Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product:	$3072533-$ PVCU Bend 15° BR 400 SN4 FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

Manufacturer: Wavin - PL -Buk - Extra products

PVC external sewage pipes with a solid wall are produced in two classes of circumferential stiffness (SN8, SN4), which enables optimal selection depending on the load conditions. A wide portfolio of system fittings facilitates the construction of many schemes of sewage networks, as well as connections with systems made of other materials. Diameter range DN/OD 110-500mm. The pipes meet the requirements of the PN-EN 1401-1 standard.
LCA standard:
Standard database:
Externally verified:
Issue date:
End of validity:
Verifier: Standard database: Externally verified: End of validity:
Verifier:
Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
08-06-2023
08-06-2028
Martijn van Hövell - SGS Search

SGS. search nulor

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\mathbf{V}=\mathrm{module}$ declared, $\mathrm{MND}=\mathrm{module}$ not declared)

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	2.51E+1	$3.79 \mathrm{E}-1$	$1.45 \mathrm{E}-4$	$2.55 \mathrm{E}+1$	4.43E-1	$2.61 \mathrm{E}+1$	$1.23 \mathrm{E}-1$	-1.71E+1	3.52E+1
GWP-f		kg CO2 eq	3.64E+1	$3.78 \mathrm{E}-1$	$1.46 \mathrm{E}-4$	3.67E+1	$4.42 \mathrm{E}-1$	$1.34 \mathrm{E}+1$	$1.22 \mathrm{E}-1$	-1.95E+1	3.12E+1
GWP-b		kg CO2 eq	-1.13E+1	2.30E-4	-1.54E-6	-1.13E+1	$2.69 \mathrm{E}-4$	1.27E+1	$1.58 \mathrm{E}-4$	$2.51 \mathrm{E}+0$	$3.96 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	4.51E-2	$1.34 \mathrm{E}-4$	1.49E-7	4.52E-2	$1.57 \mathrm{E}-4$	$5.20 \mathrm{E}-3$	$3.32 \mathrm{E}-6$	-3.31E-2	$1.75 \mathrm{E}-2$
ODP		kg CFC11 eq	1.72E-5	$8.72 \mathrm{E}-8$	8.26E-12	1.72E-5	1.02E-7	$1.41 \mathrm{E}-6$	5.04E-9	-8.46E-6	$1.03 \mathrm{E}-5$
AP		mol $\mathrm{H}+\mathrm{eq}$	$1.68 \mathrm{E}-1$	$2.15 \mathrm{E}-3$	$1.47 \mathrm{E}-6$	$1.70 \mathrm{E}-1$	2.52E-3	$2.58 \mathrm{E}-2$	1.20E-4	-8.25E-2	1.16E-1
EP-fw		kg P eq	1.60E-3	3.11E-6	$8.24 \mathrm{E}-9$	1.60E-3	3.64E-6	$1.73 \mathrm{E}-4$	1.50E-7	-8.76E-4	8.99E-4
EP-m		kg Neq	3.18E-2	7.71E-4	$1.55 \mathrm{E}-7$	$3.25 \mathrm{E}-2$	9.02E-4	$6.59 \mathrm{E}-3$	7.64E-5	-1.60E-2	2.41E-2
EP-T		mol Neq	$3.41 \mathrm{E}-1$	$8.49 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	3.49E-1	$9.93 \mathrm{E}-3$	7.26E-2	4.81E-4	-1.78E-1	$2.54 \mathrm{E}-1$
POCP		kg NMVOC eq	1.15E-1	$2.43 \mathrm{E}-3$	$6.28 \mathrm{E}-7$	$1.18 \mathrm{E}-1$	2.84E-3	2.17E-2	1.63E-4	-5.75E-2	$8.48 \mathrm{E}-2$
ADP-mm		kg Sb eq	1.29E-3	$9.78 \mathrm{E}-6$	$1.97 \mathrm{E}-8$	1.30E-3	1.14E-5	1.01E-4	1.19E-7	-3.77E-4	1.04E-3
ADP-f		MJ	$8.83 \mathrm{E}+2$	$5.81 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$8.89 \mathrm{E}+2$	$6.79 \mathrm{E}+0$	$6.90 \mathrm{E}+1$	3.64E-1	-4.49E+2	$5.16 \mathrm{E}+2$
WDP		m3 depriv.	$5.15 \mathrm{E}+1$	$1.78 \mathrm{E}-2$	5.22E-5	$5.15 \mathrm{E}+1$	$2.08 \mathrm{E}-2$	$2.55 \mathrm{E}+0$	1.97E-3	-2.72E+1	2.69E+1
PM		disease inc.	$1.54 \mathrm{E}-6$	$3.41 \mathrm{E}-8$	9.08E-12	1.57E-6	$3.99 \mathrm{E}-8$	3.27E-7	$2.49 \mathrm{E}-9$	-8.09E-7	$1.13 \mathrm{E}-6$
IR		kBq U-235 eq	$1.92 \mathrm{E}+0$	$2.54 \mathrm{E}-2$	$1.02 \mathrm{E}-6$	$1.94 \mathrm{E}+0$	2.97E-2	$2.43 \mathrm{E}-1$	$1.67 \mathrm{E}-3$	-9.71E-1	$1.25 \mathrm{E}+0$
ETP-fw		cTUe	$9.13 \mathrm{E}+2$	4.71E+0	$1.21 \mathrm{E}-2$	$9.18 \mathrm{E}+2$	$5.51 \mathrm{E}+0$	$4.86 \mathrm{E}+2$	$5.27 \mathrm{E}+0$	-4.70E+2	$9.45 \mathrm{E}+2$
HTP-c		CTUn	2.71E-8	$1.68 \mathrm{E}-10$	6.17E-13	2.73E-8	$1.96 \mathrm{E}-10$	$7.88 \mathrm{E}-9$	$9.33 \mathrm{E}-12$	$-1.32 \mathrm{E}-8$	$2.22 \mathrm{E}-8$
HTP-nc		ctun	7.43E-7	$5.62 \mathrm{E}-9$	$1.57 \mathrm{E}-11$	$7.49 \mathrm{E}-7$	$6.57 \mathrm{E}-9$	$1.78 \mathrm{E}-7$	$1.02 \mathrm{E}-9$	-3.76E-7	$5.58 \mathrm{E}-7$
SQP		Pt	1.20E+3	4.97E+0	$2.24 \mathrm{E}-3$	$1.21 \mathrm{E}+3$	$5.81 \mathrm{E}+0$	4.34E+1	$9.22 \mathrm{E}-1$	-1.16E+3	$9.77 \mathrm{E}+1$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$2.36 \mathrm{E}+2$	8.33E-2	$2.40 \mathrm{E}-2$	$2.36 \mathrm{E}+2$	$9.74 \mathrm{E}-2$	$4.76 \mathrm{E}+0$	1.31E-2	-2.02E+2	$3.85 \mathrm{E}+1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$2.36 \mathrm{E}+2$	8.33E-2	$2.40 \mathrm{E}-2$	$2.36 \mathrm{E}+2$	$9.74 \mathrm{E}-2$	$4.76 \mathrm{E}+0$	1.31E-2	-2.02E+2	$3.85 \mathrm{E}+1$
PENRE		MJ	$9.47 \mathrm{E}+2$	$6.16 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	$9.53 \mathrm{E}+2$	7.21E+0	7.34E+1	3.86E-1	-4.83E+2	$5.51 \mathrm{E}+2$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	9.47E+2	6.16E+0	$1.44 \mathrm{E}-3$	$9.53 \mathrm{E}+2$	7.21E+0	7.34E+1	3.86E-1	-4.83E+2	$5.51 \mathrm{E}+2$
PET		MJ	1.18E+3	$6.25 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	$1.19 \mathrm{E}+3$	7.31E+0	7.82E+1	4.00E-1	-6.86E+2	$5.90 \mathrm{E}+2$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$6.05 \mathrm{E}-1$	6.57E-4	$1.46 \mathrm{E}-6$	$6.06 \mathrm{E}-1$	7.68E-4	7.18E-2	$4.46 \mathrm{E}-4$	-3.51E-1	3.28E-1

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	$7.54 \mathrm{E}-4$	$1.48 \mathrm{E}-5$	2.73E-13	7.69E-4	1.74E-5	$1.15 \mathrm{E}-4$	$4.38 \mathrm{E}-7$	-4.23E-4	4.79E-4
NHWD	kg	$3.98 \mathrm{E}+0$	3.60E-1	$1.05 \mathrm{E}-6$	$4.34 \mathrm{E}+0$	4.21E-1	$2.70 \mathrm{E}+0$	$1.70 \mathrm{E}+0$	-1.79E+0	7.37E+0
RWD	kg	$1.79 \mathrm{E}-3$	3.95E-5	1.10E-13	1.83E-3	4.62E-5	$2.68 \mathrm{E}-4$	$2.38 \mathrm{E}-6$	-8.88E-4	1.25E-3
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

