Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3072498-$ KG Bend 15° DN300 FIN
Unit:	1 piece
Manufacturer:	Wavin - PL-Buk - Extra products

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$4.93 \mathrm{E}+0$	4.11E-1	$1.45 \mathrm{E}-4$	$5.34 \mathrm{E}+0$	$9.82 \mathrm{E}-2$	$6.16 \mathrm{E}+0$	3.05E-2	-4.29E+0	7.34E+0
GWP-f		kg CO2 eq	1.16E+1	$4.11 \mathrm{E}-1$	$1.46 \mathrm{E}-4$	$1.20 \mathrm{E}+1$	$9.81 \mathrm{E}-2$	$2.98 \mathrm{E}+0$	3.05E-2	-5.13E+0	$9.97 \mathrm{E}+0$
GWP-b		kg CO2 eq	-6.69E+0	$2.49 \mathrm{E}-4$	-1.54E-6	-6.69E+0	5.96E-5	$3.18 \mathrm{E}+0$	3.97E-5	$8.47 \mathrm{E}-1$	$-2.67 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$4.91 \mathrm{E}-2$	$1.45 \mathrm{E}-4$	$1.49 \mathrm{E}-7$	$4.92 \mathrm{E}-2$	3.47E-5	$1.29 \mathrm{E}-3$	$7.71 \mathrm{E}-7$	-1.02E-2	$4.04 \mathrm{E}-2$
ODP		kg CFC11 eq	$4.75 \mathrm{E}-6$	$9.47 \mathrm{E}-8$	$8.26 \mathrm{E}-12$	$4.84 \mathrm{E}-6$	$2.26 \mathrm{E}-8$	3.67E-7	1.16E-9	-2.23E-6	3.00E-6
AP		mol $\mathrm{H}+\mathrm{eq}$	$5.77 \mathrm{E}-2$	$2.34 \mathrm{E}-3$	$1.47 \mathrm{E}-6$	$6.01 \mathrm{E}-2$	5.59E-4	$6.34 \mathrm{E}-3$	2.80E-5	-2.25E-2	$4.45 \mathrm{E}-2$
EP-fw		kg P eq	5.26E-4	3.38E-6	$8.24 \mathrm{E}-9$	5.30E-4	8.07E-7	$4.36 \mathrm{E}-5$	$3.55 \mathrm{E}-8$	-2.48E-4	3.26E-4
EP-m		kg N eq	1.17E-2	$8.37 \mathrm{E}-4$	$1.55 \mathrm{E}-7$	$1.25 \mathrm{E}-2$	$2.00 \mathrm{E}-4$	$1.59 \mathrm{E}-3$	1.78E-5	-4.39E-3	$9.92 \mathrm{E}-3$
EP-T		mol Neq	1.27E-1	$9.23 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	$1.36 \mathrm{E}-1$	2.20E-3	$1.76 \mathrm{E}-2$	1.12E-4	-4.84E-2	$1.08 \mathrm{E}-1$
POCP		kg NMVOC eq	4.21E-2	$2.64 \mathrm{E}-3$	6.28E-7	$4.48 \mathrm{E}-2$	$6.30 \mathrm{E}-4$	5.24E-3	3.85E-5	-1.58E-2	3.49E-2
ADP-mm		kg Sb eq	8.07E-3	$1.06 \mathrm{E}-5$	$1.97 \mathrm{E}-8$	8.08E-3	$2.54 \mathrm{E}-6$	$2.50 \mathrm{E}-5$	$2.77 \mathrm{E}-8$	-9.81E-5	$8.01 \mathrm{E}-3$
ADP-f		MJ	$2.62 \mathrm{E}+2$	$6.31 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$2.68 \mathrm{E}+2$	$1.51 \mathrm{E}+0$	1.67E+1	$8.45 \mathrm{E}-2$	-1.18E+2	$1.69 \mathrm{E}+2$
WDP		m3 depriv.	$1.70 \mathrm{E}+1$	$1.94 \mathrm{E}-2$	5.22E-5	$1.70 \mathrm{E}+1$	4.62E-3	6.51E-1	3.86E-4	-7.42E+0	$1.03 \mathrm{E}+1$
PM		disease inc.	$5.73 \mathrm{E}-7$	3.71E-8	$9.08 \mathrm{E}-12$	$6.10 \mathrm{E}-7$	8.86E-9	7.84E-8	5.82E-10	-2.33E-7	$4.65 \mathrm{E}-7$
IR		kBq U-235 eq	$6.36 \mathrm{E}-1$	$2.76 \mathrm{E}-2$	$1.02 \mathrm{E}-6$	$6.64 \mathrm{E}-1$	$6.58 \mathrm{E}-3$	6.01E-2	3.91E-4	-2.68E-1	$4.63 \mathrm{E}-1$
ETP-fw		CTUe	$3.73 \mathrm{E}+2$	5.12E+0	1.21E-2	$3.78 \mathrm{E}+2$	1.22E+0	$1.29 \mathrm{E}+2$	1.42E+0	-1.35E+2	$3.75 \mathrm{E}+2$
HTP-c		CTUn	$1.33 \mathrm{E}-8$	1.82E-10	6.17E-13	$1.35 \mathrm{E}-8$	$4.35 \mathrm{E}-11$	1.81E-9	2.22E-12	-3.74E-9	$1.16 \mathrm{E}-8$
HTP-nc		cTUn	3.00E-7	$6.11 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	3.06E-7	$1.46 \mathrm{E}-9$	$4.47 \mathrm{E}-8$	2.69E-10	-1.03E-7	$2.50 \mathrm{E}-7$
SQP		Pt	$6.45 \mathrm{E}+2$	5.40E+0	$2.24 \mathrm{E}-3$	$6.50 \mathrm{E}+2$	$1.29 \mathrm{E}+0$	$1.01 \mathrm{E}+1$	2.17E-1	-3.64E+2	$2.98 \mathrm{E}+2$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.20 \mathrm{E}+2$	$9.05 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$1.20 \mathrm{E}+2$	$2.16 \mathrm{E}-2$	1.19E+0	3.24E-3	-6.23E+1	$5.94 \mathrm{E}+1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$1.20 \mathrm{E}+2$	$9.05 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$1.20 \mathrm{E}+2$	$2.16 \mathrm{E}-2$	1.19E+0	3.24E-3	-6.23E+1	$5.94 \mathrm{E}+1$
PENRE		MJ	$2.81 \mathrm{E}+2$	6.70E+0	1.44E-3	$2.87 \mathrm{E}+2$	1.60E+0	1.78E+1	8.97E-2	-1.27E+2	1.80E+2
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$2.81 \mathrm{E}+2$	6.70E+0	$1.44 \mathrm{E}-3$	$2.87 \mathrm{E}+2$	1.60E+0	1.78E+1	8.97E-2	-1.27E+2	1.80E+2
PET		MJ	$4.01 \mathrm{E}+2$	$6.79 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	$4.08 \mathrm{E}+2$	1.62E+0	1.90E+1	$9.29 \mathrm{E}-2$	-1.89E+2	$2.40 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$2.50 \mathrm{E}-1$	7.14E-4	$1.46 \mathrm{E}-6$	$2.51 \mathrm{E}-1$	$1.70 \mathrm{E}-4$	1.80E-2	$1.04 \mathrm{E}-4$	-9.92E-2	$1.70 \mathrm{E}-1$

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	1.22E-3	1.61E-5	$2.73 \mathrm{E}-13$	1.24E-3	3.85E-6	2.79E-5	1.02E-7	-1.13E-4	1.16E-3
NHWD		kg	$1.69 \mathrm{E}+0$	3.91E-1	1.05E-6	$2.09 \mathrm{E}+0$	$9.34 \mathrm{E}-2$	6.12E-1	3.73E-1	-5.01E-1	$2.66 \mathrm{E}+0$
RWD		kg	6.20E-4	4.29E-5	1.10E-13	$6.63 \mathrm{E}-4$	1.02E-5	6.52E-5	5.52E-7	-2.45E-4	4.94E-4
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

