			4-25) Freshers - May 2025 Duration: 3 Hours
	num Marks: 100	of Differential and I	Difference Equations School: SAS
ourse Code: MAT1002 Course	Closed Book		School: SAS
t No: 8 Exam	Type: Closed Book		Session: FN
te: 93 05 9095 Slot: (C) even in	'off' position is	treated as exam malpractic
eeping mobile phone/smar	rt watch, eve		Session: FNI treated as exam malpractic
eneral Instructions if any:	Ne calculator is	s permitted: YES	
eneral Instructions if any: 1. "fx series" - non-Program 2. Deference tables permitted	nmable calculator	s permitted: YES	

Reference tables permitted: NO

Answer any TEN Questions, Each Question Carries 10 Marks (10×10=100 Marks)

- W. An electric circuit consists of a resistor R ohms and an inductor L henrys connected in series, along with a capacitor of capacitance C farads and an electromotive force (e.m.f.) of E volts. The current i(t) at time t is governed by the equation: $L\frac{di}{dt} + Ri + \frac{q}{c} = E$, where q(t) is the charge at time t. If E=10 volts, R=10 ohms, C=0.001 farads, L=0.25 henrys, with the initial conditions: q(0)=0 coulombs, i(0) = 0 amperes, find both the charge q(t) and the current i(t) at time t, where i(t) = 0
- 2. The radial displacement in a rotating disc at a distance r from the axis is given by

$$r^2 \frac{d^2 u}{dr^2} + r \frac{du}{dr} - u = -r^3$$

with the boundary conditions u(0) = 0 and u(a) = 0, find the displacement u(r). (10 M)

- 3. Consider a mass-spring system governed by the second order differential equation of the form $\frac{d^2x}{dt^2}$ + $3\frac{dx}{dt} + 2x = u(t)$, where u(t) is the unit step function defined as $u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$. Find the motion of the spring using the Laplace transforms method with x(0) = 1, $\frac{dx(0)}{dt} = 0$. Also find $x(\infty)$, using final value theorem.
- 4. Consider a linear time-invariant system in the convolution form $y(t) = e^{-2t} * f(t)$, where f(t) is the input, and y(t) is the output. (i) Find the transfer function of the system, (ii) Find the output y(t)(10 M)corresponding to the unit step input function.
- 5. A 1 kg mass is suspended from a spring with a spring constant of 6 N/m. The system is subjected to a damping force proportional to the 5 times of its velocity, and an external constant force of 10 N. The motion of the damped spring-mass system is governed by the second-order differential equation:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t)$$

- (i) Convert the second order differential equation into two first order differential equations.
- (10 M)(ii) Find the displacement and velocity using matrix methods.

- 6. Find out what type of conic section, the following quadratic form represents and transform using orthogonal transformation: $Q(x_1, x_2) = 17x_1^2 30x_1x_2 + 17x_2^2 = 128$. (10 M)
- Consider a vibrating system governed by a second order coupled differential equations of the form: $\frac{d^2x_1}{dt^2} = -5x_1 + 2x_2 \text{ and } \frac{d^2x_2}{dt^2} = 2x_1 2x_2, \text{ with the initial conditions } x_1(0) = 1, x_2(0) = 0, x_1'(0) = 0, x_2'(0) = 0. \text{ Find the displacements of the system using matrix methods.}$ (10 M)
- 8. Consider the vibration of a string fixed at both ends. The transverse displacement of the string, y(x), at a point x along the string satisfies the second-order ordinary differential equation:

$$\frac{d^2y}{dx^2} + \lambda y = 0, 0 < x < L$$

with boundary conditions: y(0) = 0 and y(L) = 0 where λ is a constant and L is the length of the string. Find the eigenvalues λ and the corresponding eigenfunctions y(x). Also write orthogonality relation. (10 M)

- 9. The displacement function for a vibrating rod is defined as: $f(x) = \begin{cases} 0, -1 < x \le 0 \\ x, 0 < x < 1 \end{cases}$
 - (a) Write down the first four Legendre polynomials $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$, using Rodrigues' formula: $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$.
 - (b) Using the Fourier-Legendre expansion formula, $f(x) = \sum_{n=0}^{\infty} a_n P_n(x)$, where $a_n = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_n(x) dx$, find the Fourier-Legendre series expansion for f(x) up to 4 terms. (10 M)
- (a) For a discrete-time system modelling the voltage response in an electrical circuit, the Z-transfer function is given by: $H(z) = \frac{z}{z^2 2z + 1}$. If the input signal is a unit impulse $\delta[n]$, use the Initial Value Theorem of the Z-transform to find the initial value y(0).
 - (b) Find the sequence u_n whose Z-transform is given by: $U(z) = \frac{1}{(z-1)(z-2)}$. (10 M)
- A cup of coffee initially at $180^{\circ}F$ cools to $170^{\circ}F$ after one minute when placed in a room with a constant temperature of $50^{\circ}F$. Using Newton's Law of Cooling in the form of a difference equation: $T_{n+1} T_n = -k(T_n T_s)$, where T_n is the temperature at the *n*th minute, T_s is the surrounding temperature, and k is a constant. Find the temperature of the coffee after 20 minutes and 40 minutes. (10 M)
- 12. A discrete-time control system models the temperature y(n) in a room where a heater supplies energy growing exponentially as 2^n . The system dynamics are governed by the second-order linear difference equation: $y(n+2) + 6y(n+1) + 9y(n) = 2^n$, with initial conditions y(0) = 0, y(1) = 0. Find the complete solution y(n) satisfying the initial conditions. (10 M)