Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product:	3072528 - PVCU Double Coupler BR 250 SN4n FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

Wavin - PL -Buk - Extra products
PVC external sewage pipes with a solid wall are produced in two classes of circumferential stiffness (SN8, SN4), which enables optimal selection depending on the load conditions. A wide portfolio of system fittings facilitates the construction of many schemes of sewage networks, as well as connections with systems made of other materials. Diameter range DN/OD 110-500mm. The pipes meet the requirements of the PN-EN 1401-1 standard.
LCA standard:
Standard database:
Externally verified:
Issue date:
End of validity:
Verifier: Standard database: Externally verified: End of validity:
Verifier:

EN15804+A2 (2019)
Worldwide - Ecoinvent v 3.6 Cut-Off
Yes

08-06-2023

08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS SEARCH Myll̈=

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\mathbf{V}=\mathrm{module}$ declared, $\mathrm{MND}=\mathrm{module}$ not declared)

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$3.58 \mathrm{E}+0$	$6.59 \mathrm{E}-2$	$1.45 \mathrm{E}-4$	3.65E+0	$4.40 \mathrm{E}-2$	$3.28 \mathrm{E}+0$	1.64E-2	$-2.12 \mathrm{E}+0$	$4.86 \mathrm{E}+0$
GWP-f		kg CO2 eq	$4.62 \mathrm{E}+0$	6.58E-2	$1.46 \mathrm{E}-4$	$4.68 \mathrm{E}+0$	$4.40 \mathrm{E}-2$	$2.11 \mathrm{E}+0$	$1.64 \mathrm{E}-2$	$-2.36 \mathrm{E}+0$	$4.49 \mathrm{E}+0$
GWP-b		kg CO 2 eq	$-1.04 \mathrm{E}+0$	4.00E-5	-1.54E-6	$-1.04 \mathrm{E}+0$	$2.67 \mathrm{E}-5$	1.18E+0	1.97E-5	$2.40 \mathrm{E}-1$	3.73E-1
GWP-Iuluc		kg CO2 eq	$5.53 \mathrm{E}-3$	$2.33 \mathrm{E}-5$	1.49E-7	$5.56 \mathrm{E}-3$	$1.56 \mathrm{E}-5$	$5.11 \mathrm{E}-4$	$4.04 \mathrm{E}-7$	-3.38E-3	$2.70 \mathrm{E}-3$
ODP		kg CFC11 eq	$1.98 \mathrm{E}-6$	$1.52 \mathrm{E}-8$	$8.26 \mathrm{E}-12$	$1.99 \mathrm{E}-6$	$1.01 \mathrm{E}-8$	$1.43 \mathrm{E}-7$	$5.72 \mathrm{E}-10$	-9.30E-7	$1.22 \mathrm{E}-6$
AP		$\mathrm{mol} \mathrm{H}+\mathrm{eq}$	$2.31 \mathrm{E}-2$	$3.75 \mathrm{E}-4$	$1.47 \mathrm{E}-6$	$2.35 \mathrm{E}-2$	$2.50 \mathrm{E}-4$	$2.59 \mathrm{E}-3$	$1.40 \mathrm{E}-5$	-8.92E-3	$1.74 \mathrm{E}-2$
EP-fw		kg Peq	2.04E-4	$5.42 \mathrm{E}-7$	8.24E-9	$2.04 \mathrm{E}-4$	3.62E-7	$1.72 \mathrm{E}-5$	$1.83 \mathrm{E}-8$	-9.21E-5	1.30E-4
EP-m		kg Neq	$4.17 \mathrm{E}-3$	$1.34 \mathrm{E}-4$	1.55E-7	$4.30 \mathrm{E}-3$	$8.96 \mathrm{E}-5$	$6.66 \mathrm{E}-4$	$1.20 \mathrm{E}-5$	-1.74E-3	$3.33 \mathrm{E}-3$
EP-T		mol Neq	$4.55 \mathrm{E}-2$	1.48E-3	$1.85 \mathrm{E}-6$	$4.70 \mathrm{E}-2$	$9.87 \mathrm{E}-4$	$7.34 \mathrm{E}-3$	5.57E-5	-1.91E-2	$3.63 \mathrm{E}-2$
POCP		kg NMVOC eq	$1.60 \mathrm{E}-2$	$4.23 \mathrm{E}-4$	6.28E-7	$1.64 \mathrm{E}-2$	$2.82 \mathrm{E}-4$	$2.16 \mathrm{E}-3$	$1.94 \mathrm{E}-5$	-6.39E-3	$1.25 \mathrm{E}-2$
ADP-mm		kg Sb eq	$3.44 \mathrm{E}-3$	$1.70 \mathrm{E}-6$	$1.97 \mathrm{E}-8$	$3.44 \mathrm{E}-3$	$1.14 \mathrm{E}-6$	$9.81 \mathrm{E}-6$	$1.40 \mathrm{E}-8$	-5.06E-5	$3.40 \mathrm{E}-3$
ADP-f		MJ	$1.13 \mathrm{E}+2$	$1.01 \mathrm{E}+0$	$1.36 \mathrm{E}-3$	$1.14 \mathrm{E}+2$	$6.75 \mathrm{E}-1$	$6.69 \mathrm{E}+0$	$4.19 \mathrm{E}-2$	-5.28E+1	6.89E+1
WDP		m3 depriv.	5.90E+0	3.10E-3	5.22E-5	$5.91 \mathrm{E}+0$	2.07E-3	$2.64 \mathrm{E}-1$	$2.59 \mathrm{E}-4$	$-2.86 \mathrm{E}+0$	$3.31 \mathrm{E}+0$
PM		disease inc.	2.06E-7	5.94E-9	$9.08 \mathrm{E}-12$	$2.12 \mathrm{E}-7$	3.97E-9	3.12E-8	$2.88 \mathrm{E}-10$	-8.58E-8	$1.62 \mathrm{E}-7$
IR		kBq U-235 eq	$2.78 \mathrm{E}-1$	4.42E-3	$1.02 \mathrm{E}-6$	$2.83 \mathrm{E}-1$	$2.95 \mathrm{E}-3$	$2.37 \mathrm{E}-2$	$1.94 \mathrm{E}-4$	-1.05E-1	$2.04 \mathrm{E}-1$
ETP-fw		CTUe	$1.39 \mathrm{E}+2$	$8.21 \mathrm{E}-1$	1.21E-2	$1.40 \mathrm{E}+2$	5.48E-1	$5.10 \mathrm{E}+1$	5.60E-1	-4.75E+1	1.44E+2
HTP-c		cTUn	3.91E-9	$2.92 \mathrm{E}-11$	6.17E-13	3.94E-9	1.95E-11	$7.58 \mathrm{E}-10$	1.15E-12	-1.46E-9	$3.26 \mathrm{E}-9$
HTP-nc		cTun	1.10E-7	9.78E-10	1.57E-11	1.11E-7	6.53E-10	$1.81 \mathrm{E}-8$	1.11E-10	-3.97E-8	8.99E-8
SQP		Pt	$1.16 \mathrm{E}+2$	$8.65 \mathrm{E}-1$	$2.24 \mathrm{E}-3$	1.17E+2	$5.77 \mathrm{E}-1$	4.07E+0	1.07E-1	-1.25E+2	$-2.50 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$2.95 \mathrm{E}+1$	$1.45 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$2.95 \mathrm{E}+1$	$9.68 \mathrm{E}-3$	$4.72 \mathrm{E}-1$	$1.63 \mathrm{E}-3$	-2.12E+1	$8.81 \mathrm{E}+0$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$2.95 \mathrm{E}+1$	$1.45 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$2.95 \mathrm{E}+1$	$9.68 \mathrm{E}-3$	$4.72 \mathrm{E}-1$	$1.63 \mathrm{E}-3$	-2.12E+1	$8.81 \mathrm{E}+0$
PENRE		MJ	1.21E+2	$1.07 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	1.22E+2	7.16E-1	7.12E+0	4.44E-2	$-5.70 \mathrm{E}+1$	$7.33 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	1.21E+2	$1.07 \mathrm{E}+0$	$1.44 \mathrm{E}-3$	1.22E+2	7.16E-1	7.12E+0	4.44E-2	-5.70E+1	$7.33 \mathrm{E}+1$
PET		MJ	$1.51 \mathrm{E}+2$	$1.09 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	$1.52 \mathrm{E}+2$	7.26E-1	7.59E+0	4.61E-2	$-7.82 \mathrm{E}+1$	$8.21 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	7.81E-2	$1.14 \mathrm{E}-4$	$1.46 \mathrm{E}-6$	7.82E-2	7.64E-5	$8.15 \mathrm{E}-3$	5.15E-5	-3.69E-2	4.96E-2

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	4.69E-4	$2.58 \mathrm{E}-6$	$2.73 \mathrm{E}-13$	4.72E-4	$1.73 \mathrm{E}-6$	1.17E-5	5.08E-8	-5.10E-5	4.34E-4
NHWD	kg	5.02E-1	$6.26 \mathrm{E}-2$	$1.05 \mathrm{E}-6$	$5.65 \mathrm{E}-1$	$4.18 \mathrm{E}-2$	$2.64 \mathrm{E}-1$	$1.84 \mathrm{E}-1$	-1.95E-1	8.60E-1
RWD	kg	$2.86 \mathrm{E}-4$	6.87E-6	1.10E-13	2.93E-4	4.59E-6	$2.58 \mathrm{E}-5$	$2.73 \mathrm{E}-7$	-9.83E-5	$2.25 \mathrm{E}-4$
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

