Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3072503-$ KG Branch 45° DN300xDN150 FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS SEARCH Myll̈=

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$7.68 \mathrm{E}+0$	$6.46 \mathrm{E}-1$	$1.45 \mathrm{E}-4$	$8.33 \mathrm{E}+0$	1.55E-1	$9.42 \mathrm{E}+0$	4.82E-2	$-6.76 \mathrm{E}+0$	1.12E+1
GWP-f		kg CO2 eq	$1.64 \mathrm{E}+1$	$6.45 \mathrm{E}-1$	$1.46 \mathrm{E}-4$	$1.71 \mathrm{E}+1$	1.55E-1	4.69E+0	4.82E-2	-8.01E+0	$1.39 \mathrm{E}+1$
GWP-b		kg CO 2 eq	-8.80E+0	3.92E-4	-1.54E-6	-8.80E+0	9.41E-5	$4.73 \mathrm{E}+0$	$6.27 \mathrm{E}-5$	$1.27 \mathrm{E}+0$	$-2.80 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$7.49 \mathrm{E}-2$	$2.28 \mathrm{E}-4$	1.49E-7	7.51E-2	$5.49 \mathrm{E}-5$	$2.04 \mathrm{E}-3$	$1.22 \mathrm{E}-6$	-1.54E-2	$6.18 \mathrm{E}-2$
ODP		kg CFC11 eq	6.80E-6	$1.49 \mathrm{E}-7$	8.26E-12	6.95E-6	3.57E-8	$5.79 \mathrm{E}-7$	$1.83 \mathrm{E}-9$	-3.51E-6	4.05E-6
AP		$\mathrm{mol} \mathrm{H}+\mathrm{eq}$	$8.16 \mathrm{E}-2$	$3.68 \mathrm{E}-3$	$1.47 \mathrm{E}-6$	$8.53 \mathrm{E}-2$	$8.83 \mathrm{E}-4$	$9.97 \mathrm{E}-3$	$4.43 \mathrm{E}-5$	-3.50E-2	$6.11 \mathrm{E}-2$
EP-fw		kg Peq	$7.46 \mathrm{E}-4$	5.31E-6	$8.24 \mathrm{E}-9$	7.52E-4	1.28E-6	6.87E-5	5.61E-8	-3.84E-4	4.37E-4
EP-m		kg Neq	$1.65 \mathrm{E}-2$	$1.32 \mathrm{E}-3$	1.55E-7	$1.78 \mathrm{E}-2$	$3.16 \mathrm{E}-4$	$2.50 \mathrm{E}-3$	2.82E-5	-6.79E-3	$1.39 \mathrm{E}-2$
EP-T		mol Neq	$1.79 \mathrm{E}-1$	$1.45 \mathrm{E}-2$	$1.85 \mathrm{E}-6$	$1.94 \mathrm{E}-1$	$3.48 \mathrm{E}-3$	$2.76 \mathrm{E}-2$	$1.77 \mathrm{E}-4$	-7.48E-2	$1.50 \mathrm{E}-1$
POCP		kg NMVOC eq	5.90E-2	$4.14 \mathrm{E}-3$	6.28E-7	6.31E-2	$9.96 \mathrm{E}-4$	$8.21 \mathrm{E}-3$	$6.08 \mathrm{E}-5$	-2.45E-2	$4.79 \mathrm{E}-2$
ADP-mm		kg Sb eq	1.16E-2	1.67E-5	$1.97 \mathrm{E}-8$	1.16E-2	4.01E-6	3.92E-5	4.37E-8	-1.54E-4	$1.15 \mathrm{E}-2$
ADP-f		MJ	$3.71 \mathrm{E}+2$	$9.91 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$3.81 \mathrm{E}+2$	$2.38 \mathrm{E}+0$	2.63E+1	$1.34 \mathrm{E}-1$	-1.85E+2	2.25E+2
WDP		m3 depriv.	$2.48 \mathrm{E}+1$	3.04E-2	5.22E-5	$2.48 \mathrm{E}+1$	7.30E-3	1.03E+0	6.10E-4	-1.16E+1	$1.43 \mathrm{E}+1$
PM		disease inc.	7.97E-7	5.83E-8	9.08E-12	$8.56 \mathrm{E}-7$	1.40E-8	$1.23 \mathrm{E}-7$	$9.19 \mathrm{E}-10$	-3.57E-7	6.37E-7
IR		kBq U-235 eq	$8.93 \mathrm{E}-1$	$4.33 \mathrm{E}-2$	$1.02 \mathrm{E}-6$	$9.37 \mathrm{E}-1$	1.04E-2	$9.46 \mathrm{E}-2$	6.18E-4	-4.17E-1	$6.25 \mathrm{E}-1$
ETP-fw		CTUe	$5.36 \mathrm{E}+2$	8.04E+0	1.21E-2	$5.44 \mathrm{E}+2$	$1.93 \mathrm{E}+0$	$2.04 \mathrm{E}+2$	$2.24 \mathrm{E}+0$	-2.07E+2	5.44E+2
HTP-c		cTUn	$1.82 \mathrm{E}-8$	$2.86 \mathrm{E}-10$	6.17E-13	$1.85 \mathrm{E}-8$	$6.88 \mathrm{E}-11$	$2.84 \mathrm{E}-9$	$3.51 \mathrm{E}-12$	-5.77E-9	$1.57 \mathrm{E}-8$
HTP-nc		cTun	$4.24 \mathrm{E}-7$	$9.59 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	$4.33 \mathrm{E}-7$	2.30E-9	$7.05 \mathrm{E}-8$	$4.25 \mathrm{E}-10$	-1.60E-7	$3.46 \mathrm{E}-7$
SQP		Pt	$8.61 \mathrm{E}+2$	$8.48 \mathrm{E}+0$	$2.24 \mathrm{E}-3$	$8.69 \mathrm{E}+2$	$2.04 \mathrm{E}+0$	$1.59 \mathrm{E}+1$	3.43E-1	$-5.44 \mathrm{E}+2$	3.43E+2
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.66 \mathrm{E}+2$	$1.42 \mathrm{E}-1$	$2.40 \mathrm{E}-2$	$1.66 \mathrm{E}+2$	3.41E-2	1.88E+0	5.12E-3	$-9.34 \mathrm{E}+1$	7.49E+1
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$1.66 \mathrm{E}+2$	1.42E-1	$2.40 \mathrm{E}-2$	$1.66 \mathrm{E}+2$	$3.41 \mathrm{E}-2$	$1.88 \mathrm{E}+0$	5.12E-3	$-9.34 \mathrm{E}+1$	7.49E+1
PENRE		MJ	$3.98 \mathrm{E}+2$	$1.05 \mathrm{E}+1$	$1.44 \mathrm{E}-3$	$4.08 \mathrm{E}+2$	$2.53 \mathrm{E}+0$	$2.80 \mathrm{E}+1$	$1.42 \mathrm{E}-1$	-1.99E+2	$2.40 \mathrm{E}+2$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	3.98E+2	$1.05 \mathrm{E}+1$	$1.44 \mathrm{E}-3$	$4.08 \mathrm{E}+2$	$2.53 \mathrm{E}+0$	$2.80 \mathrm{E}+1$	1.42E-1	-1.99E+2	$2.40 \mathrm{E}+2$
PET		MJ	$5.64 \mathrm{E}+2$	$1.07 \mathrm{E}+1$	$2.55 \mathrm{E}-2$	$5.75 \mathrm{E}+2$	$2.56 \mathrm{E}+0$	$2.99 \mathrm{E}+1$	1.47E-1	-2.92E+2	3.15E+2
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	3.67E-1	1.12E-3	$1.46 \mathrm{E}-6$	$3.68 \mathrm{E}-1$	$2.69 \mathrm{E}-4$	$2.84 \mathrm{E}-2$	1.65E-4	-1.54E-1	$2.43 \mathrm{E}-1$

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	$1.75 \mathrm{E}-3$	2.53E-5	$2.73 \mathrm{E}-13$	$1.78 \mathrm{E}-3$	6.09E-6	4.39E-5	1.60E-7	-1.76E-4	1.65E-3
NHWD		kg	$2.36 \mathrm{E}+0$	$6.14 \mathrm{E}-1$	$1.05 \mathrm{E}-6$	$2.97 \mathrm{E}+0$	1.48E-1	9.62E-1	5.90E-1	-7.75E-1	3.90E+0
RWD		kg	$8.64 \mathrm{E}-4$	$6.74 \mathrm{E}-5$	1.10E-13	9.31E-4	1.62E-5	1.02E-4	8.72E-7	-3.81E-4	6.69E-4
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

