SHOHAIB MALLICK

Pune, Maharashtra | shohaibsmallick@gmail.com | +91 7798872021 | Portfolio Website | Linkedin

EDUCATION

Boston University Master of Science, Computer Science (GPA 3.84 / 4) Boston, Massachusetts, USA

Graduation Date: May 2024

Savitribai Phule Pune University Bachelor of Engineering, Computer Engineering (GPA 8.48 / 10) Maharashtra, India

WORK EXPERIENCE

Aaum AI, Pune, Maharashtra (Startup, B2C)

Sept 2025 - now

Full Stack Software Engineer

- Developed and integrated scalable APIs in Node.js (TypeScript), implementing Razorpay payment processor with webhooks for a subscription-based model improving payment success rate and enabling seamless recurring billing.
- Designed and optimized backend systems using PostgreSQL and Redis caching, reducing query response time by ~35% and enhancing overall API performance.
- Built responsive front-end interfaces with React (TypeScript) and Tailwind CSS, leveraging Zustand for efficient, predictable state management across complex UI workflows.
- Engineered an agentic Retrieval-Augmented Generation (RAG) service using Agno AI, Python, and FastAPI, integrating Google Custom Search for web search capability along with LanceDB for storing vector embeddings to enable semantic search and contextual retrieval.
- Integrated multiple LLM providers (Perplexity, OpenAI, and Grok APIs) for dynamic chat completions, enhancing response diversity, reliability, and contextual accuracy in AI-driven workflows.
- Deployed services using **Docker** on **AWS EC2**, ensuring scalable, fault-tolerant infrastructure

FIND ME, USA (Startup, B2B2C) | [link]

Dec 2024 - July 2025

Full Stack Developer

- Core contributor to MVP development, collaborating closely with founders and stakeholders to define product requirements and deliver the first production-ready version under tight deadlines.
- Designed and deployed RESTful APIs, enabling seamless real-time data integration and supporting future scalability.
- Built typo-tolerant fuzzy search, increasing user discoverability and reducing bounce rate by 30%, directly shaping the product's user experience.
- Optimized backend architecture, reducing API latency by 40% and ensuring the MVP could support early user growth without performance bottlenecks.
- Integrated fault-tolerant data layers using PostgreSQL, MongoDB, and Redis, ensuring data durability under high concurrency.
- Developed centralized observability infrastructure (OpenTelemetry, Promtail, Grafana Loki), enabling rapid debugging and improving release confidence.
- Implemented secure, scalable **OAuth2/JWT authentication**, following modern security protocols and DevSecOps principles.

PROJECTS

Travel Genie (React, Node.js, AI/LLM, Redis, MongoDB, TailwindCSS, Google OAuth, Google Maps API) | [link]

- Designed and developed an AI-driven travel planning application that personalizes itineraries by gathering user preferences such as destination, duration, budget, and group size, resulting in tailored trip recommendations.
- Integrated advanced technologies including React, Node.js, large language models (LLMs), Redis, MongoDB, and TailwindCSS to ensure a scalable, responsive, and user-friendly experience.
- Implemented Google OAuth for secure authentication and Google Maps API for dynamic places autocomplete, enhancing user engagement and streamlining trip planning.

MediInsight (Python, Django, MySQL, NLP, Machine Learning)

- Engineered an automated healthcare analytics system leveraging natural language processing and machine learning, achieving 76% illness identification accuracy.
- Designed secure, extensible **APIs** to interface predictive models with external health systems.
- Developed an automated healthcare analytics system using NLP and ML, achieving 76% illness classification accuracy Applied data anonymization and database security best practices to support regulatory compliance and patient privacy.

Proximate (HTML, CSS, JavaScript, Firebase, Location Services, PayPal Payment Processor) | [link]

- Engineered a real-time proximity-based chat application, enabling user discovery and interaction within dynamic geographic bounds.
- Implemented end-to-end encryption and OAuth-based login for robust security and user trust.
- Added location tracking and payment processing with PayPal, supporting secure in-app transactions.

SKILLS

Languages: Python, Java, C++, JavaScript, TypeScript, SQL

Frameworks & Tools: FastAPI, Flask, Node.js, Express.js, React.js, JUnit, Tailwind CSS

System Design & Architecture: Microservices, Scalable API Design, Authentication (OAuth2, JWT)

Databases: MySQL, MongoDB, Redis, Firestore

Cloud & DevOps: AWS, GCP, Docker, Kubernetes, Git, GitHub, GitLab CI/CD

Concepts: Algorithms & Data Structures, System Design, Concurrency, Message Queues, Kafka, Data Analytics, RESTful APIs, GraphQL

RESEARCH & PUBLICATIONS

Proposed Model of Speech Recognition using MFCC and DNN | [view paper] International Journal of Engineering Research & Technology (IJERT) · May 10, 2020

- **Project Objective**: The project focuses on converting human speech into text using speech recognition technology to enable voice-based input for applications and facilitate efficient human-machine interaction.
- System Workflow: The system architecture involves fetching speech data, preprocessing it using the Polygon smoothing algorithm, extracting features with MFCC, and performing classification using models like SVM and DNN.
- Comparative Analysis: While SVM is used for classification, the study shows that DNNs offer greater precision and accuracy, especially with large datasets, leading to a more robust speech recognition system.

An E-Health Patient Management System | [view paper]

Grenze International Journal of Engineering and Technology (GIJET) · Jul 14, 2021

- **Remote Medical Access**: The system enables patients to connect with doctors virtually, share symptoms via voice input, and receive personalized healthcare insights through an intuitive web application.
- **Symptom Analysis Using NLP**: Patient symptoms are recorded, stored in a database, and analyzed using natural language processing (NLP) to ensure smooth and accurate communication with healthcare professionals.
- **AI-Powered Diagnosis Support**: A machine learning model predicts potential diseases based on symptoms, streamlining the diagnosis and treatment process and improving the overall accessibility and efficiency of healthcare delivery.