Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3072500-$ KG Bend 45° DN300 FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk -Extra products

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$6.85 \mathrm{E}+0$	5.18E-1	$1.45 \mathrm{E}-4$	$7.37 \mathrm{E}+0$	1.27E-1	$6.94 \mathrm{E}+0$	3.94E-2	$-5.50 \mathrm{E}+0$	$8.98 \mathrm{E}+0$
GWP-f		kg CO2 eq	$1.35 \mathrm{E}+1$	5.17E-1	$1.46 \mathrm{E}-4$	$1.40 \mathrm{E}+1$	1.27E-1	$3.76 \mathrm{E}+0$	3.93E-2	$-6.33 E+0$	$1.16 \mathrm{E}+1$
GWP-b		kg CO2 eq	-6.69E+0	3.14E-4	-1.54E-6	-6.69E+0	7.69E-5	$3.18 \mathrm{E}+0$	5.12E-5	$8.39 \mathrm{E}-1$	$-2.67 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$6.01 \mathrm{E}-2$	$1.83 \mathrm{E}-4$	$1.49 \mathrm{E}-7$	6.03E-2	$4.48 \mathrm{E}-5$	$1.66 \mathrm{E}-3$	$9.94 \mathrm{E}-7$	-1.09E-2	$5.11 \mathrm{E}-2$
ODP		kg CFC11 eq	$5.73 \mathrm{E}-6$	$1.19 \mathrm{E}-7$	8.26E-12	5.85E-6	2.92E-8	4.69E-7	$1.49 \mathrm{E}-9$	-2.84E-6	3.51E-6
AP		mol $\mathrm{H}+\mathrm{eq}$	$6.69 \mathrm{E}-2$	$2.95 \mathrm{E}-3$	$1.47 \mathrm{E}-6$	6.98E-2	$7.21 \mathrm{E}-4$	8.01E-3	$3.61 \mathrm{E}-5$	-2.71E-2	$5.15 \mathrm{E}-2$
EP-fw		kg P eq	6.11E-4	4.26E-6	$8.24 \mathrm{E}-9$	6.15E-4	1.04E-6	5.58E-5	$4.58 \mathrm{E}-8$	-2.93E-4	3.79E-4
EP-m		kg N eq	1.33E-2	$1.05 \mathrm{E}-3$	$1.55 \mathrm{E}-7$	1.43E-2	$2.58 \mathrm{E}-4$	$1.99 \mathrm{E}-3$	$2.30 \mathrm{E}-5$	-5.18E-3	1.14E-2
EP-T		mol Neq	$1.45 \mathrm{E}-1$	1.16E-2	$1.85 \mathrm{E}-6$	$1.56 \mathrm{E}-1$	$2.84 \mathrm{E}-3$	$2.20 \mathrm{E}-2$	$1.45 \mathrm{E}-4$	-5.68E-2	$1.25 \mathrm{E}-1$
POCP		kg NMVOC eq	$4.79 \mathrm{E}-2$	3.32E-3	6.28E-7	5.12E-2	$8.13 \mathrm{E}-4$	$6.55 \mathrm{E}-3$	$4.96 \mathrm{E}-5$	-1.87E-2	3.99E-2
ADP-mm		kg Sb eq	$9.85 \mathrm{E}-3$	$1.34 \mathrm{E}-5$	$1.97 \mathrm{E}-8$	$9.87 \mathrm{E}-3$	3.27E-6	3.15E-5	3.57E-8	-1.23E-4	$9.78 \mathrm{E}-3$
ADP-f		MJ	$3.08 \mathrm{E}+2$	7.94E+0	$1.36 \mathrm{E}-3$	$3.16 \mathrm{E}+2$	$1.94 \mathrm{E}+0$	2.13E+1	$1.09 \mathrm{E}-1$	-1.47E+2	$1.92 \mathrm{E}+2$
WDP		m3 depriv.	$2.08 \mathrm{E}+1$	$2.44 \mathrm{E}-2$	5.22E-5	$2.08 \mathrm{E}+1$	5.96E-3	8.37E-1	$4.98 \mathrm{E}-4$	-9.17E+0	$1.25 \mathrm{E}+1$
PM		disease inc.	$6.38 \mathrm{E}-7$	$4.67 \mathrm{E}-8$	$9.08 \mathrm{E}-12$	$6.84 \mathrm{E}-7$	$1.14 \mathrm{E}-8$	$9.87 \mathrm{E}-8$	7.50E-10	-2.62E-7	$5.33 \mathrm{E}-7$
IR		kBq U-235 eq	7.39E-1	3.47E-2	$1.02 \mathrm{E}-6$	$7.74 \mathrm{E}-1$	$8.49 \mathrm{E}-3$	7.62E-2	5.05E-4	-3.24E-1	$5.35 \mathrm{E}-1$
ETP-fw		ctue	$4.21 \mathrm{E}+2$	$6.45 \mathrm{E}+0$	1.21E-2	$4.27 \mathrm{E}+2$	$1.58 \mathrm{E}+0$	$1.66 \mathrm{E}+2$	1.83E+0	-1.52E+2	$4.44 \mathrm{E}+2$
HTP-c		CTUn	$1.49 \mathrm{E}-8$	2.30E-10	6.17E-13	$1.52 \mathrm{E}-8$	5.61E-11	$2.28 \mathrm{E}-9$	$2.87 \mathrm{E}-12$	-4.38E-9	1.31E-8
HTP-nc		cTUn	3.52E-7	$7.69 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	3.60E-7	$1.88 \mathrm{E}-9$	$5.71 \mathrm{E}-8$	3.47E-10	-1.25E-7	$2.94 \mathrm{E}-7$
SQP		Pt	$6.55 \mathrm{E}+2$	$6.80 \mathrm{E}+0$	$2.24 \mathrm{E}-3$	$6.61 \mathrm{E}+2$	$1.66 \mathrm{E}+0$	1.29E+1	$2.80 \mathrm{E}-1$	-3.67E+2	3.09E+2
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.28 \mathrm{E}+2$	1.14E-1	$2.40 \mathrm{E}-2$	$1.29 \mathrm{E}+2$	$2.79 \mathrm{E}-2$	$1.53 \mathrm{E}+0$	$4.18 \mathrm{E}-3$	-6.36E+1	$6.66 \mathrm{E}+1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$1.28 \mathrm{E}+2$	1.14E-1	$2.40 \mathrm{E}-2$	$1.29 \mathrm{E}+2$	$2.79 \mathrm{E}-2$	$1.53 \mathrm{E}+0$	$4.18 \mathrm{E}-3$	-6.36E+1	$6.66 \mathrm{E}+1$
PENRE		MJ	$3.30 \mathrm{E}+2$	8.43E+0	1.44E-3	$3.38 \mathrm{E}+2$	$2.06 \mathrm{E}+0$	$2.26 \mathrm{E}+1$	1.16E-1	-1.58E+2	$2.05 \mathrm{E}+2$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$3.30 \mathrm{E}+2$	$8.43 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$3.38 \mathrm{E}+2$	$2.06 \mathrm{E}+0$	$2.26 \mathrm{E}+1$	1.16E-1	-1.58E+2	2.05E+2
PET		MJ	$4.58 \mathrm{E}+2$	$8.55 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	$4.67 \mathrm{E}+2$	$2.09 \mathrm{E}+0$	2.41E+1	1.20E-1	-2.22E+2	$2.71 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	3.03E-1	$8.99 \mathrm{E}-4$	$1.46 \mathrm{E}-6$	$3.04 \mathrm{E}-1$	2.20E-4	$2.30 \mathrm{E}-2$	$1.35 \mathrm{E}-4$	-1.17E-1	2.10E-1

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	$1.48 \mathrm{E}-3$	2.03E-5	$2.73 \mathrm{E}-13$	1.50E-3	4.97E-6	3.52E-5	1.31E-7	-1.37E-4	1.40E-3
NHWD		kg	$1.91 \mathrm{E}+0$	$4.92 \mathrm{E}-1$	1.05E-6	$2.40 \mathrm{E}+0$	1.20E-1	7.73E-1	4.81E-1	-5.94E-1	$3.18 \mathrm{E}+0$
RWD		kg	7.12E-4	5.40E-5	1.10E-13	7.66E-4	1.32E-5	8.22E-5	7.12E-7	-2.95E-4	5.67E-4
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

