Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product:	$3072524-$ PVCU Bend 30° BR 200 SN4 FIN
Unit:	1 piece
Manufacturer:	Wavin -PL -Buk - Extra products

Manufacturer: Wavin - PL -Buk - Extra products

PVC external sewage pipes with a solid wall are produced in two classes of circumferential stiffness (SN8, SN4), which enables optimal selection depending on the load conditions. A wide portfolio of system fittings facilitates the construction of many schemes of sewage networks, as well as connections with systems made of other materials. Diameter range DN/OD 110-500mm. The pipes meet the requirements of the PN-EN 1401-1 standard.
LCA standard:
Standard database:
Externally verified:
Issue date:
End of validity:
Verifier: Standard database: Externally verified: End of validity:
Verifier:

EN15804+A2 (2019)
Worldwide - Ecoinvent v 3.6 Cut-Off
Yes

08-06-2023

08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS SEARCH Myll̈=

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\mathbf{V}=\mathrm{module}$ declared, $\mathrm{MND}=\mathrm{module}$ not declared)

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$2.61 \mathrm{E}+0$	6.25E-2	1.45E-4	$2.67 \mathrm{E}+0$	3.62E-2	$3.05 \mathrm{E}+0$	$1.20 \mathrm{E}-2$	$-1.72 \mathrm{E}+0$	$4.04 \mathrm{E}+0$
GWP-f		kg CO2 eq	$3.97 \mathrm{E}+0$	$6.25 \mathrm{E}-2$	1.46E-4	$4.03 \mathrm{E}+0$	$3.61 \mathrm{E}-2$	$1.46 \mathrm{E}+0$	1.20E-2	-2.15E+0	$3.39 \mathrm{E}+0$
GWP-b		kg CO2 eq	-1.37E+0	3.79E-5	-1.54E-6	-1.37E+0	$2.19 \mathrm{E}-5$	$1.59 \mathrm{E}+0$	$1.49 \mathrm{E}-5$	$4.30 \mathrm{E}-1$	$6.53 \mathrm{E}-1$
GWP-Iuluc		kg CO2 eq	$6.04 \mathrm{E}-3$	$2.21 \mathrm{E}-5$	$1.49 \mathrm{E}-7$	$6.06 \mathrm{E}-3$	$1.28 \mathrm{E}-5$	$4.60 \mathrm{E}-4$	3.09E-7	-4.72E-3	$1.81 \mathrm{E}-3$
ODP		kg CFC11 eq	$1.66 \mathrm{E}-6$	$1.44 \mathrm{E}-8$	8.26E-12	$1.67 \mathrm{E}-6$	$8.33 \mathrm{E}-9$	1.30E-7	4.39E-10	-8.36E-7	$9.73 \mathrm{E}-7$
AP		mol $\mathrm{H}+\mathrm{eq}$	$1.94 \mathrm{E}-2$	3.56E-4	$1.47 \mathrm{E}-6$	$1.97 \mathrm{E}-2$	2.06E-4	2.37E-3	1.07E-5	-9.20E-3	$1.31 \mathrm{E}-2$
EP-fw		kg Peq	$1.84 \mathrm{E}-4$	5.14E-7	$8.24 \mathrm{E}-9$	$1.84 \mathrm{E}-4$	2.97E-7	1.55E-5	$1.40 \mathrm{E}-8$	-1.03E-4	9.68E-5
EP-m		kg Neq	$3.80 \mathrm{E}-3$	$1.27 \mathrm{E}-4$	$1.55 \mathrm{E}-7$	3.93E-3	7.37E-5	6.17E-4	$7.30 \mathrm{E}-6$	-1.86E-3	$2.77 \mathrm{E}-3$
EP-T		mol Neq	$4.08 \mathrm{E}-2$	$1.40 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	$4.22 \mathrm{E}-2$	$8.12 \mathrm{E}-4$	$6.79 \mathrm{E}-3$	$4.26 \mathrm{E}-5$	-2.06E-2	$2.92 \mathrm{E}-2$
POCP		kg NMVOC eq	$1.34 \mathrm{E}-2$	4.01E-4	6.28E-7	$1.38 \mathrm{E}-2$	$2.32 \mathrm{E}-4$	2.02E-3	1.47E-5	-6.66E-3	$9.44 \mathrm{E}-3$
ADP-mm		kg Sb eq	$2.76 \mathrm{E}-3$	$1.62 \mathrm{E}-6$	$1.97 \mathrm{E}-8$	$2.76 \mathrm{E}-3$	$9.35 \mathrm{E}-7$	$9.18 \mathrm{E}-6$	$1.07 \mathrm{E}-8$	-3.94E-5	$2.73 \mathrm{E}-3$
ADP-f		MJ	$9.31 \mathrm{E}+1$	$9.59 \mathrm{E}-1$	$1.36 \mathrm{E}-3$	$9.41 \mathrm{E}+1$	$5.55 \mathrm{E}-1$	$6.13 \mathrm{E}+0$	3.20E-2	-4.77E+1	$5.31 \mathrm{E}+1$
WDP		m3 depriv.	$5.13 \mathrm{E}+0$	$2.94 \mathrm{E}-3$	5.22E-5	$5.13 \mathrm{E}+0$	$1.70 \mathrm{E}-3$	$2.30 \mathrm{E}-1$	$2.04 \mathrm{E}-4$	$-2.87 \mathrm{E}+0$	$2.49 \mathrm{E}+0$
PM		disease inc.	$1.73 \mathrm{E}-7$	5.64E-9	9.08E-12	$1.78 \mathrm{E}-7$	3.26E-9	$2.94 \mathrm{E}-8$	2.21E-10	-1.04E-7	$1.08 \mathrm{E}-7$
IR		kBq U-235 eq	$2.11 \mathrm{E}-1$	4.19E-3	$1.02 \mathrm{E}-6$	$2.15 \mathrm{E}-1$	$2.43 \mathrm{E}-3$	2.20E-2	$1.48 \mathrm{E}-4$	-1.08E-1	$1.32 \mathrm{E}-1$
ETP-fw		CTUe	1.41E+2	7.79E-1	1.21E-2	$1.41 \mathrm{E}+2$	4.51E-1	4.51E+1	4.90E-1	-6.01E+1	$1.27 \mathrm{E}+2$
HTP-c		CTUn	$3.49 \mathrm{E}-9$	2.77E-11	6.17E-13	3.52E-9	1.60E-11	7.27E-10	8.83E-13	-1.57E-9	$2.69 \mathrm{E}-9$
HTP-nc		CTUn	$9.55 \mathrm{E}-8$	9.29E-10	$1.57 \mathrm{E}-11$	$9.64 \mathrm{E}-8$	5.37E-10	$1.63 \mathrm{E}-8$	9.46E-11	-4.08E-8	$7.25 \mathrm{E}-8$
SQP		Pt	1.47E+2	8.21E-1	$2.24 \mathrm{E}-3$	$1.48 \mathrm{E}+2$	$4.75 \mathrm{E}-1$	$3.74 \mathrm{E}+0$	8.21E-2	-1.81E+2	-2.90E+1
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	3.25E+1	$1.38 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	3.26E+1	7.96E-3	4.25E-1	1.21E-3	-3.06E+1	2.36E+0
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$3.25 \mathrm{E}+1$	$1.38 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$3.26 \mathrm{E}+1$	7.96E-3	$4.25 \mathrm{E}-1$	1.21E-3	-3.06E+1	$2.36 \mathrm{E}+0$
PENRE		MJ	9.99E+1	$1.02 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$1.01 \mathrm{E}+2$	5.89E-1	6.52E+0	3.40E-2	-5.14E+1	$5.67 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$9.99 \mathrm{E}+1$	$1.02 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$1.01 \mathrm{E}+2$	5.89E-1	$6.52 \mathrm{E}+0$	3.40E-2	-5.14E+1	5.67E+1
PET		MJ	$1.32 \mathrm{E}+2$	$1.03 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	$1.33 \mathrm{E}+2$	$5.97 \mathrm{E}-1$	$6.94 \mathrm{E}+0$	3.52E-2	-8.20E+1	$5.90 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$6.62 \mathrm{E}-2$	$1.09 \mathrm{E}-4$	$1.46 \mathrm{E}-6$	$6.63 \mathrm{E}-2$	6.28E-5	6.60E-3	3.93E-5	-4.11E-2	$3.19 \mathrm{E}-2$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	4.08E-4	$2.45 \mathrm{E}-6$	$2.73 \mathrm{E}-13$	4.11E-4	1.42E-6	1.06E-5	3.90E-8	-4.79E-5	3.75E-4
NHWD	kg	4.62E-1	5.95E-2	$1.05 \mathrm{E}-6$	5.22E-1	$3.44 \mathrm{E}-2$	2.40E-1	1.41E-1	-2.07E-1	7.30E-1
RWD	kg	1.99E-4	6.52E-6	1.10E-13	2.05E-4	3.77E-6	$2.43 \mathrm{E}-5$	2.09E-7	-1.01E-4	$1.33 \mathrm{E}-4$
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

