Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product: $\quad 3072534-$ PVCU Bend 45° BR 400 SN4 FIN
Unit: $\quad 1$ piece
Manufacturer: \quad Wavin - PL-Buk - Extra products

PVC external sewage pipes with a solid wall are produced in two classes of circumferential stiffness (SN8, SN4),
which enables optimal selection depending on the load conditions. A wide portfolio of system fittings facilitates
the construction of many schemes of sewage networks, as well as connections with systems made of other
LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
wavin
An Orbia business.

SGS SEARCH Myll̈= the construction of many schemes of sewage networks, as well as connections with systems made of other materials. Diameter range DN/OD 110-500mm. The pipes meet the requirements of the PN-EN 1401-1 standard.

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse-Recovery- Recycling- potential
Environmental impacts and parameters

[MJ]; EEE = Exported energy electric [MJ]
Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	2.52E+1	3.78E-1	1.45E-4	$2.56 \mathrm{E}+1$	4.49E-1	$2.65 \mathrm{E}+1$	$1.23 \mathrm{E}-1$	-1.72E+1	3.54E+1
GWP-f		kg CO2 eq	3.66E+1	$3.78 \mathrm{E}-1$	1.46E-4	3.70E+1	$4.49 \mathrm{E}-1$	1.35E+1	$1.23 \mathrm{E}-1$	-1.96E+1	3.15E+1
GWP-b		kg CO2 eq	-1.15E+1	$2.29 \mathrm{E}-4$	-1.54E-6	-1.15E+1	$2.73 \mathrm{E}-4$	1.29E+1	$1.59 \mathrm{E}-4$	$2.51 \mathrm{E}+0$	$3.96 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$4.54 \mathrm{E}-2$	$1.34 \mathrm{E}-4$	$1.49 \mathrm{E}-7$	$4.55 \mathrm{E}-2$	$1.59 \mathrm{E}-4$	$5.25 \mathrm{E}-3$	$3.36 \mathrm{E}-6$	-3.32E-2	$1.77 \mathrm{E}-2$
ODP		kg CFC11 eq	$1.73 \mathrm{E}-5$	8.71E-8	$8.26 \mathrm{E}-12$	1.73E-5	$1.03 \mathrm{E}-7$	1.42E-6	5.10E-9	-8.51E-6	1.04E-5
AP		mol $\mathrm{H}+\mathrm{eq}$	$1.69 \mathrm{E}-1$	$2.15 \mathrm{E}-3$	$1.47 \mathrm{E}-6$	$1.72 \mathrm{E}-1$	$2.56 \mathrm{E}-3$	$2.61 \mathrm{E}-2$	1.22E-4	-8.30E-2	1.17E-1
EP-fw		kg P eq	$1.61 \mathrm{E}-3$	3.11E-6	8.24E-9	1.61E-3	3.70E-6	$1.75 \mathrm{E}-4$	1.51E-7	-8.80E-4	9.07E-4
EP-m		kg N eq	3.20E-2	$7.70 \mathrm{E}-4$	$1.55 \mathrm{E}-7$	3.28E-2	$9.15 \mathrm{E}-4$	$6.66 \mathrm{E}-3$	7.71E-5	-1.61E-2	$2.43 \mathrm{E}-2$
EP-T		mol Neq	3.43E-1	$8.49 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	3.52E-1	1.01E-2	$7.34 \mathrm{E}-2$	4.87E-4	-1.79E-1	2.57E-1
POCP		kg NMVOC eq	1.16E-1	$2.43 \mathrm{E}-3$	$6.28 \mathrm{E}-7$	1.18E-1	$2.88 \mathrm{E}-3$	2.20E-2	$1.65 \mathrm{E}-4$	-5.78E-2	8.57E-2
ADP-mm		kg Sb eq	$1.30 \mathrm{E}-3$	$9.77 \mathrm{E}-6$	1.97E-8	1.31E-3	$1.16 \mathrm{E}-5$	1.02E-4	$1.20 \mathrm{E}-7$	-3.79E-4	$1.05 \mathrm{E}-3$
ADP-f		MJ	8.89E+2	5.80E+0	1.36E-3	$8.94 \mathrm{E}+2$	$6.89 \mathrm{E}+0$	$6.98 \mathrm{E}+1$	3.69E-1	-4.51E+2	5.20E+2
WDP		m3 depriv.	$5.18 \mathrm{E}+1$	$1.78 \mathrm{E}-2$	5.22E-5	$5.18 \mathrm{E}+1$	$2.12 \mathrm{E}-2$	$2.57 \mathrm{E}+0$	$2.01 \mathrm{E}-3$	-2.73E+1	2.71E+1
PM		disease inc.	$1.55 \mathrm{E}-6$	$3.41 \mathrm{E}-8$	$9.08 \mathrm{E}-12$	$1.59 \mathrm{E}-6$	4.05E-8	3.31E-7	2.52E-9	-8.13E-7	1.15E-6
IR		kBq U-235 eq	$1.93 \mathrm{E}+0$	$2.54 \mathrm{E}-2$	$1.02 \mathrm{E}-6$	$1.95 \mathrm{E}+0$	3.01E-2	$2.46 \mathrm{E}-1$	1.69E-3	-9.76E-1	$1.25 \mathrm{E}+0$
ETP-fw		CTUe	$9.19 \mathrm{E}+2$	4.71E+0	1.21E-2	$9.24 \mathrm{E}+2$	$5.60 \mathrm{E}+0$	$4.89 \mathrm{E}+2$	$5.30 \mathrm{E}+0$	-4.72E+2	9.52E+2
HTP-c		CTUn	$2.75 \mathrm{E}-8$	1.68E-10	6.17E-13	$2.76 \mathrm{E}-8$	$1.99 \mathrm{E}-10$	7.99E-9	$9.43 \mathrm{E}-12$	-1.33E-8	$2.25 \mathrm{E}-8$
HTP-nc		cTUn	$7.49 \mathrm{E}-7$	$5.61 \mathrm{E}-9$	1.57E-11	$7.55 \mathrm{E}-7$	$6.67 \mathrm{E}-9$	$1.79 \mathrm{E}-7$	$1.02 \mathrm{E}-9$	-3.78E-7	$5.64 \mathrm{E}-7$
SQP		Pt	1.22E+3	4.96E+0	2.24E-3	1.23E+3	$5.90 \mathrm{E}+0$	4.40E+1	$9.32 \mathrm{E}-1$	-1.16E+3	1.14E+2
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$2.41 \mathrm{E}+2$	8.32E-2	$2.40 \mathrm{E}-2$	$2.41 \mathrm{E}+2$	$9.89 \mathrm{E}-2$	4.81E+0	$1.32 \mathrm{E}-2$	-2.03E+2	4.28E+1
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$2.41 \mathrm{E}+2$	$8.32 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$2.41 \mathrm{E}+2$	9.89E-2	$4.81 \mathrm{E}+0$	$1.32 \mathrm{E}-2$	-2.03E+2	$4.28 \mathrm{E}+1$
PENRE		MJ	$9.53 \mathrm{E}+2$	6.16E+0	1.44E-3	9.60E+2	7.32E+0	7.43E+1	3.91E-1	-4.86E+2	$5.55 \mathrm{E}+2$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$9.53 \mathrm{E}+2$	$6.16 \mathrm{E}+0$	1.44E-3	$9.60 \mathrm{E}+2$	$7.32 \mathrm{E}+0$	7.43E+1	$3.91 \mathrm{E}-1$	-4.86E+2	$5.55 \mathrm{E}+2$
PET		MJ	1.19E+3	$6.24 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	1.20E+3	7.42E+0	7.91E+1	$4.04 \mathrm{E}-1$	-6.89E+2	$5.98 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	6.09E-1	6.56E-4	1.46E-6	6.10E-1	7.80E-4	7.24E-2	4.52E-4	-3.52E-1	3.31E-1

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	7.60E-4	$1.48 \mathrm{E}-5$	$2.73 \mathrm{E}-13$	$7.75 \mathrm{E}-4$	1.76E-5	1.17E-4	4.43E-7	-4.25E-4	4.84E-4
NHWD	kg	4.01E+0	3.59E-1	$1.05 \mathrm{E}-6$	$4.37 \mathrm{E}+0$	4.27E-1	$2.74 \mathrm{E}+0$	$1.73 \mathrm{E}+0$	-1.80E+0	$7.46 \mathrm{E}+0$
RWD	kg	1.80E-3	3.94E-5	1.10E-13	$1.84 \mathrm{E}-3$	4.69E-5	2.71E-4	$2.41 \mathrm{E}-6$	-8.93E-4	1.26E-3
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

