As usinas nucleares são cercadas de expectativa, seja pelas promessas de energia "limpa", seja pelo horror à radiação, associado às bombas nucleares e aos acidentes de Chernobyl e Fukushima. No Brasil, temos duas e, pelo visto, um dia teremos três, agora que a construção de Angra 3 foi reiniciada. Precisamos delas?

Assista ao vídeo a seguir, que mostra o interior da Usina Nuclear de Angra.

https://ftd.li/izyrbi

A volta de Angra 3 — e o futuro do programa nuclear brasileiro

A usina começou a ser construída há 37 anos. Agora, a obra será retomada e pode finalmente ficar pronta. Se isso acontecer, o Brasil irá dobrar sua capacidade de gerar energia nuclear. Vale a pena?

[...]

m fevereiro deste ano, o Senado aprovou a Medida Provisória 998, preparando a retomada das obras na usina — que, a rigor, não estão 100% paradas: em março, ela recebeu da estatal Nuclebrás seus dois últimos acumuladores, tanques de 22 toneladas que guardam a água usada para resfriar o reator. Falta construir dois prédios, um para o reator (que virá da Alemanha) e outro para os sistemas de controle. O governo pretende fazer uma licitação, de R\$ 15 bilhões, para contratar empreiteiras e terminar a obra até 2026. Quando (e se) isso acontecer, o Brasil quase dobrará sua capacidade de gerar energia nuclear: serão 3.395 megawatts ao todo, o suficiente para abastecer uma cidade de 6 milhões de habitantes, como o Rio de Janeiro, e o equivalente à nossa atual produção de energia solar.

É bastante. Mas, ao mesmo tempo, é pouco: não representará nem 2% da eletricidade gerada no Brasil. A usina hidrelétrica de Belo Monte, sozinha, produz mais que o triplo de todas as Angras somadas. A conclusão disso é óbvia. A menos que o Brasil pretenda construir dezenas de usinas nucleares, o que seria economicamente inviável, elas não se tornarão uma fonte de energia relevante para nós (como são na França, por exemplo, cujos 56 reatores produzem 70% da energia do país, ou nos EUA e na Rússia, que obtêm 20% de sua eletricidade em usinas nucleares).

A promessa de Angra 3 é outra, não menos importante: soberania tecnológica. A nova usina pode gerar desenvolvimento científico, econômico e industrial, e nos preparar para um futuro menos dependente de combustíveis fósseis (que hoje são 16% da matriz energética brasileira). Inclusive porque o país é um dos poucos a dominar todo o ciclo do urânio — e possui uma das maiores reservas mundiais desse metal.

[...]

"A energia nuclear é essencial para o desenvolvimento da humanidade. Não há outra fonte, que seja ecologicamente viável, capaz de satisfazer toda a demanda no futuro. A não ser que se defenda que o desenvolvimento dos países seja congelado", argumenta o físico Dalton Girão, pesquisador e professor do Instituto Militar de Engenharia (IME). "A energia nuclear é segura, não emite gases perniciosos, ocupa pouco espaço, não depende de condições climáticas e, com a nova geração dos chamados 'reatores rápidos', que produzem mais combustível do que consomem, é praticamente ilimitada", diz. (Esses reatores, também conhecidos como FBR, geram nêutrons "de sobra", que podem ser usados para irradiar tório — e, com isso, gerar mais urânio.) Também pesa a favor de terminar a obra o fato de que ela está 67,1% pronta, segundo dados da Eletronuclear, e foram gastos R\$ 7,8 bilhões para chegar até aqui. Abandonar Angra 3 significaria jogar isso no lixo.

Mas os argumentos contrários à obra são igualmente convincentes. "O fato de você pegar um ônibus e pagar a passagem não significa que você tenha de ir até o ponto final", diz o engenheiro Roberto Schaeffer, doutor em política energética pela Universidade da Pensilvânia e professor da UFRJ. Ou seja, o que já foi gasto não justifica a nova despesa. Com os R\$ 15 bilhões que serão despendidos para terminar Angra 3, ele destaca, seria possível obter mais energia investindo em geração solar e eólica, que são fontes mais seguras e não têm o problema do lixo radioativo. No aspecto tecnológico, Schaeffer diz que seria mais frutífero investir no desenvolvimento de baterias (para armazenar a energia eólica e solar excedente, que hoje é perdida) e numa rede interligando os sistemas elétricos da América Latina — o que ajudaria a compensar as oscilações inerentes a essas fontes de energia.

Seja qual for o ponto de vista, uma coisa é certa: a nova usina não produzirá só eletricidade. Ela também vai gerar empregos e polêmica, energia limpa e rejeitos radioativos, soluções e problemas. A proporção dessas coisas só ficará totalmente clara quando a usina começar a operar. O que, considerando o histórico de Angra 1 e 2, pode significar qualquer data ao longo das próximas décadas.

CORDEIRO, Tiago; GARATTONI, Bruno. A volta de Angra 3 — e o futuro do programa nuclear brasileiro. **Superinteressante**. 17 jun. 2021. Disponível em: https://super.abril.com.br/especiais/a-volta-de-angra-3-e-o-futuro-do-programa-nuclear-brasileiro/>. Acesso em: 5 ago. 2021.

CONHEÇA A OPINIÃO DE QUEM ESTUDA O ASSUNTO.

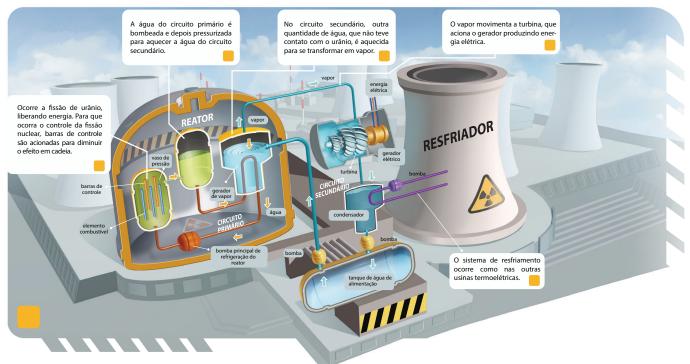
Saiba mais sobre energia nuclear com o vídeo a seguir.

http://ftd.li/s173gui602gau001

A temida energia nuclear

energia nuclear cria uma desconfortável sensação de perigo em muitas pessoas. A extração e o uso de minerais radioativos despertam o medo de terríveis acidentes, que já causaram a morte de muitas pessoas na História. No entanto, antes de entender os problemas relacionados às usinas nucleares, é importante entender o seu funcionamento, que depende do tipo de reator utilizado.

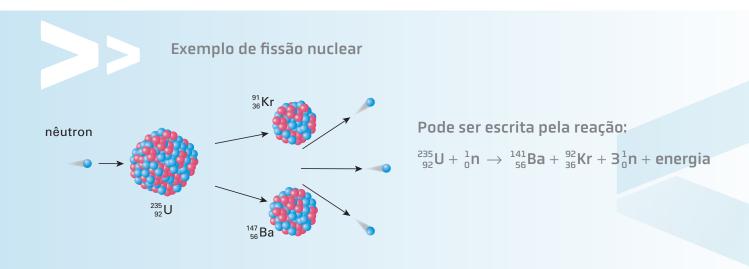
O coração da usina: o reator nuclear


Grande parte das usinas nucleares possui o chamado "reator de água leve". A "água leve" é a água comum, em contraste com a "água pesada" (usada em outro tipo de reator), que é formada por deutério, um isótopo do hidrogênio, e oxigênio.

O funcionamento de uma usina nuclear é simples e muito similar ao funcionamento de caldeiras industriais. O reator aquece uma quantidade de água até a formação de vapor; o vapor se desloca por uma tubulação que aquece a água de um reservatório. A água do reservatório é aquecida até vaporizar e passa por um novo conjunto de tubulações até entrar na câmara de uma turbina. A pressão do vapor promove a rotação das pás da turbina e a energia cinética é convertida em energia elétrica por meio de um gerador.

O vapor é resfriado pela dissipação de calor na turbina e tubulações, condensando e retornando ao estado líquido. Essa água resultante é bombeada para o reservatório, no qual será aquecida novamente pelo reator nuclear.

As caldeiras industriais e as usinas termelétricas de combustão, em vez de um reator nuclear, utilizam a queima de combustíveis fósseis para aquecer a água, que de forma análoga transforma-se em vapor que gira turbinas, gerando energia elétrica.


FUNCIONAMENTO DE UMA USINA NUCLEAR

Esquema de funcionamento de um reator nuclear. É possível notar que a água aquecida no reator nuclear não entra em contato direto com a água do reservatório utilizada para mover a turbina. Adicionalmente, a água utilizada no resfriamento do sistema reservatório/turbina não entra em contato com a água utilizada para mover as pás da turbina. Esse procedimento de segurança auxilia na contenção da radiação emitida pelo reator nuclear.

Os reatores nucleares aquecem a água graças a uma reação chamada fissão nuclear. Neles, o isótopo 235 do urânio é bombardeado com nêutrons, iniciando uma reação de rompimento da estrutura do núcleo do átomo, que libera muita energia, nêutrons e outros átomos com números atômicos menores, como césio e bário, por exemplo.

Os nêutrons liberados pela fissão dos primeiros átomos de urânio vão interagir com outros átomos de urânio presentes e iniciar novas reações de fissão, gerando uma reação em cadeia. A energia liberada pela fissão aquece a água, iniciando todo o processo de obtenção de energia da usina. O uso da água é muito conveniente, pois auxilia no controle da reação em cadeia, além de aquecer a água do sistema que irá mover a turbina.

Mas quando tudo dá errado...

O uso da energia nuclear como fonte de energia elétrica se iniciou em 1951, e desde então houve em torno de 100 acidentes sérios (com perdas de vidas ou danos a propriedades), sendo os dois maiores o de Chernobyl, em 1986, e o de Fukushima Daiichi, em 2011.

O desastre de Chernobyl foi devastador em razão das condições tecnológicas e políticas da época. A tecnologia do reator, do tipo RBMK–1000, já era antiga para a época. Havia falhas conhecidas no sistema de resfriamento, motivo pelo qual foi realizado o teste que provocou a explosão do reator. Para piorar, a resposta do governo da antiga União das Repúblicas Socialistas Soviéticas (URSS) foi lenta para minimizar os danos e evacuar a população.

A explosão do reator causou 31 mortes diretamente, segundo o relatório publicado em 2002 pela Agência Nuclear de Energia (NEA), organização formada por diversos países com o objetivo de assistir a construção e a manutenção de usinas nucleares seguras. As pessoas que perderam suas vidas em menos de um mês após a explosão faziam parte da equipe de profissionais que trabalhavam na usina e do grupo de bombeiros que foi acionado para a intervenção no acidente, providenciando assistência médica e limpeza do local. O relatório também cita que aproximadamente 140 pessoas sofreram graus variados de doenças relacionadas à exposição a níveis muito altos de radiação. Isso sem contar os efeitos a longo prazo, relacionados principalmente ao desenvolvimento de câncer, que podem levar muitos anos para se desenvolver.

A série **Chernobyl**, criada por Craig Mazin, e produzida pela HBO retrata as situações ocorridas durante o acidente, mostrando o tempo decorrido de cada ação por parte de todos os envolvidos no acidente. Veja o *trailer* no *link* a seguir:

http://ftd.li/gz2ifg

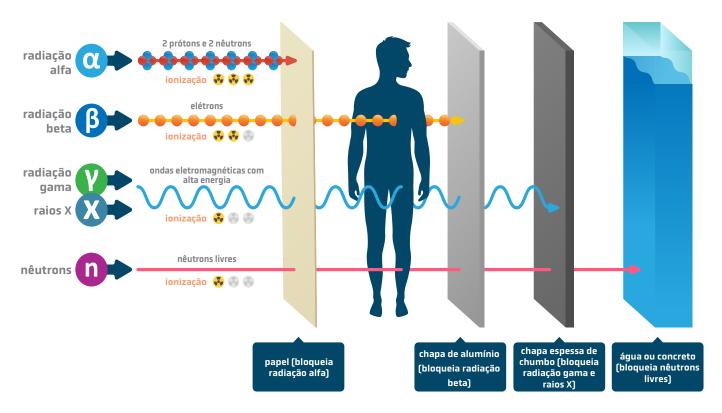
radiação emitida pelo reator por mais 100 anos.

O acidente da usina de Fukushima Daiichi foi diferente, pois não teria ocorrido sem um fator externo. Após ser atingida por um *tsunami* decorrente de um terremoto, seu sistema de refrigeração começou a falhar, provocando o superaquecimento de seus três reatores.

A resposta do governo japonês foi rápida e decisiva, evacuando cerca de 150 mil pessoas de 13 cidades próximas aos reatores em quatro dias, porém o acidente foi responsável pela morte de centenas pessoas. Trata-se do maior desastre nuclear após Chernobyl, e rende **manchetes** até hoje: recentemente, foi anunciado que 1,2 milhão de toneladas de água contaminada por radioatividade no acidente será descartada no oceano.

A previsão pessimista sobre o acidente de Fukushima é de que nos 70 anos após a tragédia, aproximadamente mil pessoas poderão morrer de câncer; de toda forma, o número é muito inferior às projeções de Chernobyl, que chegam a 60 mil mortes.

Reportagem da **BBC** sobre as tragédias de 2011 no Japão:


http://ftd.li/g4bpm

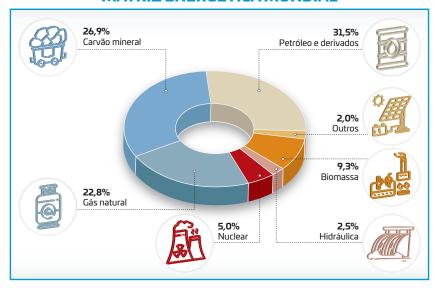
Quais os efeitos nocivos da radiação?

Dependendo do tipo, a radiação, que consiste basicamente em energia em movimento, pode interagir diferentemente com a matéria. A radiação que provoca efeitos nocivos é a radiação ionizante, que é aquela capaz de remover elétrons, o que gera danos a moléculas, como a de DNA. Ela é emitida por fontes naturais, como o Sol, as rochas e até mesmo alimentos, como a banana, mas também por construções humanas, como aparelhos de raio X e bombas atômicas.

TIPOS DE RADIAÇÃO IONIZANTE

A radiação alfa, que consiste em um núcleo de hélio, tem grande capacidade de ionização, mas tipicamente viaja curtas distâncias e é detida por barreiras relativamente simples, como o papel e a pele humana. Já os nêutrons, emitidos durante a fissão nuclear do urânio, são menos ionizantes, mas altamente penetrantes, sendo retidos apenas por algumas substâncias como a água.

Para mais detalhes sobre os efeitos da radiação ionizante no corpo humano, assista ao seguinte vídeo do **Ciência todo dia**:


http://ftd.li/9anq6

A medida de dose de radiação absorvida é representada pela unidade Gray (Gy) no Sistema Internacional de Unidades. A energia de 1 Gy equivale a 1 joule por quilograma (J/kg). Por exemplo, o corpo humano absorve 0,0001 Gy (ou 0,1 mGy) quando exposto a um exame de raio X do tronco.

Quando seres humanos são expostos a 1 Gy, os efeitos imediatos são náusea, vômitos, diarreia, dores de cabeça e febre. Acima de 4 Gy, humanos adultos saudáveis podem apresentar, além dos sintomas mencionados, lesões fatais em órgãos internos.

A exposição a valores menos letais pode induzir a formação de câncer em várias partes do corpo. Além disso, um dos subprodutos da reação de fissão de urânio não controlada é um isótopo radioativo do iodo, que pode se acumular na tireoide, principalmente em crianças, causando câncer de tireoide.

MATRIZ ENERGÉTICA MUNDIAL

A segurança questionável das alternativas comuns

No Brasil, a principal fonte energética é a hidrelétrica, como resultado da riqueza hídrica natural do país. Se analisarmos o mundo como um todo, aproximadamente 81,2% da matriz energética é composta de combustíveis fósseis (carvão mineral, petróleo e derivados e gás natural). Mas será que hidrelétricas e combustíveis fósseis são mais seguros que usinas nucleares?

As hidrelétricas têm um grande potencial para desastres, assim como as usinas nucleares, e dependem principalmente do investimento adequado para construção, manutenção e aprimoramento de suas estruturas, evitando ou minimizando acidentes.

Um exemplo de acidente aconteceu em Banqiao, em 1975, na China, no qual estima-se que morreram até 200 mil pessoas de forma direta, além daquelas que sucumbiram às epidemias (espalhadas pela água contaminada) e à fome. A barragem da hidrelétrica rompeu após um tufão (ciclone tropical), liberando um total de 15 bilhões de metros cúbicos de água na região, à velocidade de 50 km/h, o que inundou vários quilômetros de terra e varreu do mapa vilarejos inteiros.

Apesar do potencial de desastres de hidrelétricas e usinas nucleares, o principal "vilão" entre as fontes de energia são os combustíveis fósseis. A queima de **combustíveis fósseis** libera CO_2 , material particulado, ozônio O_3 , dióxido de nitrogênio O_3 , e dióxido de enxofre O_3 .

Desde que começamos a utilizar os combustíveis fósseis como matriz energética, temos liberado gases poluentes na atmosfera diariamente, o que impacta a qualidade do ar e das áquas.

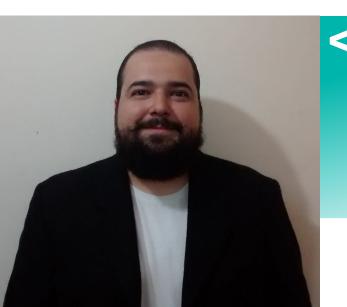
A OMS considera que a poluição atmosférica é o maior risco ambiental à saúde do planeta, e sua redução pode significar a prevenção de inúmeros casos de derrame, doenças cardíacas, câncer de pulmão e doenças respiratórias crônicas e agudas, como a asma. Grande parte das fatalidades decorrentes da poluição do ar está relacionada à exposição a material particulado de até 2,5 micrômetros, causando doenças cardiovasculares e respiratórias.

Poluição atmosférica em São Paulo, 2020.

Afinal, usar ou não usar energia nuclear?

A utilização de reatores nucleares como fonte de energia pode parecer assustadora, tendo em vista os casos de Chernobyl e Fukushima Daiichi. Entretanto, os combustíveis fósseis também são um perigo real, ainda que quase invisível à opinião pública. A poluição atmosférica impacta diretamente a qualidade de vida de todos os seres vivos que precisam respirar, além de contribuir para o aquecimento global, fenômeno responsável por desastres ambientais devastadores e subestimado por muitas autoridades.

Nem paraíso limpo, nem inferno radioativo: os vídeos a seguir, do canal **Kurzgesagt – In a Nutshell**, resumem alguns argumentos favoráveis e contrários ao uso da energia nuclear.


nttp://ftd.li/8d4oue

http://ftd.li/i8d6od

Apesar de a pesquisa em melhorias de reatores nucleares não ter sido tão incentivada nos últimos 50 anos, em comparação ao desenvolvimento de motores a combustão, diante da crise ambiental atual, a construção de novas usinas nucleares parece uma saída necessária.

No entanto, a energia nuclear não é a única fonte de energia com baixa ou nenhuma liberação de CO₂. Há as energias solar, eólica e geotérmica, cujo número de fatalidades relacionadas à construção e à manutenção é muito baixo quando comparado ao de fontes nuclear, hidrelétrica e fóssil. Talvez as usinas nucleares sejam, na realidade, um respiro, um tempo a mais para desenvolvermos novas tecnologias de obtenção de energia, que sejam mais baratas, fáceis e ambientalmente aceitáveis.

Ricardo B. Valim é bacharel, mestre e doutor em Química pelo Instituto de Química de São Carlos da Universidade de São Paulo (IQSC/USP). Atualmente, é pesquisador (pós-doutorado) no Departamento de Ciências Básicas e Ambientais da Escola de Engenharia de Lorena da Universidade de São Paulo (DEBAS/EEL/ USP), e atua na área de processos oxidativos avançados (POA), com projeto de pesquisa em desenvolvimento de novos materiais e técnicas para o tratamento de água e esgoto.

A EXPLOSÃO DE

Um teste de segurança é marcado para esse dia, quando também seria feito o desligamento do reator 4. O objetivo era verificar se, em caso de falta de energia, a quantidade de água bombeada seria capaz de resfriar o reator.

1h - Inicia-se a redução da potência do reator 4.

14h - O sistema de resfriamento de emergência é desativado.

23h30 - Por causa de dificuldades ao longo do dia, o time noturno, pouco qualificado, assume o teste.

28 de abril

Níveis de radiação altos começam a ser identificados em países de fora da URSS, que assume o acidente.

4 de maio

Cerca de 800 mil pessoas, em equipes, são enviadas a Chernobyl para realizar a limpeza da usina. Cada pessoa pode ficar menos de uma hora no local.

26 de abril

Oh3O - A potência do reator é muito baixa, e os técnicos têm dificuldade em estabilizá-la.

1h - Após estabilização, o teste é iniciado.

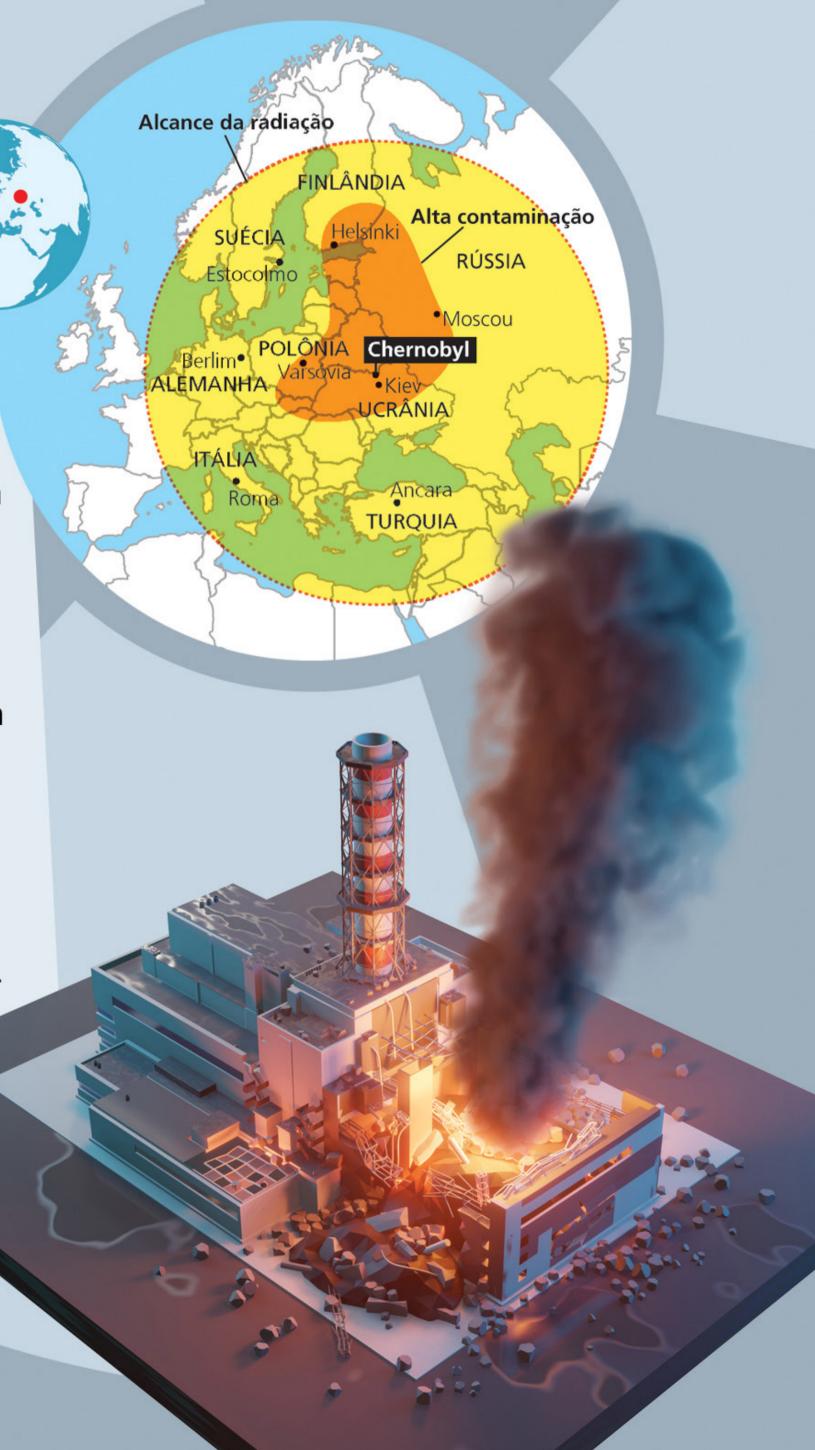
1h23min04 - Queda de energia elétrica.

1h23min40 - Um operador se

desespera e tenta desligar o reator, sem sucesso.

1h23min44 - Primeira explosão, que destrói o teto de 1 000 toneladas; a entrada de gás oxigênio provoca a queima do grafite.

1h23min45 - Segunda explosão.


1h28 - Chegada da brigada de incêndio.

2h15 - Autoridades governamentais decidem bloquear a saída da cidade.

6h35 - Controle do fogo, mas o reator 4 continuaria queimando por dez dias.

20 de maio

Começa a construção da estrutura que recobriria a usina.

- > Investigação científica
- > Processos criativos
- > Mediação e intervenção sociocultural

A atividade foi pensada para poder ser feita fora da sala de aula, se a escola estiver fechada por precaução quanto à covid-19. Podem ser usados dispositivos tecnológicos para as discussões em grupo, planilhas e editores de texto compartilhados, aplicativos de mensagens de texto, redes sociais, entre outros.

1. À época da construção das usinas de Angra, muita crítica foi apresentada na mídia, relembrando a opinião popular sobre o problema do uso da energia nuclear. Em grupos, encontrem cinco materiais audiovisuais (como músicas, memes, charges e cartuns) que apresentam o problema sobre a energia nuclear e sobre a poluição atmosférica. Discutam os materiais escolhidos em relação ao embasamento científico.

Agora é a sua vez: elabore um material audiovisual com base no que você aprendeu, expressando sua opinião sobre a questão.

2. Analise o texto da seção **Diálogo aberto**, pesquise sobre o assunto e reflita: Qual problema relacionado ao funcionamento de usinas nucleares não foi citado no texto? Há alguma outra aplicação benéfica de isótopos radioativos? Elabore um parágrafo para cada um desses assuntos.

3. Separem-se em dois grupos: um a favor e outro contra a construção de Angra 3, no Brasil atual. Cada grupo deve pesquisar, discutir e selecionar três argumentos que deem suporte a sua posição. Os argumentos devem então ser apresentados e debatidos.

Na BNCC:

- EMIFCG01
- EMIFCG02
- EMIFCG03
- FMIFCG04
- EMIFCG07
- EMIFCNT01
- EMIFCNT03
- EMIFCNT04FMIFCNT07
- Conteúdos abordados:
- Radioatividade
- Fissão nuclear
- Usinas termoelétricas
- Poluição atmosférica

- Todas as pesquisas propostas necessitam de dados atualizados e históricos que comprovem a veracidade das informações. Procure, por exemplo, informações em sites oficiais do governo, de universidades e de instituições de pesquisa ou em mídias comprometidas com o rigor científico.
 - 1. É possível encontrar muitos materiais na internet sobre o uso de energia nuclear e a intensificação do efeito estufa, apontando questões políticas, econômicas e ambientais. É importante reconhecer as mensagens que estão sendo transmitidas, bem como os vieses de seus autores, seja qual for a sua própria opinião.
 - 2. Um exemplo de questão pouco tratada no texto é o descarte de material radioativo, enquanto uma aplicação benéfica de isótopos radioativos são os radiofármacos. Usinas nucleares e radioatividade são assuntos amplos e há muito sobre o que escrever.
 - **3.** O texto oferece bases para o debate, mas a pesquisa pode ser aprofundada. Dados atualizados podem ser obtidos por diferentes fontes:
 - na página oficial sobre energia nuclear, no site do governo brasileiro: https://www.eletronuclear.gov.br/Paginas/default.aspx;
 - em sites de empresas relacionadas à produção de energia nuclear;
 - no site da Associação Brasileira de Energia Nuclear (Aben), instituição formada por técnicos e pesquisadores do setor nuclear brasileiro, com interesse na difusão de informações sobre aplicações pacíficas da energia nuclear;
 - em artigos de imprensa e artigos científicos publicados no jornal Química
 Nova.

Ciências da Natureza e suas Tecnologias

Neste ciclo 2021, **Articulação Itinerários (CNT)** aborda temas relacionados à Ciência e ao Meio Ambiente, com ênfase no conhecimento científico a favor da humanidade, em que se pretende apresentar a ciência como estratégia para o desenvolvimento social, econômico e/ou sustentável, sempre com foco no bem-estar da sociedade e das gerações futuras.

Diretor-geral

Ricardo Tavares de Oliveira

Diretor adjunto de Sistema de Ensino

Cayube Galas

Gerente de conteúdo

Júlio Ibrahim

Gerente de produção e design

Letícia Mendes de Souza

Editora

Amanda Bonuccelli Voivodic

Editora assistente

Luiza Grecco e Marques

Colaboradoras

Fernanda de Lima Bernardes Vanessa Romero Veronica Rodriques Souza

Coordenador de eficiência e analytics

Marcelo Henrique Ferreira Fontes

Supervisora de preparação e revisão

Adriana Soares de Souza

Assistente editorial

Renata Slovac Savero

Preparação e revisão

Equipe FTD

Coordenadora de imagem e texto

Marcia Berne

Pesquisa de Iconografia

Equipe FTD

Coordenadora de criação

Daniela Máximo

Supervisor de produção e arte

Fabiano dos Santos Mariano

Projeto gráfico

Bruno Attilli

Editora de arte

Adriana Maria Nery de Souza

Créditos das imagens: