Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	3043948 - PP Adaptor GY 75
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS SEARCH Myt

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL - Buk - Extra products (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$.

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	1.51E-1	$9.02 \mathrm{E}-4$	1.45E-4	1.52E-1	1.90E-3	$2.33 \mathrm{E}-1$	$1.03 \mathrm{E}-3$	-1.13E-1	$2.75 \mathrm{E}-1$
GWP-f		kg CO2 eq	$2.49 \mathrm{E}-1$	$9.01 \mathrm{E}-4$	$1.46 \mathrm{E}-4$	$2.50 \mathrm{E}-1$	$1.90 \mathrm{E}-3$	$1.28 \mathrm{E}-1$	$1.03 \mathrm{E}-3$	-1.29E-1	2.52E-1
GWP-b		kg CO2 eq	-9.80E-2	$5.47 \mathrm{E}-7$	-1.54E-6	-9.80E-2	$1.15 \mathrm{E}-6$	1.05E-1	$9.41 \mathrm{E}-7$	1.63E-2	$2.31 \mathrm{E}-2$
GWP-luluc		kg CO2 eq	$2.50 \mathrm{E}-4$	3.19E-7	1.49E-7	$2.51 \mathrm{E}-4$	6.71E-7	$1.00 \mathrm{E}-5$	$1.84 \mathrm{E}-8$	-1.77E-4	8.49E-5
ODP		kg CFC11 eq	$2.60 \mathrm{E}-8$	2.08E-10	8.26E-12	$2.62 \mathrm{E}-8$	4.37E-10	$1.69 \mathrm{E}-9$	$2.66 \mathrm{E}-11$	-9.95E-9	$1.84 \mathrm{E}-8$
AP		$\mathrm{mol} \mathrm{H}+$ eq	$1.15 \mathrm{E}-3$	5.13E-6	$1.47 \mathrm{E}-6$	1.16E-3	1.08E-5	7.34E-5	6.43E-7	-4.07E-4	8.35E-4
EP-fw		kg Peq	$6.84 \mathrm{E}-6$	7.42E-9	8.24E-9	6.86E-6	$1.56 \mathrm{E}-8$	3.03E-7	$8.45 \mathrm{E}-10$	-3.04E-6	$4.14 \mathrm{E}-6$
EP-m		kg N eq	$2.11 \mathrm{E}-4$	$1.84 \mathrm{E}-6$	$1.55 \mathrm{E}-7$	$2.13 \mathrm{E}-4$	$3.86 \mathrm{E}-6$	$2.34 \mathrm{E}-5$	6.81E-7	-8.75E-5	$1.53 \mathrm{E}-4$
EP-T		mol Neq	$2.34 \mathrm{E}-3$	2.02E-5	$1.85 \mathrm{E}-6$	$2.36 \mathrm{E}-3$	4.26E-5	$2.58 \mathrm{E}-4$	$2.59 \mathrm{E}-6$	-9.95E-4	$1.67 \mathrm{E}-3$
POCP		kg NMVOC eq	$9.68 \mathrm{E}-4$	$5.79 \mathrm{E}-6$	6.28E-7	$9.74 \mathrm{E}-4$	$1.22 \mathrm{E}-5$	7.69E-5	$9.63 \mathrm{E}-7$	-3.79E-4	6.85E-4
ADP-mm		kg Sb eq	3.20E-5	$2.33 \mathrm{E}-8$	$1.97 \mathrm{E}-8$	3.20E-5	$4.91 \mathrm{E}-8$	$2.55 \mathrm{E}-7$	6.42E-10	-1.79E-6	3.06E-5
ADP-f		MJ	7.22E+0	$1.38 \mathrm{E}-2$	$1.36 \mathrm{E}-3$	7.23E+0	2.91E-2	$1.90 \mathrm{E}-1$	$1.95 \mathrm{E}-3$	$-3.23 \mathrm{E}+0$	4.22E+0
WDP		m3 depriv.	$1.49 \mathrm{E}-1$	$4.25 \mathrm{E}-5$	5.22E-5	$1.49 \mathrm{E}-1$	8.93E-5	$4.08 \mathrm{E}-3$	$9.90 \mathrm{E}-6$	-7.00E-2	8.35E-2
PM		disease inc.	$1.33 \mathrm{E}-8$	$8.13 \mathrm{E}-11$	$9.08 \mathrm{E}-12$	$1.34 \mathrm{E}-8$	1.71E-10	1.05E-9	$1.34 \mathrm{E}-11$	-5.29E-9	9.37E-9
IR		kBq U-235 eq	$1.08 \mathrm{E}-2$	$6.05 \mathrm{E}-5$	1.02E-6	$1.09 \mathrm{E}-2$	1.27E-4	$6.08 \mathrm{E}-4$	$9.15 \mathrm{E}-6$	-3.09E-3	8.51E-3
ETP-fw		CTUe	5.39E+0	1.12E-2	1.21E-2	5.42E+0	$2.36 \mathrm{E}-2$	3.37E-1	$2.43 \mathrm{E}-3$	-2.06E+0	$3.72 \mathrm{E}+0$
HTP-c		cTUn	$1.74 \mathrm{E}-10$	4.00E-13	6.17E-13	$1.75 \mathrm{E}-10$	8.41E-13	$2.67 \mathrm{E}-11$	4.91E-14	-6.05E-11	1.42E-10
HTP-nc		CTUn	$3.26 \mathrm{E}-9$	$1.34 \mathrm{E}-11$	1.57E-11	3.29E-9	2.82E-11	3.59E-10	1.25E-12	-6.82E-10	$2.99 \mathrm{E}-9$
SQP		Pt	9.55E+0	$1.18 \mathrm{E}-2$	$2.24 \mathrm{E}-3$	$9.56 \mathrm{E}+0$	$2.49 \mathrm{E}-2$	1.45E-1	$4.98 \mathrm{E}-3$	-9.90E+0	-1.64E-1
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	2.20E+0	$1.98 \mathrm{E}-4$	$2.40 \mathrm{E}-2$	2.22E+0	4.18E-4	8.97E-3	7.99E-5	-1.59E+0	$6.36 \mathrm{E}-1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$2.20 \mathrm{E}+0$	1.98E-4	$2.40 \mathrm{E}-2$	2.22E+0	4.18E-4	8.97E-3	7.99E-5	-1.59E+0	$6.36 \mathrm{E}-1$
PENRE		MJ	7.73E+0	1.47E-2	$1.44 \mathrm{E}-3$	7.74E+0	3.09E-2	2.03E-1	2.07E-3	-3.49E+0	4.49E+0
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$7.73 \mathrm{E}+0$	1.47E-2	$1.44 \mathrm{E}-3$	$7.74 \mathrm{E}+0$	3.09E-2	2.03E-1	2.07E-3	$-3.49 \mathrm{E}+0$	4.49E+0
PET		MJ	9.92E+0	1.49E-2	$2.55 \mathrm{E}-2$	$9.97 \mathrm{E}+0$	3.13E-2	$2.12 \mathrm{E}-1$	$2.15 \mathrm{E}-3$	-5.09E+0	5.12E+0
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	3.06E-3	1.57E-6	1.46E-6	3.06E-3	$3.29 \mathrm{E}-6$	$1.95 \mathrm{E}-4$	$2.41 \mathrm{E}-6$	-1.40E-3	1.86E-3

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	3.14E-6	$3.54 \mathrm{E}-8$	$2.73 \mathrm{E}-13$	3.18E-6	7.44E-8	$3.79 \mathrm{E}-7$	$2.34 \mathrm{E}-9$	-2.18E-6	$1.45 \mathrm{E}-6$
NHWD	kg	2.20E-2	8.57E-4	$1.05 \mathrm{E}-6$	2.28E-2	$1.80 \mathrm{E}-3$	1.09E-2	$8.55 \mathrm{E}-3$	-7.43E-3	3.66E-2
RWD	kg	1.30E-5	$9.41 \mathrm{E}-8$	1.10E-13	1.31E-5	$1.98 \mathrm{E}-7$	7.88E-7	1.28E-8	-3.19E-6	1.09E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

