Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product:	$3072511-$ KG Branch 45° DN250xDN150 FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	6.30E+0	$4.26 \mathrm{E}-1$	$1.45 \mathrm{E}-4$	$6.73 \mathrm{E}+0$	$1.05 \mathrm{E}-1$	$5.48 \mathrm{E}+0$	$3.26 \mathrm{E}-2$	$-4.55 \mathrm{E}+0$	$7.79 \mathrm{E}+0$
GWP-f		kg CO2 eq	$1.14 \mathrm{E}+1$	$4.25 \mathrm{E}-1$	$1.46 \mathrm{E}-4$	$1.18 \mathrm{E}+1$	$1.05 \mathrm{E}-1$	3.09E+0	$3.26 \mathrm{E}-2$	-5.17E+0	$9.89 \mathrm{E}+0$
GWP-b		kg CO2 eq	$-5.15 \mathrm{E}+0$	$2.58 \mathrm{E}-4$	-1.54E-6	$-5.15 \mathrm{E}+0$	$6.36 \mathrm{E}-5$	$2.38 \mathrm{E}+0$	4.24E-5	$6.25 \mathrm{E}-1$	$-2.15 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$4.95 \mathrm{E}-2$	$1.50 \mathrm{E}-4$	$1.49 \mathrm{E}-7$	$4.97 \mathrm{E}-2$	3.71E-5	$1.37 \mathrm{E}-3$	$8.23 \mathrm{E}-7$	-8.47E-3	$4.26 \mathrm{E}-2$
ODP		kg CFC11 eq	4.95E-6	$9.80 \mathrm{E}-8$	$8.26 \mathrm{E}-12$	$5.04 \mathrm{E}-6$	2.42E-8	3.87E-7	1.24E-9	$-2.34 \mathrm{E}-6$	3.11E-6
AP		mol $\mathrm{H}+\mathrm{eq}$	$5.64 \mathrm{E}-2$	$2.42 \mathrm{E}-3$	$1.47 \mathrm{E}-6$	$5.89 \mathrm{E}-2$	5.97E-4	6.59E-3	$2.99 \mathrm{E}-5$	-2.19E-2	$4.41 \mathrm{E}-2$
EP-fw		kg P eq	5.16E-4	3.50E-6	$8.24 \mathrm{E}-9$	5.19E-4	$8.63 \mathrm{E}-7$	$4.61 \mathrm{E}-5$	$3.79 \mathrm{E}-8$	-2.35E-4	3.31E-4
EP-m		kg N eq	1.11E-2	$8.67 \mathrm{E}-4$	$1.55 \mathrm{E}-7$	$1.19 \mathrm{E}-2$	$2.14 \mathrm{E}-4$	$1.63 \mathrm{E}-3$	1.90E-5	-4.16E-3	$9.65 \mathrm{E}-3$
EP-T		mol Neq	1.21E-1	$9.55 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	$1.31 \mathrm{E}-1$	$2.35 \mathrm{E}-3$	1.80E-2	1.20E-4	-4.55E-2	$1.05 \mathrm{E}-1$
POCP		kg NMVOC eq	4.01E-2	$2.73 \mathrm{E}-3$	6.28E-7	$4.28 \mathrm{E}-2$	6.73E-4	5.37E-3	4.11E-5	-1.51E-2	$3.38 \mathrm{E}-2$
ADP-mm		kg Sb eq	$8.56 \mathrm{E}-3$	$1.10 \mathrm{E}-5$	$1.97 \mathrm{E}-8$	$8.57 \mathrm{E}-3$	$2.71 \mathrm{E}-6$	2.60E-5	$2.96 \mathrm{E}-8$	-1.01E-4	8.50E-3
ADP-f		MJ	$2.62 \mathrm{E}+2$	$6.53 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$2.69 \mathrm{E}+2$	$1.61 \mathrm{E}+0$	$1.75 \mathrm{E}+1$	$9.03 \mathrm{E}-2$	-1.21E+2	$1.67 \mathrm{E}+2$
WDP		m3 depriv.	$1.78 \mathrm{E}+1$	2.00E-2	5.22E-5	$1.78 \mathrm{E}+1$	$4.94 \mathrm{E}-3$	$6.93 \mathrm{E}-1$	$4.13 \mathrm{E}-4$	-7.49E+0	$1.10 \mathrm{E}+1$
PM		disease inc.	$5.26 \mathrm{E}-7$	$3.84 \mathrm{E}-8$	9.08E-12	$5.65 \mathrm{E}-7$	$9.46 \mathrm{E}-9$	8.11E-8	6.21E-10	-2.07E-7	$4.49 \mathrm{E}-7$
IR		kBq U-235 eq	$6.29 \mathrm{E}-1$	$2.85 \mathrm{E}-2$	$1.02 \mathrm{E}-6$	$6.58 \mathrm{E}-1$	7.03E-3	6.27E-2	$4.18 \mathrm{E}-4$	-2.63E-1	$4.65 \mathrm{E}-1$
ETP-fw		ctue	$3.48 \mathrm{E}+2$	5.30E+0	1.21E-2	3.53E+2	$1.31 \mathrm{E}+0$	$1.37 \mathrm{E}+2$	1.51E+0	-1.20E+2	$3.73 \mathrm{E}+2$
HTP-c		CTUn	$1.24 \mathrm{E}-8$	1.89E-10	6.17E-13	$1.26 \mathrm{E}-8$	4.65E-11	$1.87 \mathrm{E}-9$	$2.38 \mathrm{E}-12$	-3.51E-9	$1.10 \mathrm{E}-8$
HTP-nc		cTUn	$2.99 \mathrm{E}-7$	$6.32 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	$3.05 \mathrm{E}-7$	$1.56 \mathrm{E}-9$	$4.71 \mathrm{E}-8$	2.87E-10	-1.01E-7	$2.53 \mathrm{E}-7$
SQP		Pt	$5.09 \mathrm{E}+2$	$5.58 \mathrm{E}+0$	$2.24 \mathrm{E}-3$	$5.14 \mathrm{E}+2$	$1.38 \mathrm{E}+0$	$1.06 \mathrm{E}+1$	$2.32 \mathrm{E}-1$	$-2.76 \mathrm{E}+2$	$2.50 \mathrm{E}+2$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.02 \mathrm{E}+2$	$9.36 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$1.02 \mathrm{E}+2$	2.31E-2	$1.26 \mathrm{E}+0$	$3.46 \mathrm{E}-3$	-4.81E+1	$5.50 \mathrm{E}+1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	1.02E+2	$9.36 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$1.02 \mathrm{E}+2$	$2.31 \mathrm{E}-2$	$1.26 \mathrm{E}+0$	$3.46 \mathrm{E}-3$	-4.81E+1	5.50E+1
PENRE		MJ	$2.81 \mathrm{E}+2$	$6.93 \mathrm{E}+0$	1.44E-3	$2.88 \mathrm{E}+2$	1.71E+0	$1.86 \mathrm{E}+1$	$9.58 \mathrm{E}-2$	-1.30E+2	$1.79 \mathrm{E}+2$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$2.81 \mathrm{E}+2$	$6.93 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$2.88 \mathrm{E}+2$	$1.71 \mathrm{E}+0$	$1.86 \mathrm{E}+1$	$9.58 \mathrm{E}-2$	-1.30E+2	$1.79 \mathrm{E}+2$
PET		MJ	$3.83 \mathrm{E}+2$	7.02E+0	$2.55 \mathrm{E}-2$	3.90E+2	$1.73 \mathrm{E}+0$	$1.99 \mathrm{E}+1$	$9.92 \mathrm{E}-2$	-1.78E+2	$2.34 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$2.56 \mathrm{E}-1$	$7.39 \mathrm{E}-4$	$1.46 \mathrm{E}-6$	$2.57 \mathrm{E}-1$	$1.82 \mathrm{E}-4$	1.91E-2	1.11E-4	-9.44E-2	$1.82 \mathrm{E}-1$

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	$1.28 \mathrm{E}-3$	1.67E-5	$2.73 \mathrm{E}-13$	1.29E-3	4.11E-6	$2.89 \mathrm{E}-5$	1.08E-7	-1.11E-4	1.21E-3
NHWD		kg	$1.59 \mathrm{E}+0$	4.05E-1	$1.05 \mathrm{E}-6$	$1.99 \mathrm{E}+0$	9.97E-2	$6.35 \mathrm{E}-1$	3.99E-1	-4.78E-1	$2.65 \mathrm{E}+0$
RWD		kg	$6.04 \mathrm{E}-4$	4.44E-5	1.10E-13	$6.49 \mathrm{E}-4$	1.09E-5	$6.75 \mathrm{E}-5$	5.90E-7	-2.39E-4	4.89E-4
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

