Environmental Profile

This LCA is calculated according to：ISO 14044，ISO 14040 and EN 15804
Ecochain v3．5．80

Ecochain

Product：	$3072520-$ PVCU Branch 45° BR 200×160 SN4 FIN
Unit：	1 piece
Manufacturer：	Wavin - PL－Buk－Extra products

Wavin－PL－Buk－Extra products
PVC external sewage pipes with a solid wall are produced in two classes of circumferential stiffness（SN8，SN4）， which enables optimal selection depending on the load conditions．A wide portfolio of system fittings facilitates the construction of many schemes of sewage networks，as well as connections with systems made of other materials．Diameter range DN／OD 110－500mm．The pipes meet the requirements of the PN－EN 1401－1 standard．
LCA standard：
Standard database：
Externally verified：
Issue date：
End of validity：
Verifier： Standard database： Externally verified： End of validity：
Verifier：

EN15804＋A2（2019）
Worldwide－Ecoinvent v 3．6 Cut－Off
Yes

08－06－2023

08－06－2028
Martijn van Hövell－SGS Search
wavin
An Orbia business．

SGS SEARCH Myll̈＝

This LCA was evaluated according to EN15804＋A2．It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin－PL－Buk－Extra products（2020）．（ $\mathbf{V}=\mathrm{module}$ declared， $\mathrm{MND}=\mathrm{module}$ not declared）

A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2		C3	C4	D
■	『	『	MND	『		『	■	■									
Product					Use stage							End－of－Lif					
A1 Raw material supply A2 Transport A3 Manufacturing Construction process stage					B1 Use B2 Maintenance B3 Repair B4 Replacement B5 Refurbishment B6 Operational energy use B7 Operational water use							C1 De－construction demolition C2 Transport C3 Waste processing C4 Disposal					
Construction process stage												Benefits and loads beyond the system boundaries					

A5 Assembly／Construction installation process
D Reuse－Recovery－Recycling－potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$5.24 \mathrm{E}+0$	1.11E-1	1.45E-4	5.35E+0	$7.15 \mathrm{E}-2$	$5.02 \mathrm{E}+0$	$2.35 \mathrm{E}-2$	-3.29E+0	7.17E+0
GWP-f		kg CO2 eq	$7.26 \mathrm{E}+0$	1.10E-1	1.46E-4	$7.37 \mathrm{E}+0$	$7.14 \mathrm{E}-2$	$2.64 \mathrm{E}+0$	$2.35 \mathrm{E}-2$	-3.92E+0	6.19E+0
GWP-b		kg CO 2 eq	-2.04E+0	6.71E-5	-1.54E-6	$-2.04 \mathrm{E}+0$	4.34E-5	$2.38 \mathrm{E}+0$	2.94E-5	$6.35 \mathrm{E}-1$	$9.83 \mathrm{E}-1$
GWP-luluc		kg CO2 eq	$1.02 \mathrm{E}-2$	3.91E-5	$1.49 \mathrm{E}-7$	$1.02 \mathrm{E}-2$	$2.53 \mathrm{E}-5$	$9.04 \mathrm{E}-4$	$6.07 \mathrm{E}-7$	-7.52E-3	$3.62 \mathrm{E}-3$
ODP		kg CFC11 eq	3.23E-6	$2.55 \mathrm{E}-8$	8.26E-12	$3.25 \mathrm{E}-6$	$1.65 \mathrm{E}-8$	$2.55 \mathrm{E}-7$	8.64E-10	-1.62E-6	1.90E-6
AP		mol $\mathrm{H}+\mathrm{eq}$	3.53E-2	$6.29 \mathrm{E}-4$	$1.47 \mathrm{E}-6$	3.59E-2	4.07E-4	$4.53 \mathrm{E}-3$	2.10E-5	-1.65E-2	$2.44 \mathrm{E}-2$
EP-fw		kg P eq	3.36E-4	9.09E-7	$8.24 \mathrm{E}-9$	3.37E-4	5.88E-7	3.04E-5	$2.75 \mathrm{E}-8$	-1.81E-4	1.87E-4
EP-m		kg Neq	6.75E-3	$2.25 \mathrm{E}-4$	$1.55 \mathrm{E}-7$	$6.97 \mathrm{E}-3$	$1.46 \mathrm{E}-4$	$1.16 \mathrm{E}-3$	1.42E-5	-3.25E-3	$5.04 \mathrm{E}-3$
EP-T		mol Neq	$7.26 \mathrm{E}-2$	$2.48 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	7.51E-2	$1.60 \mathrm{E}-3$	$1.28 \mathrm{E}-2$	$8.39 \mathrm{E}-5$	-3.59E-2	5.37E-2
POCP		kg NMVOC eq	$2.39 \mathrm{E}-2$	$7.09 \mathrm{E}-4$	6.28E-7	$2.46 \mathrm{E}-2$	4.59E-4	$3.79 \mathrm{E}-3$	2.89E-5	-1.17E-2	$1.72 \mathrm{E}-2$
ADP-mm		kg Sb eq	5.35E-3	$2.86 \mathrm{E}-6$	$1.97 \mathrm{E}-8$	$5.35 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	$1.76 \mathrm{E}-5$	2.11E-8	-7.45E-5	5.30E-3
ADP-f		MJ	$1.72 \mathrm{E}+2$	$1.70 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$1.74 \mathrm{E}+2$	$1.10 \mathrm{E}+0$	1.19E+1	6.31E-2	-8.87E+1	$9.83 \mathrm{E}+1$
WDP		m3 depriv.	$9.88 \mathrm{E}+0$	5.20E-3	5.22E-5	$9.88 \mathrm{E}+0$	3.37E-3	$4.54 \mathrm{E}-1$	$4.00 \mathrm{E}-4$	-5.35E+0	$4.99 \mathrm{E}+0$
PM		disease inc.	$2.99 \mathrm{E}-7$	$9.97 \mathrm{E}-9$	$9.08 \mathrm{E}-12$	$3.09 \mathrm{E}-7$	6.45E-9	5.61E-8	$4.34 \mathrm{E}-10$	-1.72E-7	2.00E-7
IR		kBq U-235 eq	$3.92 \mathrm{E}-1$	7.41E-3	$1.02 \mathrm{E}-6$	$4.00 \mathrm{E}-1$	$4.79 \mathrm{E}-3$	$4.25 \mathrm{E}-2$	2.91E-4	-1.95E-1	$2.52 \mathrm{E}-1$
ETP-fw		cTUe	$2.44 \mathrm{E}+2$	$1.38 \mathrm{E}+0$	1.21E-2	$2.45 \mathrm{E}+2$	8.91E-1	$8.90 \mathrm{E}+1$	$9.72 \mathrm{E}-1$	-9.98E+1	$2.36 \mathrm{E}+2$
HTP-c		CTUn	$6.39 \mathrm{E}-9$	$4.90 \mathrm{E}-11$	6.17E-13	$6.44 \mathrm{E}-9$	3.17E-11	$1.38 \mathrm{E}-9$	$1.74 \mathrm{E}-12$	-2.74E-9	$5.11 \mathrm{E}-9$
HTP-nc		cTUn	1.81E-7	$1.64 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	1.82E-7	1.06E-9	$3.17 \mathrm{E}-8$	1.87E-10	-7.44E-8	1.41E-7
SQP		Pt	$2.25 \mathrm{E}+2$	$1.45 \mathrm{E}+0$	$2.24 \mathrm{E}-3$	2.27E+2	$9.38 \mathrm{E}-1$	$7.24 \mathrm{E}+0$	1.62E-1	$-2.73 \mathrm{E}+2$	$-3.78 \mathrm{E}+1$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	5.37E+1	2.43E-2	$2.40 \mathrm{E}-2$	$5.38 \mathrm{E}+1$	1.57E-2	$8.33 \mathrm{E}-1$	$2.38 \mathrm{E}-3$	$-4.65 \mathrm{E}+1$	8.06E+0
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	5.37E+1	$2.43 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$5.38 \mathrm{E}+1$	$1.57 \mathrm{E}-2$	8.33E-1	$2.38 \mathrm{E}-3$	-4.65E+1	8.06E+0
PENRE		MJ	$1.85 \mathrm{E}+2$	1.80E+0	$1.44 \mathrm{E}-3$	$1.87 \mathrm{E}+2$	$1.16 \mathrm{E}+0$	1.26E+1	6.70E-2	-9.56E+1	1.05E+2
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$1.85 \mathrm{E}+2$	1.80E+0	$1.44 \mathrm{E}-3$	$1.87 \mathrm{E}+2$	$1.16 \mathrm{E}+0$	1.26E+1	$6.70 \mathrm{E}-2$	-9.56E+1	1.05E+2
PET		MJ	$2.39 \mathrm{E}+2$	1.82E+0	$2.55 \mathrm{E}-2$	$2.40 \mathrm{E}+2$	$1.18 \mathrm{E}+0$	$1.34 \mathrm{E}+1$	$6.94 \mathrm{E}-2$	-1.42E+2	$1.13 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	1.23E-1	$1.92 \mathrm{E}-4$	$1.46 \mathrm{E}-6$	1.23E-1	$1.24 \mathrm{E}-4$	1.29E-2	7.74E-5	-7.24E-2	$6.38 \mathrm{E}-2$

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	7.86E-4	$4.34 \mathrm{E}-6$	$2.73 \mathrm{E}-13$	7.90E-4	2.80E-6	2.01E-5	$7.68 \mathrm{E}-8$	-8.60E-5	7.27E-4
NHWD		kg	8.24E-1	$1.05 \mathrm{E}-1$	$1.05 \mathrm{E}-6$	$9.29 \mathrm{E}-1$	6.80E-2	$4.54 \mathrm{E}-1$	$2.77 \mathrm{E}-1$	-3.66E-1	$1.36 \mathrm{E}+0$
RWD		kg	3.66E-4	1.15E-5	1.10E-13	3.77E-4	$7.46 \mathrm{E}-6$	$4.64 \mathrm{E}-5$	4.11E-7	-1.80E-4	2.51E-4
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

