
ProtonMail Security Features and Infrastructure

Proton Technologies A.G.

8 July 2016

Contents

Introduction 3

Authentication 4
Login and Mailbox Passwords . 4
Issues with Traditional Password Authentication 4
The Secure Remote Password Protocol (Version 6a) 5

Choosing a Modulus . 6
Improvements over RFC 5054 . 7

Two Factor Authentication . 8

Email Encryption 9
PGP Overview . 9
Implementation of the OpenPGP Standard 11

Key Distribution and Management 11
Sending Encrypted and Signed Messages and Attachments 12
Decryption and Signature Verification 12

Password-Protected Messages . 13

Administration 14
The Organization . 14
Roles . 14
Domains and Addresses . 14
User and Key Management . 15
Import/Export . 15
Data Retention . 15

Email Client Compatibility 15

Infrastructure 16
Mail Servers . 17
Web Servers . 17
Database Servers . 18

1

Network and Facilities 18

Denial of Service Resistance 19

Conclusion 20

2

Introduction

ProtonMail is a secure email system servicing over 1 million customers around
the world, ranging from private individuals to large enterprises. It aims to
provide a much higher level of security than traditional email services without
adversely impacting usability.

To achieve such security, ProtonMail conservatively assumes that all mail
servers may eventually be compromised. Thus, ProtonMail uses end-to-end
encryption to ensure that plaintext email data is never sent to the server. If
a server only contains encrypted messages, then the risks of a central server
breach are mitigated.

ProtonMail’s security extends beyond just strong encryption. We have seen
time and time again that the human factor is the weak link in enterprise security.
End user passwords can frequently be compromised by insecure connections,
phishing, or malware. ProtonMail takes several additional steps to guard against
this. First, ProtonMail uses strong authentication which makes most brute
force or dictionary attacks impossible – even if an attacker has compromised
the connection between client and server. Second, ProtonMail’s encryption
protocols ensure that a single compromised account does not endanger other
accounts.

We firmly believe that the most secure system is one that users will actually
use. Thus, ProtonMail was designed from the ground up with a strong emphasis
on usability. To accomplish this, we built the first encrypted email system where
the encryption is entirely automatic and invisible to the end user. For usabil-
ity reasons, we retain compatibility with legacy email protocols such as IMAP
and SMTP so ProtonMail accounts can be accessed from existing email clients
and can seamlessly communicate with non-ProtonMail email accounts. How-
ever, because of the inherent insecurity of IMAP and SMTP, ProtonMail uses
a bridge service to maintain encryption and authentication without sacrificing
IMAP/SMTP support.

While ProtonMail can be deployed either in the cloud or on an organiza-
tion’s premises, we are firm believers in the cloud as the future of all enterprise
software. ProtonMail’s cloud offerings provide the best of both worlds. Orga-
nizations can benefit from the security and reliability advantages of the cloud,
while retaining data control and data privacy due to the end-to-end encryp-
tion. Further, the economies of scale of the cloud imply a much lower cost of
ownership for email infrastructure. For these reasons, ProtonMail is primarily
deployed in the cloud.

The goal of this document is to provide a more detailed look at the tech-
nology behind ProtonMail. The first sections cover the technical details for
ProtonMail’s authentication and encryption technology. The next sections dis-
cuss the ProtonMail’s extensive administrative tools and how key management
is handled within an organization, followed by details of how ProtonMail se-
curely supports legacy email clients. Lastly, an overview of ProtonMail’s secure
cloud infrastructure is provided, with a discussion of the technologies we utilize
to ensure maximum data uptime and availability.

3

Authentication

Login and Mailbox Passwords

ProtonMail’s novel authentication implementation protects data against current
and future attacks. Even if new cryptanalytic breakthroughs or implementa-
tion flaws completely subvert the authentication system, ProtonMail and re-
mote attackers should never be able to read a user’s email. To achieve this,
users create two passwords. The mailbox password, which is used to encrypt
a user’s private key, has a very simple security guarantee: it is never sent to
the ProtonMail server in any form, except in that the server stores the mailbox
password-protected private key. The login password, which ProtonMail uses
for authentication, is also never sent over the wire, but since the ProtonMail
backend is responsible for validating and resetting the login password, its secu-
rity, deriving from the Secure Remote Password protocol, is significantly more
complex.

Issues with Traditional Password Authentication

Most online services send the cleartext password or password equivalent to the
server on every login. If the server is compromised, whether from malicious
code injected onto the server or due to a memory exposure such as in the recent
Heartbleed vulnerability, user passwords or password-equivalents can be leaked
no matter how they were salted and hashed.

Moreover, if the encrypted TLS layer of the connection to the server is bro-
ken, passwords can simply be read from network traffic by any intermediary
system between the client and server. This possibility is not as unreasonable or
unlikely as it may seem. There have numerous incidents of certificate authorities
issuing fraudulent certificates or computers being changed to trust insecure au-
thorities. In 2001, VeriSign issued false Microsoft certificates; in 2011, Comodo
and DigiNotar issued false certificates to several websites, including Google and
Mozilla; in 2012 it came to light that Trustwave had created a subordinate root
certificate capable of attacking a connection to any website; in 2015 it was re-
vealed that Lenovo laptops were shipped with Superfish, software that, among
other things, caused the system to trust a root certificate with a publicly known
private key. This problem is exacerbated by the certainty that a state actor
could force a certificate authority to issue fraudulent certificates.

In contrast, the Secure Remote Password protocol [11] promises theoretically
optimal security. When using SRP, even an attacker who can arbitrarily read,
modify, delay, destroy, repeat, or fabricate messages between ProtonMail and a
legitimate user in an undetectable fashion is limited to checking only a single
password guess per login attempt, a task which could be done just by trying to
log in directly. Even if a server is compromised and acts maliciously, password-
equivalent information is never revealed. This is all done without permanent
private keys: all secret information is derived from the user’s password.

4

Client Server

Username

Generate random s

Salt, m, S = gs + kv mod m

Generate random c

C = gc mod m

Calculate u = Hash(C, S) Calculate u = Hash(C, S)

Calculate g(c+up)s = (gs)c+up Calculate g(c+up)s = (gcvu)s

Pc = Hash(C, S, g(c+up)s mod m)

Verify Pc

Ps = Hash(C,Pc, g
(c+up)s mod m)

Verify Ps

Figure 1: The Secure Remove Password Protocol, as implemented in ProtonMail

The Secure Remote Password Protocol (Version 6a)

The Secure Remote Password (SRP) protocol can be viewed as a variation of
the more well-known and widely deployed Diffie-Hellman key exchange. As in
Diffie-Hellman, SRP’s security in the face of eavesdroppers and other attackers
relies on the difficulty of the discrete logarithm problem: given a fixed prime
number N and g, it is easy to compute gx mod N from x, but not the other
way around. Accordingly, for a password p (pre-hashed and salted, both to
make dictionary attacks slow and to ensure that there are no weaknesses due
to predictability), the server stores the verifier v ≡ gp mod N . This verifier
can be computed on the client side when setting a password, avoiding the need
for the server to see any password-equivalent data. For login, the SRP protocol
proceeds in two phases. In the first stage, the client and server generate a shared
secret, following the pattern of Diffie-Hellman. In Diffie-Hellman, both parties
generate random ephemeral public-private key pairs as a random secret a and
ga mod N . Then, they can each mix their private key with the other party’s
public key, producing a shared secret: (ga)b = gab = (gb)a mod N . SRP differs
from this by mixing the verifier and the password into the key pairs, thereby
causing a mismatch if the password and the verifier do not match.

On the server side, the generation of the ephemeral key pair proceeds nor-
mally: the private key is a randomly chosen s, and the public key is gs mod N .

5

However, when transmitting the public key to the client, the verifier is mixed
in, and S ≡ kv + gs mod N is sent for a random constant k (generated as a
hash of N and g). The client then calculates the actual server public key by
computing S − kgp.

On the client side, the password is mixed into the private key. Although the
client generates a random c and sends across C ≡ gc mod N , the actual private
ephemeral key is c+ up, where u is a mixing parameter derived as a hash of C
and S. The client can only calculate this private key by knowing the password
p, while the server can calculate the public key from only the verifier as follows:

Cvu = gc(gp)u

= gcgup

= gc+up

Finally, the client and server generate a shared secret as in standard Diffie-
Hellman, finding gs(c+up) = (gs)c+up = (gc+up)s.

The second phase of SRP is the actual authentication phase, in which the
client and server prove to each other that they hold the same secret. This
only happens when the password held by the client corresponds to the verifier
held by the server. Verification is a fairly simple process – the client sends
a hash of the shared secret, the server’s semi-public ephemeral key (gs mod
N), and some public data for randomization. In response, the server sends of
hash of the shared secret, the user’s knowledge proof, and some public data for
randomization.

In the first phase, the only sensitive value sent over the network is the verifier
mixed into the server’s public ephemeral key. However, since s is uniformly ran-
dom and g is chosen as a generator modN , gs mod N is uniformly distributed
(except for 0), and therefore perfectly scrambles the verifier, rendering the mes-
sage harmless.

In the second phase, assuming the hash function used is secure (in the ran-
dom oracle model), an attacker cannot figure out anything about the hashed
data except via search over possible shared secrets. Since the shared secret is
large and randomly distributed, brute-force attacks are infeasible, and generat-
ing the shared secret, even from a known password, is assumed to be difficult
without knowledge of one of the private keys, which would take discrete loga-
rithms to find. Therefore, an attacker cannot even mount a dictionary attack
on a user’s password by observing an SRP connection.

Choosing a Modulus

SRP relies crucially upon working modulo an N that makes calculation of dis-
crete logarithms difficult. In particular, when N−1 is made up of comparatively
small factors, the Pohlig-Hellman algorithm makes it possible to break the prob-
lem down into discrete logarithm problems of difficulty proportional only to the

6

size of those factors. Therefore, to minimize this risk, ProtonMail uses safe
primes of the form 2p+ 1, where p is another prime number.

However, choosing a single safe prime may be insufficient. With algorithms
like the number field sieve algorithm, it is possible to do a significant amount
of precomputation on an arbitrary modulus to be able to calculate discrete
logarithms efficiently in that modulus. While the amount of work necessary is
prohibitive for a one-off calculation, it seems within the reach of state actors to
do such a computation on a 1024-bit modulus, and there is evidence that such
a computation has already occurred [1]. At ProtonMail, we take a conservative
approach towards this threat. First, we use 2048-bit moduli, which ought to be
out of reach for even state actors for quite some time. Second, we have opted
to not use a single modulus for all users. This greatly reduces the impact of an
attack on an SRP modulus, as such an attack would only affect a small fraction
of users.

To defend against an MITM (man-in-the-middle) attacker feeding the client
a fraudulent, broken modulus, we have two layers of security. First, the mod-
ulus is included in the password hash itself, meaning that in the worst case,
the attacker would only be able to access information about a different hash
of the password than the one used to actually log in. This reduces potential
compromise to at worst a dictionary attack. Second, we send the client signed
moduli which can be verified to ensure that the modulus actually came from
ProtonMail.

Improvements over RFC 5054

A version of the SRP-6a protocol has been standardized by the IETF in RFC
5054 [9] for use in negotiating secure, authenticated TLS connections. Unfortu-
nately, the RFC seems too outdated to be acceptable for use at ProtonMail.

First and foremost, we have deep security concerns around the use of SHA-1
as a hashing algorithm. For password hashing in particular, SHA-1 is highly
problematic: In the event of a database breach or the discovery of a weakness in
the SRP protocol, attackers would primarily execute dictionary attacks, and so
modern password hashes are designed to be slow and memory hungry to impede
high-speed, highly-parallel password cracking. SHA-1 is specifically designed to
have neither of these two crucial properties. Moreover, SHA-1 is not tunable
– there is no clear way to scale up the password hashing cost as computing
power increases. In contrast, ProtonMail uses bcrypt, a time-tested, tunably
slow hashing algorithm designed for passwords.

Beyond its issues as a password hashing algorithm, SHA-1 is far too short
to be used safely in SRP. Many algorithms for computing discrete logarithms,
prototypically Pollard’s kangaroo algorithm [8], have runtimes that only depend
on the range of possible exponents, not the full size of the modulus. In the face
of those algorithms, SRP using SHA-1 has security roughly equivalent to using
a 180-bit modulus, which is well within the range of breakability.

Additionally, though the bulk of the attacks on SHA-1 are collision attacks
that have little bearing on the security of SRP, SHA-1 has recently been showing

7

its age, and it is difficult to be confident that SHA-1 is or will be sufficiently
secure. As such, ProtonMail uses MGF-1-SHA-512 [5, B.2.1] both to expand
the bcrypt hash to a full 2048 bits and to generate the u and k scrambling
parameters.

Second, RFC 5054 is meant as an implementation of authentication for the
TLS protocol. While it has its flaws, the more traditional certificate-based TLS
authentication is extremely well tested, studied, supported, and updated. By
wrapping our implementation of SRP in a traditional TLS channel, we can lever-
age the immense body of work that has gone into making existing TLS solutions
secure, improve privacy by encrypting usernames, and guard against novel at-
tacks on the less well-tested SRP protocol by preventing even eavesdroppers in
the common case.

Two Factor Authentication

Two-factor authentication (2FA) can be optionally enabled for added security.
2FA is a method of confirming identity that requires not only that the user know
information (e.g. login and mailbox passwords), but also that the user possess a
particular physical device (ex. a phone, computer, or hardware key) configured
with their 2FA shared secret. ProtonMail implements the Time-based One-
Time Password algorithm (TOTP) [7], which computes a single use passcode
from a shared secret key and the current time measured in 30 second intervals.
A TOTP passcode is only valid for a limited time, which prevents brute-force
and replay attacks.

When 2FA is first enabled for an account, the user is given a shared secret
key that they can enter into any TOTP-enabled application or device. Examples
include the Google Authenticator, Authy, and 1Password smartphone applica-
tions, and Yubico Authenticator, which stores the shared secret on a hardware
device called a Yubikey. When a user wants to sign in to their account, the cho-
sen application will use the TOTP algorithm to provide the correct passcode
corresponding to the user’s secret key. This passcode will need to be entered
along with the correct login and mailbox passwords in order to access the ac-
count. To prevent locking users out of their accounts if they lose their 2FA
device, users are also given 16 single use recovery codes when they enable 2FA.
A valid recovery code along with the correct login and mailbox passwords will
also allow users to enter their account, where they can disable 2FA on the lost
device and re-enable it on a different device.

Organization administrators are empowered to reset 2FA settings for non-
private member users.

8

