Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804
Ecochain v3.5.80

Ecochain

Product:	$3072538-$ PVCU Reducer BR 400×315 SN4UD FIN
Unit:	1 piece
Manufacturer:	Wavin - PL -Buk - Extra products

Wavin - PL -Buk - Extra products
PVC external sewage pipes with a solid wall are produced in two classes of circumferential stiffness (SN8, SN4), which enables optimal selection depending on the load conditions. A wide portfolio of system fittings facilitates the construction of many schemes of sewage networks, as well as connections with systems made of other materials. Diameter range DN/OD 110-500mm. The pipes meet the requirements of the PN-EN 1401-1 standard.
LCA standard:
Standard database:
Externally verified:
Issue date:
End of validity:
Verifier: Standard database: Externally verified: End of validity:
Verifier:

EN15804+A2 (2019)
Worldwide - Ecoinvent v 3.6 Cut-Off
Yes

08-06-2023

08-06-2028
Martijn van Hövell - SGS Search
wavin
An Orbia business.

SGS SEARCH Myll̈=

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - PL -Buk - Extra products (2020). ($\mathbf{V}=\mathrm{module}$ declared, $\mathrm{MND}=\mathrm{module}$ not declared)

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$1.44 \mathrm{E}+1$	$1.95 \mathrm{E}-1$	1.45E-4	$1.46 \mathrm{E}+1$	$2.46 \mathrm{E}-1$	1.35E+1	$6.78 \mathrm{E}-2$	-9.37E+0	1.91E+1
GWP-f		kg CO2 eq	$1.98 \mathrm{E}+1$	$1.95 \mathrm{E}-1$	1.46E-4	$2.00 \mathrm{E}+1$	$2.46 \mathrm{E}-1$	$7.44 \mathrm{E}+0$	$6.78 \mathrm{E}-2$	-1.06E+1	$1.71 \mathrm{E}+1$
GWP-b		kg CO2 eq	-5.37E+0	$1.18 \mathrm{E}-4$	-1.54E-6	$-5.37 \mathrm{E}+0$	$1.49 \mathrm{E}-4$	$6.10 \mathrm{E}+0$	$8.71 \mathrm{E}-5$	$1.25 \mathrm{E}+0$	$1.99 \mathrm{E}+0$
GWP-Iuluc		kg CO2 eq	$2.36 \mathrm{E}-2$	6.89E-5	1.49E-7	$2.37 \mathrm{E}-2$	8.71E-5	$2.86 \mathrm{E}-3$	1.84E-6	-1.70E-2	$9.65 \mathrm{E}-3$
ODP		kg CFC11 eq	$9.39 \mathrm{E}-6$	$4.48 \mathrm{E}-8$	$8.26 \mathrm{E}-12$	$9.44 \mathrm{E}-6$	$5.67 \mathrm{E}-8$	7.71E-7	$2.80 \mathrm{E}-9$	-4.63E-6	$5.64 \mathrm{E}-6$
AP		mol $\mathrm{H}+\mathrm{eq}$	$9.14 \mathrm{E}-2$	1.11E-3	$1.47 \mathrm{E}-6$	$9.25 \mathrm{E}-2$	$1.40 \mathrm{E}-3$	$1.41 \mathrm{E}-2$	6.67E-5	-4.42E-2	$6.40 \mathrm{E}-2$
EP-fw		kg Peq	$8.64 \mathrm{E}-4$	$1.60 \mathrm{E}-6$	8.24E-9	$8.66 \mathrm{E}-4$	2.03E-6	9.50E-5	8.31E-8	-4.67E-4	$4.96 \mathrm{E}-4$
EP-m		kg Neq	1.71E-2	3.97E-4	$1.55 \mathrm{E}-7$	$1.75 \mathrm{E}-2$	5.02E-4	$3.59 \mathrm{E}-3$	4.27E-5	-8.50E-3	1.31E-2
EP-T		mol Neq	1.83E-1	$4.37 \mathrm{E}-3$	$1.85 \mathrm{E}-6$	$1.88 \mathrm{E}-1$	5.53E-3	3.96E-2	$2.67 \mathrm{E}-4$	-9.39E-2	$1.39 \mathrm{E}-1$
POCP		kg NMVOC eq	$6.23 \mathrm{E}-2$	$1.25 \mathrm{E}-3$	$6.28 \mathrm{E}-7$	$6.36 \mathrm{E}-2$	$1.58 \mathrm{E}-3$	$1.18 \mathrm{E}-2$	$9.06 \mathrm{E}-5$	-3.06E-2	$4.65 \mathrm{E}-2$
ADP-mm		kg Sb eq	7.68E-4	$5.03 \mathrm{E}-6$	1.97E-8	$7.73 \mathrm{E}-4$	6.37E-6	5.52E-5	$6.59 \mathrm{E}-8$	-2.06E-4	$6.28 \mathrm{E}-4$
ADP-f		MJ	$4.83 \mathrm{E}+2$	2.99E+0	1.36E-3	$4.86 \mathrm{E}+2$	$3.78 \mathrm{E}+0$	$3.80 \mathrm{E}+1$	$2.02 \mathrm{E}-1$	$-2.44 \mathrm{E}+2$	$2.83 \mathrm{E}+2$
WDP		m3 depriv.	$2.81 \mathrm{E}+1$	$9.17 \mathrm{E}-3$	5.22E-5	2.82E+1	$1.16 \mathrm{E}-2$	$1.40 \mathrm{E}+0$	$1.11 \mathrm{E}-3$	-1.47E+1	1.49E+1
PM		disease inc.	$8.13 \mathrm{E}-7$	$1.76 \mathrm{E}-8$	$9.08 \mathrm{E}-12$	8.31E-7	2.22E-8	$1.79 \mathrm{E}-7$	$1.38 \mathrm{E}-9$	-4.22E-7	6.12E-7
IR		kBq U-235 eq	$1.05 \mathrm{E}+0$	$1.31 \mathrm{E}-2$	1.02E-6	$1.06 \mathrm{E}+0$	$1.65 \mathrm{E}-2$	$1.33 \mathrm{E}-1$	9.29E-4	-5.22E-1	$6.88 \mathrm{E}-1$
ETP-fw		CTUe	$4.85 \mathrm{E}+2$	$2.43 \mathrm{E}+0$	1.21E-2	$4.88 \mathrm{E}+2$	$3.07 \mathrm{E}+0$	$2.66 \mathrm{E}+2$	$2.89 \mathrm{E}+0$	$-2.45 \mathrm{E}+2$	$5.15 \mathrm{E}+2$
HTP-c		CTUn	$1.47 \mathrm{E}-8$	8.63E-11	6.17E-13	$1.48 \mathrm{E}-8$	1.09E-10	4.31E-9	5.17E-12	-7.01E-9	1.22E-8
HTP-nc		CTUn	$4.06 \mathrm{E}-7$	$2.89 \mathrm{E}-9$	1.57E-11	$4.08 \mathrm{E}-7$	3.66E-9	$9.76 \mathrm{E}-8$	5.58E-10	-2.02E-7	3.08E-7
SQP		Pt	$5.85 \mathrm{E}+2$	$2.56 \mathrm{E}+0$	$2.24 \mathrm{E}-3$	$5.88 \mathrm{E}+2$	$3.23 \mathrm{E}+0$	$2.39 \mathrm{E}+1$	$5.12 \mathrm{E}-1$	-5.77E+2	$3.84 \mathrm{E}+1$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	1.19E+2	4.29E-2	2.40E-2	$1.20 \mathrm{E}+2$	5.42E-2	$2.62 \mathrm{E}+0$	7.23E-3	-1.01E+2	2.12E+1
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	1.19E+2	$4.29 \mathrm{E}-2$	$2.40 \mathrm{E}-2$	$1.20 \mathrm{E}+2$	5.42E-2	$2.62 \mathrm{E}+0$	7.23E-3	-1.01E+2	2.12E+1
PENRE		MJ	$5.18 \mathrm{E}+2$	3.17E+0	1.44E-3	$5.21 \mathrm{E}+2$	4.01E+0	4.04E+1	$2.15 \mathrm{E}-1$	-2.63E+2	3.02E+2
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$5.18 \mathrm{E}+2$	3.17E+0	1.44E-3	$5.21 \mathrm{E}+2$	4.01E+0	4.04E+1	$2.15 \mathrm{E}-1$	-2.63E+2	3.02E+2
PET		MJ	$6.37 \mathrm{E}+2$	$3.21 \mathrm{E}+0$	$2.55 \mathrm{E}-2$	6.40E+2	4.07E+0	4.30E+1	$2.22 \mathrm{E}-1$	-3.64E+2	3.23E+2
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	3.30E-1	$3.38 \mathrm{E}-4$	1.46E-6	3.31E-1	4.28E-4	3.95E-2	$2.48 \mathrm{E}-4$	-1.87E-1	1.84E-1

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	4.10E-4	7.64E-6	$2.73 \mathrm{E}-13$	4.17E-4	$9.66 \mathrm{E}-6$	6.32E-5	$2.43 \mathrm{E}-7$	-2.28E-4	2.62E-4
NHWD	kg	$2.15 \mathrm{E}+0$	$1.85 \mathrm{E}-1$	1.05E-6	$2.34 \mathrm{E}+0$	$2.34 \mathrm{E}-1$	1.48E+0	9.48E-1	-9.53E-1	$4.05 \mathrm{E}+0$
RWD	kg	$9.78 \mathrm{E}-4$	2.03E-5	1.10E-13	$9.98 \mathrm{E}-4$	2.57E-5	1.47E-4	1.32E-6	-4.77E-4	6.95E-4
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

