Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product:	$3072502-$ KG Branch 45° DN250xDN250 FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$9.37 \mathrm{E}+0$	6.85E-1	$1.45 \mathrm{E}-4$	$1.01 \mathrm{E}+1$	$1.69 \mathrm{E}-1$	8.77E+0	$5.25 \mathrm{E}-2$	-7.33E+0	1.17E+1
GWP-f		kg CO2 eq	$1.87 \mathrm{E}+1$	6.84E-1	$1.46 \mathrm{E}-4$	$1.94 \mathrm{E}+1$	1.69E-1	$4.98 \mathrm{E}+0$	$5.25 \mathrm{E}-2$	-8.32E+0	$1.63 \mathrm{E}+1$
GWP-b		kg CO2 eq	$-9.43 \mathrm{E}+0$	$4.16 \mathrm{E}-4$	-1.54E-6	$-9.43 \mathrm{E}+0$	$1.03 \mathrm{E}-4$	$3.79 \mathrm{E}+0$	6.83E-5	$1.00 \mathrm{E}+0$	$-4.65 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	8.05E-2	$2.42 \mathrm{E}-4$	$1.49 \mathrm{E}-7$	8.07E-2	5.98E-5	$2.21 \mathrm{E}-3$	$1.33 \mathrm{E}-6$	-1.36E-2	6.94E-2
ODP		kg CFC11 eq	8.01E-6	1.58E-7	8.26E-12	8.17E-6	3.89E-8	6.24E-7	$1.99 \mathrm{E}-9$	-3.78E-6	5.06E-6
AP		mol $\mathrm{H}+\mathrm{eq}$	$9.29 \mathrm{E}-2$	3.90E-3	$1.47 \mathrm{E}-6$	$9.68 \mathrm{E}-2$	9.62E-4	$1.06 \mathrm{E}-2$	4.82E-5	-3.53E-2	$7.32 \mathrm{E}-2$
EP-fw		kg P eq	$8.48 \mathrm{E}-4$	5.63E-6	$8.24 \mathrm{E}-9$	8.53E-4	$1.39 \mathrm{E}-6$	7.43E-5	6.11E-8	-3.78E-4	5.51E-4
EP-m		kg Neq	1.83E-2	$1.40 \mathrm{E}-3$	$1.55 \mathrm{E}-7$	$1.97 \mathrm{E}-2$	$3.44 \mathrm{E}-4$	$2.63 \mathrm{E}-3$	3.07E-5	-6.69E-3	$1.60 \mathrm{E}-2$
EP-T		mol Neq	$2.00 \mathrm{E}-1$	$1.54 \mathrm{E}-2$	$1.85 \mathrm{E}-6$	$2.16 \mathrm{E}-1$	3.79E-3	$2.90 \mathrm{E}-2$	1.93E-4	-7.31E-2	$1.76 \mathrm{E}-1$
POCP		kg NMVOC eq	$6.67 \mathrm{E}-2$	4.40E-3	$6.28 \mathrm{E}-7$	7.11E-2	1.08E-3	8.65E-3	6.62E-5	-2.42E-2	5.67E-2
ADP-mm		kg Sb eq	1.38E-2	1.77E-5	$1.97 \mathrm{E}-8$	1.38E-2	4.37E-6	4.18E-5	$4.77 \mathrm{E}-8$	-1.62E-4	1.37E-2
ADP-f		MJ	$4.29 \mathrm{E}+2$	$1.05 \mathrm{E}+1$	$1.36 \mathrm{E}-3$	$4.39 \mathrm{E}+2$	$2.59 \mathrm{E}+0$	$2.82 \mathrm{E}+1$	1.45E-1	-1.94E+2	$2.76 \mathrm{E}+2$
WDP		m3 depriv.	$2.88 \mathrm{E}+1$	3.22E-2	5.22E-5	$2.88 \mathrm{E}+1$	7.96E-3	$1.12 \mathrm{E}+0$	6.65E-4	-1.20E+1	$1.79 \mathrm{E}+1$
PM		disease inc.	8.83E-7	$6.18 \mathrm{E}-8$	$9.08 \mathrm{E}-12$	$9.45 \mathrm{E}-7$	$1.52 \mathrm{E}-8$	1.31E-7	1.00E-9	-3.32E-7	7.60E-7
IR		kBq U-235 eq	$1.03 \mathrm{E}+0$	$4.59 \mathrm{E}-2$	$1.02 \mathrm{E}-6$	$1.08 \mathrm{E}+0$	$1.13 \mathrm{E}-2$	$1.01 \mathrm{E}-1$	$6.73 \mathrm{E}-4$	-4.22E-1	7.70E-1
ETP-fw		cTUe	$5.69 \mathrm{E}+2$	$8.53 \mathrm{E}+0$	$1.21 \mathrm{E}-2$	$5.77 \mathrm{E}+2$	$2.11 \mathrm{E}+0$	$2.21 \mathrm{E}+2$	$2.44 \mathrm{E}+0$	-1.93E+2	$6.11 \mathrm{E}+2$
HTP-c		cTUn	$2.12 \mathrm{E}-8$	3.04E-10	6.17E-13	$2.15 \mathrm{E}-8$	7.49E-11	3.01E-9	3.83E-12	-5.63E-9	$1.90 \mathrm{E}-8$
HTP-nc		ctun	$4.95 \mathrm{E}-7$	$1.02 \mathrm{E}-8$	1.57E-11	5.05E-7	$2.51 \mathrm{E}-9$	$7.59 \mathrm{E}-8$	$4.63 \mathrm{E}-10$	-1.63E-7	4.21E-7
SQP		Pt	$9.14 \mathrm{E}+2$	$8.99 \mathrm{E}+0$	$2.24 \mathrm{E}-3$	$9.23 \mathrm{E}+2$	2.22E+0	1.71E+1	$3.74 \mathrm{E}-1$	-4.41E+2	5.02E+2
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.78 \mathrm{E}+2$	1.51E-1	$2.40 \mathrm{E}-2$	$1.78 \mathrm{E}+2$	$3.72 \mathrm{E}-2$	$2.04 \mathrm{E}+0$	5.58E-3	-7.67E+1	$1.03 \mathrm{E}+2$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$1.78 \mathrm{E}+2$	1.51E-1	$2.40 \mathrm{E}-2$	$1.78 \mathrm{E}+2$	3.72E-2	$2.04 \mathrm{E}+0$	5.58E-3	-7.67E+1	$1.03 \mathrm{E}+2$
PENRE		MJ	$4.59 \mathrm{E}+2$	1.12E+1	$1.44 \mathrm{E}-3$	$4.70 \mathrm{E}+2$	$2.75 \mathrm{E}+0$	$3.00 \mathrm{E}+1$	$1.54 \mathrm{E}-1$	$-2.09 \mathrm{E}+2$	$2.94 \mathrm{E}+2$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$4.59 \mathrm{E}+2$	1.12E+1	$1.44 \mathrm{E}-3$	$4.70 \mathrm{E}+2$	$2.75 \mathrm{E}+0$	$3.00 \mathrm{E}+1$	$1.54 \mathrm{E}-1$	-2.09E+2	$2.94 \mathrm{E}+2$
PET		MJ	$6.37 \mathrm{E}+2$	$1.13 \mathrm{E}+1$	$2.55 \mathrm{E}-2$	$6.48 \mathrm{E}+2$	$2.79 \mathrm{E}+0$	$3.21 \mathrm{E}+1$	1.60E-1	-2.86E+2	3.97E+2
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$4.16 \mathrm{E}-1$	$1.19 \mathrm{E}-3$	$1.46 \mathrm{E}-6$	4.17E-1	$2.93 \mathrm{E}-4$	3.07E-2	$1.80 \mathrm{E}-4$	-1.52E-1	$2.97 \mathrm{E}-1$

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	2.07E-3	2.69E-5	$2.73 \mathrm{E}-13$	$2.10 \mathrm{E}-3$	6.63E-6	$4.66 \mathrm{E}-5$	1.75E-7	-1.79E-4	1.97E-3
NHWD		kg	$2.67 \mathrm{E}+0$	6.51E-1	1.05E-6	3.32E+0	1.61E-1	$1.02 \mathrm{E}+0$	6.42E-1	-7.68E-1	$4.38 \mathrm{E}+0$
RWD		kg	$9.96 \mathrm{E}-4$	7.15E-5	1.10E-13	$1.07 \mathrm{E}-3$	1.76E-5	1.09E-4	9.50E-7	-3.84E-4	$8.11 \mathrm{E}-4$
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

