Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product:	$3072514-$ PVCU Branch 45° BR 315×200 SN4 UD FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

Wavin - PL -Buk - Extra products

PVC external sewage pipes with a solid wall are produced in two classes of circumferential stiffness (SN8, SN4) which enables optimal selection depending on the load conditions. A wide portfolio of system fittings facilitates the construction of many schemes of sewage networks, as well as connections with systems made of other materials. Diameter range DN/OD 110-500mm. The pipes meet the requirements of the PN-EN 1401-1 standard.
LCA standard:
Standard database:
Externally verified:
Issue date:
End of validity:
Verifier: Standard database: Externally verified: End of validity:
Verifier

EN15804+A2 (2019)
Worldwide - Ecoinvent v 3.6 Cut-Off
Yes

08-06-2023

08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS SEARCH Myll̈=

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\mathbf{V}=\mathrm{module}$ declared, $\mathrm{MND}=\mathrm{module}$ not declared)

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potentia
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$1.30 \mathrm{E}+1$	$2.32 \mathrm{E}-1$	$1.45 \mathrm{E}-4$	$1.32 \mathrm{E}+1$	$1.95 \mathrm{E}-1$	1.23E+1	6.07E-2	-8.52E+0	$1.72 \mathrm{E}+1$
GWP-f		kg CO2 eq	$1.83 \mathrm{E}+1$	$2.32 \mathrm{E}-1$	$1.46 \mathrm{E}-4$	1.85E+1	$1.95 \mathrm{E}-1$	$5.93 \mathrm{E}+0$	$6.06 \mathrm{E}-2$	-1.02E+1	$1.45 \mathrm{E}+1$
GWP-b		kg CO2 eq	$-5.38 \mathrm{E}+0$	$1.41 \mathrm{E}-4$	-1.54E-6	$-5.38 \mathrm{E}+0$	$1.18 \mathrm{E}-4$	$6.33 \mathrm{E}+0$	7.89E-5	$1.70 \mathrm{E}+0$	$2.64 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$2.47 \mathrm{E}-2$	$8.20 \mathrm{E}-5$	$1.49 \mathrm{E}-7$	$2.48 \mathrm{E}-2$	6.90E-5	$2.57 \mathrm{E}-3$	$1.53 \mathrm{E}-6$	-2.03E-2	$7.20 \mathrm{E}-3$
ODP		kg CFC11 eq	$9.06 \mathrm{E}-6$	$5.34 \mathrm{E}-8$	$8.26 \mathrm{E}-12$	$9.11 \mathrm{E}-6$	4.50E-8	7.30E-7	2.30E-9	-4.44E-6	$5.45 \mathrm{E}-6$
AP		mol $\mathrm{H}+\mathrm{eq}$	$8.35 \mathrm{E}-2$	$1.32 \mathrm{E}-3$	$1.47 \mathrm{E}-6$	$8.48 \mathrm{E}-2$	$1.11 \mathrm{E}-3$	$1.26 \mathrm{E}-2$	5.57E-5	$-4.48 \mathrm{E}-2$	$5.38 \mathrm{E}-2$
EP-fw		kg P eq	$8.25 \mathrm{E}-4$	1.91E-6	$8.24 \mathrm{E}-9$	8.27E-4	1.61E-6	$8.66 \mathrm{E}-5$	7.06E-8	-4.95E-4	$4.21 \mathrm{E}-4$
EP-m		kg N eq	1.62E-2	$4.72 \mathrm{E}-4$	$1.55 \mathrm{E}-7$	1.67E-2	$3.98 \mathrm{E}-4$	3.17E-3	$3.54 \mathrm{E}-5$	-8.74E-3	1.15E-2
EP-T		mol Neq	1.71E-1	$5.21 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	$1.77 \mathrm{E}-1$	$4.38 \mathrm{E}-3$	$3.50 \mathrm{E}-2$	$2.23 \mathrm{E}-4$	-9.63E-2	1.20E-1
POCP		kg NMVOC eq	5.63E-2	$1.49 \mathrm{E}-3$	6.28E-7	$5.78 \mathrm{E}-2$	$1.25 \mathrm{E}-3$	$1.04 \mathrm{E}-2$	$7.65 \mathrm{E}-5$	-3.14E-2	$3.81 \mathrm{E}-2$
ADP-mm		kg Sb eq	$4.83 \mathrm{E}-4$	6.00E-6	$1.97 \mathrm{E}-8$	4.89E-4	5.05E-6	4.96E-5	5.50E-8	-1.95E-4	3.49E-4
ADP-f		MJ	$4.41 \mathrm{E}+2$	$3.56 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$4.44 \mathrm{E}+2$	$2.99 \mathrm{E}+0$	3.32E+1	$1.68 \mathrm{E}-1$	$-2.34 \mathrm{E}+2$	$2.46 \mathrm{E}+2$
WDP		m3 depriv.	$2.68 \mathrm{E}+1$	1.09E-2	5.22E-5	$2.68 \mathrm{E}+1$	$9.19 \mathrm{E}-3$	$1.29 \mathrm{E}+0$	7.68E-4	-1.48E+1	$1.33 \mathrm{E}+1$
PM		disease inc.	7.10E-7	2.09E-8	$9.08 \mathrm{E}-12$	7.31E-7	$1.76 \mathrm{E}-8$	1.56E-7	$1.16 \mathrm{E}-9$	-4.65E-7	$4.40 \mathrm{E}-7$
IR		kBq U-235 eq	$9.63 \mathrm{E}-1$	$1.56 \mathrm{E}-2$	$1.02 \mathrm{E}-6$	$9.78 \mathrm{E}-1$	1.31E-2	1.20E-1	$7.78 \mathrm{E}-4$	-5.33E-1	5.79E-1
ETP-fw		CTUe	$4.96 \mathrm{E}+2$	2.89E+0	1.21E-2	$4.99 \mathrm{E}+2$	$2.43 \mathrm{E}+0$	$2.57 \mathrm{E}+2$	$2.82 \mathrm{E}+0$	$-2.70 \mathrm{E}+2$	$4.91 \mathrm{E}+2$
HTP-c		CTUn	$1.32 \mathrm{E}-8$	1.03E-10	6.17E-13	$1.33 \mathrm{E}-8$	8.65E-11	3.60E-9	$4.42 \mathrm{E}-12$	-7.44E-9	$9.57 \mathrm{E}-9$
HTP-nc		ctun	$3.78 \mathrm{E}-7$	$3.44 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	3.81E-7	2.90E-9	$8.89 \mathrm{E}-8$	5.35E-10	-2.04E-7	$2.69 \mathrm{E}-7$
SQP		Pt	$5.86 \mathrm{E}+2$	$3.04 \mathrm{E}+0$	$2.24 \mathrm{E}-3$	$5.89 \mathrm{E}+2$	$2.56 \mathrm{E}+0$	$2.01 \mathrm{E}+1$	$4.32 \mathrm{E}-1$	-7.26E+2	-1.13E+2
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	1.01E+2	5.10E-2	$2.40 \mathrm{E}-2$	1.01E+2	4.30E-2	$2.37 \mathrm{E}+0$	$6.45 \mathrm{E}-3$	-1.24E+2	-2.06E+1
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	1.01E+2	$5.10 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$1.01 \mathrm{E}+2$	4.30E-2	$2.37 \mathrm{E}+0$	$6.45 \mathrm{E}-3$	-1.24E+2	-2.06E+1
PENRE		MJ	$4.73 \mathrm{E}+2$	$3.78 \mathrm{E}+0$	1.44E-3	4.77E+2	$3.18 \mathrm{E}+0$	3.54E+1	$1.78 \mathrm{E}-1$	-2.52E+2	$2.63 \mathrm{E}+2$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$4.73 \mathrm{E}+2$	$3.78 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$4.77 \mathrm{E}+2$	$3.18 \mathrm{E}+0$	$3.54 \mathrm{E}+1$	$1.78 \mathrm{E}-1$	-2.52E+2	$2.63 \mathrm{E}+2$
PET		MJ	$5.74 \mathrm{E}+2$	$3.83 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	$5.78 \mathrm{E}+2$	$3.22 \mathrm{E}+0$	3.77E+1	$1.85 \mathrm{E}-1$	-3.76E+2	$2.43 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	3.04E-1	4.03E-4	$1.46 \mathrm{E}-6$	$3.04 \mathrm{E}-1$	3.39E-4	$3.57 \mathrm{E}-2$	$2.07 \mathrm{E}-4$	-1.98E-1	$1.43 \mathrm{E}-1$

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	3.95E-4	$9.10 \mathrm{E}-6$	$2.73 \mathrm{E}-13$	4.04E-4	7.66E-6	5.55E-5	2.02E-7	-2.24E-4	$2.43 \mathrm{E}-4$
NHWD		kg	$2.11 \mathrm{E}+0$	2.21E-1	1.05E-6	$2.33 \mathrm{E}+0$	1.86E-1	1.22E+0	7.42E-1	-9.96E-1	3.47E+0
RWD		kg	8.77E-4	2.42E-5	1.10E-13	9.01E-4	$2.04 \mathrm{E}-5$	$1.30 \mathrm{E}-4$	1.10E-6	-4.88E-4	5.64E-4
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

