## Environmental Profile

This LCA is calculated according to：ISO 14044，ISO 14040 and EN 15804
Ecochain v3．5．80

## Ecochain

| Product： | 3020629 －Wafix PP Branch $45^{\circ}$ WT $32 \times 32 \times 32$ S／S／SP |
| :--- | :--- |
| Unit： | 1 piece |
| Manufacturer： | Wavin－PL－Buk－Extra products |

Wavin－PL－Buk－Extra products
Wafix PP is a versatile，uncomplicated solution for your indoor drainage．You can easily install the impact－resistant pipes even in frost．Their excellent chemical resistance makes them ideal for cast－in applications．
LCA standard：

Standard database：
Externally verified： Issue date： End of validity： Verifier：

## EN15804＋A2（2019）

Worldwide－Ecoinvent v 3．6 Cut－Off
Yes

## 08－06－2023

08－06－2028
Martijn van Hövell－SGS Search
wavin
An Orbia business．

SGS SEARCH Mylzer

This LCA was evaluated according to EN15804＋A2．It was concluded that the LCA complies with this standard

| A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1 | C2 | C3 | C4 | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ■ | 『 | ■ | MND | ■ | 『 | 『 | V |
| Product stage |  |  |  |  | Use stage |  |  |  |  |  |  | End－of－Life stage |  |  |  |  |
| A1 Raw material supply A2 Transport A3 Manufacturing |  |  |  |  | B1 Use B2 Maintenance B3 Repair B4 Replacement B5 Refurbishment B6 Operational energy use B7 Operational water use |  |  |  |  |  |  | C1 De－construction demolition C2 Transport C3 Waste processing C4 Disposal |  |  |  |  |

A5 Assembly／Construction installation process
D Reuse－Recovery－Recycling－potential
Environmental impacts and parameters




［MJ］：EEE＝Exported energy electric［MJ］
Statement of Confidentiality


## Results

|  | Environmental impact | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GWP-total |  | kg CO2 eq | 1.12E-1 | 7.47E-4 | $1.45 \mathrm{E}-4$ | 1.13E-1 | $1.18 \mathrm{E}-3$ | $9.92 \mathrm{E}-2$ | 5.56E-4 | -6.63E-2 | $1.48 \mathrm{E}-1$ |
| GWP-f |  | kg CO2 eq | 1.61E-1 | 7.47E-4 | $1.46 \mathrm{E}-4$ | $1.62 \mathrm{E}-1$ | $1.18 \mathrm{E}-3$ | $4.61 \mathrm{E}-2$ | 5.56E-4 | -7.32E-2 | 1.37E-1 |
| GWP-b |  | kg CO2 eq | -4.92E-2 | $4.53 \mathrm{E}-7$ | -1.54E-6 | -4.92E-2 | 7.16E-7 | 5.31E-2 | $4.83 \mathrm{E}-7$ | $6.95 \mathrm{E}-3$ | 1.08E-2 |
| GWP-Iuluc |  | kg CO2 eq | $1.51 \mathrm{E}-4$ | $2.64 \mathrm{E}-7$ | $1.49 \mathrm{E}-7$ | 1.51E-4 | 4.17E-7 | 7.11E-6 | $9.60 \mathrm{E}-9$ | -8.95E-5 | 6.91E-5 |
| ODP |  | kg CFC11 eq | 9.83E-9 | $1.72 \mathrm{E}-10$ | 8.26E-12 | $1.00 \mathrm{E}-8$ | $2.72 \mathrm{E}-10$ | $1.08 \mathrm{E}-9$ | 1.40E-11 | -4.63E-9 | $6.74 \mathrm{E}-9$ |
| AP |  | mol $\mathrm{H}+\mathrm{eq}$ | $7.20 \mathrm{E}-4$ | $4.25 \mathrm{E}-6$ | $1.47 \mathrm{E}-6$ | $7.25 \mathrm{E}-4$ | $6.72 \mathrm{E}-6$ | $4.48 \mathrm{E}-5$ | $3.33 \mathrm{E}-7$ | -2.45E-4 | 5.32E-4 |
| EP-fw |  | kg P eq | $4.08 \mathrm{E}-6$ | 6.15E-9 | $8.24 \mathrm{E}-9$ | $4.10 \mathrm{E}-6$ | $9.70 \mathrm{E}-9$ | $2.10 \mathrm{E}-7$ | $4.38 \mathrm{E}-10$ | -1.68E-6 | $2.64 \mathrm{E}-6$ |
| EP-m |  | kg Neq | $1.29 \mathrm{E}-4$ | $1.52 \mathrm{E}-6$ | $1.55 \mathrm{E}-7$ | 1.31E-4 | $2.40 \mathrm{E}-6$ | $1.38 \mathrm{E}-5$ | 2.16E-7 | -5.04E-5 | $9.70 \mathrm{E}-5$ |
| EP-T |  | mol eq | $1.46 \mathrm{E}-3$ | $1.68 \mathrm{E}-5$ | $1.85 \mathrm{E}-6$ | $1.48 \mathrm{E}-3$ | 2.65E-5 | $1.52 \mathrm{E}-4$ | $1.35 \mathrm{E}-6$ | -5.71E-4 | $1.08 \mathrm{E}-3$ |
| POCP |  | kg NMVOC eq | $5.74 \mathrm{E}-4$ | 4.80E-6 | $6.28 \mathrm{E}-7$ | 5.80E-4 | 7.57E-6 | 4.69E-5 | 5.07E-7 | -2.26E-4 | 4.08E-4 |
| ADP-mm |  | kg Sb eq | 8.67E-6 | $1.93 \mathrm{E}-8$ | $1.97 \mathrm{E}-8$ | 8.70E-6 | 3.05E-8 | $1.73 \mathrm{E}-7$ | 3.37E-10 | -5.48E-7 | 8.36E-6 |
| ADP-f |  | MJ | $4.74 \mathrm{E}+0$ | $1.15 \mathrm{E}-2$ | $1.36 \mathrm{E}-3$ | $4.75 \mathrm{E}+0$ | $1.81 \mathrm{E}-2$ | $1.30 \mathrm{E}-1$ | $1.02 \mathrm{E}-3$ | -2.03E+0 | $2.87 \mathrm{E}+0$ |
| WDP |  | m3 depriv. | 1.04E-1 | 3.52E-5 | 5.22E-5 | $1.04 \mathrm{E}-1$ | 5.56E-5 | $2.38 \mathrm{E}-3$ | 5.62E-6 | -4.48E-2 | 6.15E-2 |
| PM |  | disease inc. | 7.39E-9 | $6.74 \mathrm{E}-11$ | $9.08 \mathrm{E}-12$ | 7.46E-9 | $1.06 \mathrm{E}-10$ | 7.13E-10 | 7.01E-12 | -3.00E-9 | 5.29E-9 |
| IR |  | kBq U-235 eq | $4.83 \mathrm{E}-3$ | 5.01E-5 | $1.02 \mathrm{E}-6$ | $4.88 \mathrm{E}-3$ | 7.91E-5 | 4.12E-4 | $4.72 \mathrm{E}-6$ | -1.67E-3 | 3.71E-3 |
| ETP-fw |  | cTUe | $2.93 \mathrm{E}+0$ | $9.31 \mathrm{E}-3$ | $1.21 \mathrm{E}-2$ | $2.95 \mathrm{E}+0$ | $1.47 \mathrm{E}-2$ | $1.55 \mathrm{E}-1$ | $8.53 \mathrm{E}-4$ | -1.07E+0 | $2.06 \mathrm{E}+0$ |
| HTP-c |  | cTUn | 1.03E-10 | 3.31E-13 | 6.17E-13 | 1.04E-10 | 5.23E-13 | 1.93E-11 | 2.53E-14 | -3.24E-11 | 9.14E-11 |
| HTP-nc |  | ctun | $2.05 \mathrm{E}-9$ | 1.11E-11 | 1.57E-11 | $2.07 \mathrm{E}-9$ | $1.75 \mathrm{E}-11$ | $2.28 \mathrm{E}-10$ | 5.51E-13 | -3.90E-10 | 1.93E-9 |
| SQP |  | Pt | $4.85 \mathrm{E}+0$ | $9.81 \mathrm{E}-3$ | $2.24 \mathrm{E}-3$ | $4.86 \mathrm{E}+0$ | $1.55 \mathrm{E}-2$ | $1.02 \mathrm{E}-1$ | $2.61 \mathrm{E}-3$ | -4.93E+0 | 5.47E-2 |
|  | Resource use | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| PERE |  | MJ | $1.30 \mathrm{E}+0$ | $1.64 \mathrm{E}-4$ | $2.40 \mathrm{E}-2$ | 1.32E+0 | $2.60 \mathrm{E}-4$ | $6.18 \mathrm{E}-3$ | 3.92E-5 | -7.99E-1 | 5.29E-1 |
| PERM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PERT |  | MJ | $1.30 \mathrm{E}+0$ | $1.64 \mathrm{E}-4$ | $2.40 \mathrm{E}-2$ | 1.32E+0 | $2.60 \mathrm{E}-4$ | $6.18 \mathrm{E}-3$ | 3.92E-5 | -7.99E-1 | 5.29E-1 |
| PENRE |  | MJ | $5.08 \mathrm{E}+0$ | 1.22E-2 | $1.44 \mathrm{E}-3$ | $5.09 \mathrm{E}+0$ | $1.92 \mathrm{E}-2$ | $1.38 \mathrm{E}-1$ | $1.08 \mathrm{E}-3$ | $-2.18 \mathrm{E}+0$ | 3.07E+0 |
| PENRM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PENRT |  | MJ | $5.08 \mathrm{E}+0$ | $1.22 \mathrm{E}-2$ | $1.44 \mathrm{E}-3$ | 5.09E+0 | $1.92 \mathrm{E}-2$ | $1.38 \mathrm{E}-1$ | $1.08 \mathrm{E}-3$ | -2.18E+0 | $3.07 \mathrm{E}+0$ |
| PET |  | MJ | $6.38 \mathrm{E}+0$ | $1.23 \mathrm{E}-2$ | $2.55 \mathrm{E}-2$ | $6.42 \mathrm{E}+0$ | $1.95 \mathrm{E}-2$ | $1.45 \mathrm{E}-1$ | 1.12E-3 | -2.98E+0 | $3.60 \mathrm{E}+0$ |
| SM |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| NRSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| FW |  | m3 | $1.97 \mathrm{E}-3$ | 1.30E-6 | $1.46 \mathrm{E}-6$ | $1.97 \mathrm{E}-3$ | $2.05 \mathrm{E}-6$ | 7.40E-5 | $1.25 \mathrm{E}-6$ | -8.22E-4 | 1.23E-3 |


|  | Output flows and waste categories | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HWD |  | kg | 1.70E-6 | 2.93E-8 | $2.73 \mathrm{E}-13$ | $1.73 \mathrm{E}-6$ | $4.63 \mathrm{E}-8$ | 2.27E-7 | 1.23E-9 | -1.04E-6 | $9.72 \mathrm{E}-7$ |
| NHWD |  | kg | $1.42 \mathrm{E}-2$ | $7.10 \mathrm{E}-4$ | $1.05 \mathrm{E}-6$ | $1.49 \mathrm{E}-2$ | 1.12E-3 | $6.83 \mathrm{E}-3$ | $4.48 \mathrm{E}-3$ | -4.14E-3 | 2.32E-2 |
| RWD |  | kg | 5.07E-6 | 7.80E-8 | 1.10E-13 | 5.15E-6 | 1.23E-7 | 5.33E-7 | 6.65E-9 | -1.64E-6 | 4.17E-6 |
| CRU |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MFR |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MER |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EE |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EET |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EEE |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

