Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3072505-$ KG Plug DN315 FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$4.13 \mathrm{E}+0$	$7.05 \mathrm{E}-2$	$1.45 \mathrm{E}-4$	4.20E+0	$5.42 \mathrm{E}-2$	$2.28 \mathrm{E}+0$	1.72E-2	-2.39E+0	$4.16 \mathrm{E}+0$
GWP-f		kg CO2 eq	$4.68 \mathrm{E}+0$	$7.05 \mathrm{E}-2$	$1.46 \mathrm{E}-4$	$4.75 \mathrm{E}+0$	5.42E-2	$1.62 \mathrm{E}+0$	1.72E-2	-2.52E+0	3.92E+0
GWP-b		kg CO2 eq	-5.52E-1	$4.28 \mathrm{E}-5$	-1.54E-6	-5.52E-1	3.29E-5	$6.61 \mathrm{E}-1$	2.17E-5	1.28E-1	2.37E-1
GWP-Iuluc		kg CO2 eq	$4.99 \mathrm{E}-3$	$2.49 \mathrm{E}-5$	$1.49 \mathrm{E}-7$	$5.02 \mathrm{E}-3$	$1.92 \mathrm{E}-5$	6.85E-4	$4.52 \mathrm{E}-7$	-2.79E-3	$2.93 \mathrm{E}-3$
ODP		kg CFC11 eq	$2.36 \mathrm{E}-6$	$1.62 \mathrm{E}-8$	$8.26 \mathrm{E}-12$	$2.38 \mathrm{E}-6$	$1.25 \mathrm{E}-8$	1.90E-7	6.42E-10	-1.19E-6	$1.39 \mathrm{E}-6$
AP		mol $\mathrm{H}+\mathrm{eq}$	$2.24 \mathrm{E}-2$	$4.01 \mathrm{E}-4$	$1.47 \mathrm{E}-6$	$2.28 \mathrm{E}-2$	$3.09 \mathrm{E}-4$	3.23E-3	1.56E-5	-1.00E-2	$1.64 \mathrm{E}-2$
EP-fw		kg P eq	2.18E-4	5.80E-7	$8.24 \mathrm{E}-9$	2.18E-4	$4.46 \mathrm{E}-7$	2.30E-5	$2.04 \mathrm{E}-8$	-1.02E-4	1.40E-4
EP-m		kg N eq	$3.98 \mathrm{E}-3$	$1.44 \mathrm{E}-4$	$1.55 \mathrm{E}-7$	$4.12 \mathrm{E}-3$	1.10E-4	7.91E-4	$9.68 \mathrm{E}-6$	-1.83E-3	3.20E-3
EP-T		mol Neq	4.33E-2	$1.58 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	$4.48 \mathrm{E}-2$	1.22E-3	$8.72 \mathrm{E}-3$	6.23E-5	-1.98E-2	3.51E-2
POCP		kg NMVOC eq	1.42E-2	4.52E-4	6.28E-7	1.47E-2	$3.48 \mathrm{E}-4$	$2.61 \mathrm{E}-3$	$2.14 \mathrm{E}-5$	-6.71E-3	$1.09 \mathrm{E}-2$
ADP-mm		kg Sb eq	$4.26 \mathrm{E}-3$	$1.82 \mathrm{E}-6$	$1.97 \mathrm{E}-8$	4.26E-3	1.40E-6	1.27E-5	$1.57 \mathrm{E}-8$	-4.98E-5	$4.23 \mathrm{E}-3$
ADP-f		MJ	$1.14 \mathrm{E}+2$	$1.08 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$1.15 \mathrm{E}+2$	8.32E-1	$8.70 \mathrm{E}+0$	4.69E-2	-5.98E+1	$6.44 \mathrm{E}+1$
WDP		m3 depriv.	7.20E+0	$3.32 \mathrm{E}-3$	5.22E-5	7.21E+0	$2.55 \mathrm{E}-3$	$3.45 \mathrm{E}-1$	3.05E-4	$-3.57 \mathrm{E}+0$	$3.98 \mathrm{E}+0$
PM		disease inc.	1.59E-7	$6.36 \mathrm{E}-9$	$9.08 \mathrm{E}-12$	$1.65 \mathrm{E}-7$	4.89E-9	3.98E-8	3.23E-10	-7.99E-8	$1.30 \mathrm{E}-7$
IR		kBq U-235 eq	$2.53 \mathrm{E}-1$	$4.73 \mathrm{E}-3$	$1.02 \mathrm{E}-6$	$2.58 \mathrm{E}-1$	$3.64 \mathrm{E}-3$	$3.08 \mathrm{E}-2$	$2.15 \mathrm{E}-4$	-1.21E-1	1.72E-1
ETP-fw		ctue	1.35E+2	$8.78 \mathrm{E}-1$	1.21E-2	$1.35 \mathrm{E}+2$	6.76E-1	$6.77 \mathrm{E}+1$	$7.48 \mathrm{E}-1$	-4.54E+1	$1.59 \mathrm{E}+2$
HTP-c		CTUn	4.22E-9	3.13E-11	6.17E-13	$4.25 \mathrm{E}-9$	$2.40 \mathrm{E}-11$	$9.81 \mathrm{E}-10$	1.30E-12	-1.53E-9	3.73E-9
HTP-nc		cTUn	1.29E-7	$1.05 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	$1.30 \mathrm{E}-7$	8.05E-10	$2.35 \mathrm{E}-8$	$1.43 \mathrm{E}-10$	-4.71E-8	1.07E-7
SQP		Pt	7.20E+1	$9.25 \mathrm{E}-1$	$2.24 \mathrm{E}-3$	7.29E+1	7.12E-1	$5.32 \mathrm{E}+0$	1.20E-1	-7.38E+1	$5.21 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$2.74 \mathrm{E}+1$	$1.55 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$2.74 \mathrm{E}+1$	1.19E-2	6.29E-1	$1.75 \mathrm{E}-3$	-1.34E+1	1.47E+1
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$2.74 \mathrm{E}+1$	$1.55 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$2.74 \mathrm{E}+1$	1.19E-2	6.29E-1	$1.75 \mathrm{E}-3$	-1.34E+1	1.47E+1
PENRE		MJ	1.22E+2	$1.15 \mathrm{E}+0$	1.44E-3	$1.23 \mathrm{E}+2$	8.83E-1	$9.25 \mathrm{E}+0$	$4.98 \mathrm{E}-2$	-6.44E+1	$6.88 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	1.22E+2	$1.15 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$1.23 \mathrm{E}+2$	8.83E-1	$9.25 \mathrm{E}+0$	$4.98 \mathrm{E}-2$	-6.44E+1	$6.88 \mathrm{E}+1$
PET		MJ	1.49E+2	$1.16 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	$1.50 \mathrm{E}+2$	8.95E-1	$9.88 \mathrm{E}+0$	$5.15 \mathrm{E}-2$	-7.78E+1	$8.34 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	8.26E-2	$1.22 \mathrm{E}-4$	$1.46 \mathrm{E}-6$	$8.27 \mathrm{E}-2$	9.41E-5	$9.46 \mathrm{E}-3$	$5.74 \mathrm{E}-5$	-4.10E-2	5.13E-2

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	6.17E-4	$2.77 \mathrm{E}-6$	$2.73 \mathrm{E}-13$	6.20E-4	2.13E-6	1.42E-5	5.71E-8	-5.28E-5	$5.84 \mathrm{E}-4$
NHWD		kg	$4.88 \mathrm{E}-1$	6.70E-2	1.05E-6	5.55E-1	5.16E-2	3.19E-1	2.06E-1	-2.13E-1	$9.19 \mathrm{E}-1$
RWD		kg	$2.23 \mathrm{E}-4$	7.36E-6	1.10E-13	2.30E-4	$5.66 \mathrm{E}-6$	3.30E-5	3.05E-7	-1.08E-4	1.61E-4
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

