Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product:	$3072513-$ PVCU Bend 30° BR 400 SN4 FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

Manufacturer: Wavin - PL -Buk - Extra products

PVC external sewage pipes with a solid wall are produced in two classes of circumferential stiffness (SN8, SN4), which enables optimal selection depending on the load conditions. A wide portfolio of system fittings facilitates the construction of many schemes of sewage networks, as well as connections with systems made of other materials. Diameter range DN/OD 110-500mm. The pipes meet the requirements of the PN-EN 1401-1 standard.
LCA standard:
Standard database:
Externally verified:
Issue date:
End of validity:
Verifier: Standard database: Externally verified: End of validity:
Verifier

N15804+A2 (2019)
Worldwide - Ecoinvent v 3.6 Cut-Off
Yes

08-06-2023

08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS SEARCH Myll̈=

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\mathbf{V}=\mathrm{module}$ declared, $\mathrm{MND}=\mathrm{module}$ not declared)

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$2.56 \mathrm{E}+1$	3.83E-1	$1.45 \mathrm{E}-4$	$2.59 \mathrm{E}+1$	$4.48 \mathrm{E}-1$	$2.63 \mathrm{E}+1$	$1.24 \mathrm{E}-1$	-1.73E+1	$3.55 \mathrm{E}+1$
GWP-f		kg CO2 eq	3.68E+1	3.82E-1	$1.46 \mathrm{E}-4$	3.71E+1	$4.48 \mathrm{E}-1$	$1.36 \mathrm{E}+1$	$1.24 \mathrm{E}-1$	-1.98E+1	3.15E+1
GWP-b		kg CO2 eq	-1.12E+1	2.32E-4	-1.54E-6	-1.12E+1	$2.72 \mathrm{E}-4$	1.27E+1	$1.60 \mathrm{E}-4$	$2.51 \mathrm{E}+0$	$3.97 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$4.54 \mathrm{E}-2$	$1.35 \mathrm{E}-4$	$1.49 \mathrm{E}-7$	$4.56 \mathrm{E}-2$	1.58E-4	$5.27 \mathrm{E}-3$	$3.36 \mathrm{E}-6$	-3.32E-2	$1.77 \mathrm{E}-2$
ODP		kg CFC11 eq	1.74E-5	8.81E-8	8.26E-12	1.75E-5	$1.03 \mathrm{E}-7$	$1.43 \mathrm{E}-6$	5.10E-9	-8.58E-6	1.04E-5
AP		mol $\mathrm{H}+\mathrm{eq}$	1.70E-1	$2.18 \mathrm{E}-3$	$1.47 \mathrm{E}-6$	$1.72 \mathrm{E}-1$	$2.55 \mathrm{E}-3$	$2.61 \mathrm{E}-2$	$1.22 \mathrm{E}-4$	-8.34E-2	1.17E-1
EP-fw		kg P eq	1.61E-3	3.15E-6	$8.24 \mathrm{E}-9$	1.62E-3	3.68E-6	$1.75 \mathrm{E}-4$	$1.52 \mathrm{E}-7$	-8.85E-4	9.11E-4
EP-m		kg Neq	3.21E-2	$7.79 \mathrm{E}-4$	$1.55 \mathrm{E}-7$	3.29E-2	$9.13 \mathrm{E}-4$	6.66E-3	$7.74 \mathrm{E}-5$	-1.62E-2	$2.44 \mathrm{E}-2$
EP-T		mol Neq	3.44E-1	$8.59 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	3.52E-1	$1.01 \mathrm{E}-2$	$7.34 \mathrm{E}-2$	4.87E-4	-1.79E-1	2.57E-1
POCP		kg NMVOC eq	1.16E-1	$2.45 \mathrm{E}-3$	$6.28 \mathrm{E}-7$	$1.19 \mathrm{E}-1$	2.87E-3	$2.20 \mathrm{E}-2$	$1.65 \mathrm{E}-4$	-5.81E-2	8.56E-2
ADP-mm		kg Sb eq	1.30E-3	$9.89 \mathrm{E}-6$	$1.97 \mathrm{E}-8$	1.31E-3	1.16E-5	$1.02 \mathrm{E}-4$	$1.20 \mathrm{E}-7$	-3.82E-4	1.04E-3
ADP-f		MJ	$8.93 \mathrm{E}+2$	$5.87 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$8.99 \mathrm{E}+2$	$6.87 \mathrm{E}+0$	$6.99 \mathrm{E}+1$	$3.69 \mathrm{E}-1$	-4.54E+2	$5.22 \mathrm{E}+2$
WDP		m3 depriv.	5.22E+1	1.80E-2	5.22E-5	5.22E+1	$2.11 \mathrm{E}-2$	2.59E+0	1.99E-3	-2.75E+1	2.73E+1
PM		disease inc.	$1.55 \mathrm{E}-6$	3.45E-8	9.08E-12	1.58E-6	$4.04 \mathrm{E}-8$	$3.31 \mathrm{E}-7$	$2.52 \mathrm{E}-9$	-8.15E-7	1.14E-6
IR		kBq U-235 eq	$1.94 \mathrm{E}+0$	$2.56 \mathrm{E}-2$	$1.02 \mathrm{E}-6$	$1.96 \mathrm{E}+0$	3.00E-2	$2.46 \mathrm{E}-1$	$1.69 \mathrm{E}-3$	-9.81E-1	$1.26 \mathrm{E}+0$
ETP-fw		cTUe	$9.20 \mathrm{E}+2$	$4.76 \mathrm{E}+0$	$1.21 \mathrm{E}-2$	$9.25 \mathrm{E}+2$	$5.58 \mathrm{E}+0$	$4.93 \mathrm{E}+2$	5.35E+0	-4.73E+2	$9.56 \mathrm{E}+2$
HTP-c		CTUn	$2.74 \mathrm{E}-8$	1.70E-10	6.17E-13	$2.76 \mathrm{E}-8$	1.99E-10	7.97E-9	$9.45 \mathrm{E}-12$	-1.33E-8	$2.24 \mathrm{E}-8$
HTP-nc		ctun	7.52E-7	$5.68 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	$7.58 \mathrm{E}-7$	6.65E-9	$1.80 \mathrm{E}-7$	$1.03 \mathrm{E}-9$	-3.80E-7	$5.66 \mathrm{E}-7$
SQP		Pt	1.20E+3	5.02E+0	$2.24 \mathrm{E}-3$	$1.21 \mathrm{E}+3$	$5.88 \mathrm{E}+0$	4.40E+1	$9.34 \mathrm{E}-1$	-1.16E+3	$9.89 \mathrm{E}+1$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$2.36 \mathrm{E}+2$	8.42E-2	$2.40 \mathrm{E}-2$	$2.36 \mathrm{E}+2$	$9.86 \mathrm{E}-2$	4.83E+0	$1.32 \mathrm{E}-2$	$-2.03 \mathrm{E}+2$	$3.88 \mathrm{E}+1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$2.36 \mathrm{E}+2$	8.42E-2	$2.40 \mathrm{E}-2$	$2.36 \mathrm{E}+2$	$9.86 \mathrm{E}-2$	$4.83 \mathrm{E}+0$	$1.32 \mathrm{E}-2$	-2.03E+2	$3.88 \mathrm{E}+1$
PENRE		MJ	$9.59 \mathrm{E}+2$	$6.23 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$9.65 \mathrm{E}+2$	7.30E+0	$7.44 \mathrm{E}+1$	3.91E-1	-4.89E+2	$5.57 \mathrm{E}+2$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$9.59 \mathrm{E}+2$	$6.23 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$9.65 \mathrm{E}+2$	7.30E+0	7.44E+1	3.91E-1	-4.89E+2	5.57E+2
PET		MJ	1.19E+3	$6.31 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	1.20E+3	7.39E+0	7.92E+1	4.05E-1	-6.92E+2	$5.96 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$6.13 \mathrm{E}-1$	$6.64 \mathrm{E}-4$	$1.46 \mathrm{E}-6$	$6.13 \mathrm{E}-1$	7.78E-4	7.28E-2	4.52E-4	-3.54E-1	3.33E-1

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	7.62E-4	$1.50 \mathrm{E}-5$	$2.73 \mathrm{E}-13$	7.77E-4	$1.76 \mathrm{E}-5$	1.17E-4	$4.43 \mathrm{E}-7$	-4.27E-4	$4.85 \mathrm{E}-4$
NHWD	kg	4.01E+0	3.64E-1	$1.05 \mathrm{E}-6$	$4.38 \mathrm{E}+0$	$4.26 \mathrm{E}-1$	2.73E+0	$1.72 \mathrm{E}+0$	-1.81E+0	7.45E+0
RWD	kg	1.81E-3	3.99E-5	1.10E-13	$1.85 \mathrm{E}-3$	4.67E-5	$2.71 \mathrm{E}-4$	$2.41 \mathrm{E}-6$	-8.98E-4	1.27E-3
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

