- a. Find the λ_{max} of a radiation emitted from LED semiconductor that has a band gap energy of 450 kJ mol⁻¹.
 b. How the quantum confinements affect the energy levels and electrical conductivity. Explain with the suitable diagram.
- Describe the biotic components of ecosystem with suitable examples. Discuss the energy flow in an ecosystem. (10 M)
- 8. What are endemic and endangered species? Give examples for each. List the major threats to the biodiversity and explain any two threats. (10 M)
- 9. Explain the natural processes that are involved in water cycle with a schematic diagram. (10 M)
- What are the sources of CO, NO and SO₂ pollutants? Describe their effects to the environment and human beings. (10 M)
- Illustrate the steps involved in sewage water treatment. Enumerate the individual role to reduce and prevent water pollution. (10 M)
- 12. Classify the environmental hazards. Give examples for each. Explain the types of biological hazards and their preventive measures with suitable examples. (10 M)

OP MAPPING

Q. No.	E/A/T	Module Number	Marks	BL	CO Mapped	PO Mapped	PEO Mapped	PSO Mapped
Q1	T	2	10	3	1	1,2		
Q2	T	2	10	3	1	1,2		
Q3	A	3	10	2	1	1,2		
Q4	Т	3	10	3	1	1,2		
Q5	Т	4	10	3 💥	2	6,11		
Q6	A	4	10	2	2	6,11		
Q7	Е	5	10	1	3	2		
Q8	Е	5	10	, 1	3	2		
Q9	Е	5	10	1	3	2		
Q10	A	6	10	2	3	2		
Q11	A	6	10	2	3	2		
Q12	Е	7	10	1	4	6,7		

Final Assessment Test – Winter (2024-25) Freshers - May 2025			
Maximum Marks: 100	Duration: 3 Hours		
Exam Type : Closed Book	School: SAS		
Slot: B2	Session: FN		
	Maximum Marks: 100 Course Title: Chemistry and Environmental Exam Type: Closed Book		

Keeping mobile phone/smart watch, even in 'off' position is treated as exam malpractice General Instructions:

- 1. "fx series" non programmable calculator are permitted: YES
- 2. Any assumptions made should be clearly stated.
- 3. T (K) = T (°C) + 273, R (Universal gas constant) = 8.314 J mole⁻¹ K⁻¹; F (Faraday constant) = 96500 C mol⁻¹; 1 cal = 4.185 J; h (Planck's constant) = 6.626 × 10⁻³⁴ J s; c (Velocity of light) = 3 × 10⁸ m s⁻¹; N (Avogadro number) = 6.023 × 10²³.

Answer any TEN Questions, Each Question Carries 10 Marks (10×10=100 Marks)

- 1. a. Determine the equilibrium constant for the Langmuir adsorption when 0.45 fraction of the total surface is covered by molecular H₂ at 25 °C and 1 atm.

 (5 M)

 b. A mole of an ideal gas undergoes an isothermal reversible expansion from a volume of 20.0 L to
 - b. A mole of an ideal gas undergoes an isothermal reversible expansion from a volume of 20.0 L to 40.0 L at a temperature of 250 K. Calculate the change in entropy (ΔS) for the gas during this process.

(5 M)

- a. A possible reaction for the degradation of the pesticide DDT to a less harmful compound was simulated in the laboratory. The reaction was found to be first order, with rate constant (k)= 6.0 x 10⁻⁸ s⁻¹ at 28°C. What is the half-life for the degradation of DDT in this experiment? (5 M)

 b. A Carnot engine has an efficiency of 70% when the cold reservoir temperature is 30 °C. What is the efficiency if the cold reservoir temperature is lowered to -20 °C? (5 M)
- a. Assume that a galvanic cell reaction follows one electron transfer with a standard cell potential of 1.0 V. Determine the value of K for the overall cell reaction at 25 °C. (5 M)

 b. Name the anode, cathode and electrolyte materials of silver and mercury button cells. Write the chemical reactions involved in the button cells. (5 M)
- a. 40000 coulombs (C) charge were passed during the electrolysis of MgCl₂. Calculate the amount of magnesium deposited at the cathode during the electrolysis. Equivalent weight of Mg = 12.15 g mol⁻¹.
 b. Why magnesium wires are connected in ship hulls? Explain the process involved with the help of
 - b. Why magnesium wires are connected in ship hulls? Explain the process involved with the help of electrochemical series. (5 M)
- 5. a. A polymer sample has the following composition: 130 molecules of molecular mass 1350 g/mol, 350 molecules of molecular mass 3500 g/mol and 600 molecules of molecular mass 6500 g/mol. Calculate the number and weight average molecular weight.

 b. Distinguish between Tg and Tm. Draw the heat vs temperature plots of Tg and Tm. (5 M)