4$	$3.54 \mathrm{E}-6$	-1.09E-3	1.91E-3
ADP-mm		kg Sb eq	$7.14 \mathrm{E}-4$	$2.64 \mathrm{E}-7$	$1.97 \mathrm{E}-8$	$7.14 \mathrm{E}-4$	2.23E-7	$1.98 \mathrm{E}-6$	$2.58 \mathrm{E}-9$	-8.46E-6	7.08E-4
ADP-f		MJ	$1.90 \mathrm{E}+1$	$1.57 \mathrm{E}-1$	$1.36 \mathrm{E}-3$	$1.92 \mathrm{E}+1$	$1.33 \mathrm{E}-1$	$1.36 \mathrm{E}+0$	$7.70 \mathrm{E}-3$	-9.67E+0	$1.10 \mathrm{E}+1$
WDP		m3 depriv.	$1.14 \mathrm{E}+0$	4.81E-4	5.22E-5	$1.14 \mathrm{E}+0$	4.07E-4	5.36E-2	5.22E-5	-5.67E-1	$6.28 \mathrm{E}-1$
PM		disease inc.	$2.90 \mathrm{E}-8$	9.21E-10	9.08E-12	$2.99 \mathrm{E}-8$	7.79E-10	$6.24 \mathrm{E}-9$	5.30E-11	-1.35E-8	$2.35 \mathrm{E}-8$
IR		kBq U-235 eq	$4.42 \mathrm{E}-2$	6.85E-4	$1.02 \mathrm{E}-6$	$4.49 \mathrm{E}-2$	5.79E-4	$4.80 \mathrm{E}-3$	3.54E-5	-1.95E-2	$3.08 \mathrm{E}-2$
ETP-fw		CTUe	$2.33 \mathrm{E}+1$	1.27E-1	1.21E-2	$2.34 \mathrm{E}+1$	$1.08 \mathrm{E}-1$	1.05E+1	$1.15 \mathrm{E}-1$	-7.80E+0	$2.63 \mathrm{E}+1$
HTP-c		ctun	6.84E-10	$4.53 \mathrm{E}-12$	6.17E-13	$6.89 \mathrm{E}-10$	3.83E-12	1.55E-10	2.14E-13	-2.46E-10	6.02E-10
HTP-nc		CTUn	2.07E-8	1.52E-10	$1.57 \mathrm{E}-11$	$2.09 \mathrm{E}-8$	1.28E-10	3.66E-9	2.23E-11	-7.52E-9	$1.72 \mathrm{E}-8$
SQP		Pt	$1.23 \mathrm{E}+1$	$1.34 \mathrm{E}-1$	$2.24 \mathrm{E}-3$	$1.25 \mathrm{E}+1$	$1.13 \mathrm{E}-1$	$8.29 \mathrm{E}-1$	$1.97 \mathrm{E}-2$	-1.36E+1	-1.65E-1
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$4.22 \mathrm{E}+0$	$2.25 \mathrm{E}-3$	2.40E-2	4.25E+0	$1.90 \mathrm{E}-3$	$9.74 \mathrm{E}-2$	$2.90 \mathrm{E}-4$	$-2.45 \mathrm{E}+0$	$1.89 \mathrm{E}+0$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$4.22 \mathrm{E}+0$	$2.25 \mathrm{E}-3$	$2.40 \mathrm{E}-2$	4.25E+0	1.90E-3	$9.74 \mathrm{E}-2$	2.90E-4	-2.45E+0	$1.89 \mathrm{E}+0$
PENRE		MJ	$2.04 \mathrm{E}+1$	$1.66 \mathrm{E}-1$	$1.44 \mathrm{E}-3$	$2.05 \mathrm{E}+1$	1.41E-1	$1.44 \mathrm{E}+0$	8.17E-3	-1.04E+1	1.17E+1
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$2.04 \mathrm{E}+1$	$1.66 \mathrm{E}-1$	$1.44 \mathrm{E}-3$	$2.05 \mathrm{E}+1$	1.41E-1	$1.44 \mathrm{E}+0$	$8.17 \mathrm{E}-3$	-1.04E+1	1.17E+1
PET		MJ	$2.46 \mathrm{E}+1$	$1.69 \mathrm{E}-1$	$2.55 \mathrm{E}-2$	$2.48 \mathrm{E}+1$	$1.43 \mathrm{E}-1$	$1.54 \mathrm{E}+0$	$8.46 \mathrm{E}-3$	-1.29E+1	$1.36 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	1.37E-2	1.77E-5	$1.46 \mathrm{E}-6$	$1.37 \mathrm{E}-2$	$1.50 \mathrm{E}-5$	1.52E-3	$9.43 \mathrm{E}-6$	-6.73E-3	8.53E-3

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	1.01E-4	4.00E-7	$2.73 \mathrm{E}-13$	1.01E-4	3.39E-7	$2.26 \mathrm{E}-6$	$9.39 \mathrm{E}-9$	-8.68E-6	9.50E-5
NHWD		kg	8.12E-2	$9.71 \mathrm{E}-3$	$1.05 \mathrm{E}-6$	$9.09 \mathrm{E}-2$	8.21E-3	5.08E-2	$3.38 \mathrm{E}-2$	-3.41E-2	1.50E-1
RWD		kg	4.12E-5	1.07E-6	1.10E-13	4.23E-5	9.01E-7	5.17E-6	5.01E-8	-1.77E-5	3.07E-5
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

