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Summary: We introduce an adaptive algorithm to estimate the uncertain parameter of a stochastic
optimization problem. The procedure estimates the one-step-ahead means, variances and covari-
ances of a random process in a distribution-free and multidimensional framework when these
means, variances and covariances are slowly varying on a given past interval. The quality of the
approximate problem obtained when employing our estimation of the uncertain parameter is con-
trolled in function of the number of components of the process and of the length of the largest past
interval where the means, variances and covariances slowly vary. The procedure is finally applied
to a portfolio selection model.

1 Introduction
We consider stochastic optimization problems where the underlying stochastic process
rt ∈ Rn (n ≥ 2) is generated by the model:

rt = ρt + ζt, with Ert = ρt and Eζtζ
�
t = Qt , t = 1, . . . , N, (1.1)

where ζt are independent random vectors in Rn with zero mean and N is the number
of available observations. The constants ρt and Qt respectively represent the mean and
covariance matrix at time step t. If svec(Q) is the symmetric vectorization of the symmetric
matrix Q, we focus on stochastic optimization problems that can be expressed as:

P(θ) =
{

min f0(x, θ),

x ∈ X ⊂ Rp; (1.2)

where the unknown parameter θ = (ρ�
N+1, svec(QN+1)

�)� belonging to a given set
� ⊂ RM is made of the one-step-ahead mean ρN+1 and the components of the one-step-
ahead covariance matrix QN+1. The parameter dimension is thus M = n + n(n+1)

2 . In
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problem (1.2), the set X is bounded and closed and the objective function f0 belongs to
a class of functions introduced in the next section. The value of the parameter θ is not
known and problem P(θ) is the optimization problem providing the optimal decision x∗.

There are different approaches to deal with uncertainty in stochastic optimization
problem (1.2). A possible approach is the worst case robust optimization methodology
(see [BTN99] for instance). We propose instead to provide an estimate θ̂ (from now on
realizations of random vectors are in bold), for which the problem P(θ̂) approximates
reasonably well problemP(θ), with controlled accuracy. The estimation of the parameter
θ is made on the basis of the N independent observations rt, t = 1, . . . , N. We consider
two special cases: the stationary case, where the functions ρt and Qt are not time varying
and the case in which these functions are slowly varying (in the sense of [MS04a]) on
a given past interval. The problem of measuring the quality of approximate stochastic op-
timization problems appears for instance in [Sha89, Sha93, Sha94, Pfl03]. The originality
of our approach is both the non-asymptotic study and the statistical framework (weakly
stationary process).

This paper is organized as follows. In Section 2, we define the accuracy of the ap-
proximate problem and bound this accuracy from above using ‖θ̂ − θ‖∞. The estimation
of θ and the quality of this estimation are discussed in details in Section 3. This work can
be seen as a generalization of [MS04a], where an adaptive estimation of a slowly varying
volatility is made within a one-dimensional and parametric framework. Here, we con-
sider instead the multidimensional and distribution-free setting as well as the estimation
of slowly varying means, variances and covariances.

In Section 4, we then give the accuracy of the approximate problem P(θ̂). In this
section, we also specialize our results for a subclass of stochastic optimization problems
of the form:

P̃(θ) =
{

min κ
√

x� QN+1x − ρ�
N+1x,

x ∈ X ⊂ Rp,
(1.3)

where κ is a fixed positive parameter. When the income linked with decision x is a linear
random function of x given by r�

N+1x, the problem P̃(θ) amounts to minimizing a trade-
off between the mean costE[−r�

N+1x] = −ρ�
N+1x and its standard deviation σ(r�

N+1x) =√
x� QN+1x. The methodology introduced in this paper is assessed on a portfolio selection

model (of the form P̃(θ)) using simulated and real data in Section 5. Proofs are given in
the appendix.

2 How to control the accuracy of the approximate
problem

2.1 Definition of the accuracy

Our objective is to construct for P(θ) a data-driven approximate problem P(θ̂) that uses
some specific estimation θ̂ of θ, i.e. an estimation ρ̂N+1 of the mean and an estimation
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Q̂N+1 of the covariance matrix, to solve P(θ) with given accuracy. The corresponding
approximate problem thus reads:

P(θ̂) =
{

min f0(x, θ̂),

x ∈ X ⊂ Rp.

We now define the notion of accuracy of the approximate problem. Let x̂ be any optimal
solution of the approximate problem P(θ̂) and let x∗ be an optimal solution of P(θ). The
accuracy of the approximate problem P(θ̂) is given by:

ε(P(θ̂)) ≡ f0(x̂, θ) − f0(x
∗, θ).

2.2 Control of the accuracy

The control of the accuracy of P(θ̂) and P̃(θ̂) is based on Assumption 2.3 and Proposi-
tions 2.1 and 2.2 below.

Proposition 2.1 The objective function f0 of problem P̃(θ) satisfies:

| f0(x, θ) − f0(x, θ
′)| ≤ (‖θ − θ ′‖∞ + κ‖θ − θ ′‖1/2∞

)‖x‖1. (2.1)

Proposition 2.2 The accuracy ε(P(θ̂)) of P(θ̂) is bounded above as follows:

ε(P(θ̂)) ≤ 2 sup
x∈X

| f0(x, θ̂) − f0(x, θ)|. (2.2)

We then make the following hypothesis on the objective function f0 of problemP(θ).

Assumption 2.3 For every x ∈ X, and every (θ, θ ′) ∈ RM × RM :
| f0(x, θ) − f0(x, θ

′)| ≤ C0‖θ − θ ′‖α0∞ ‖x‖p0
1 ,

where 0 < α0 ≤ 2, 0 < p0 ≤ 2 and 0 < C0 < ∞.

On the basis of Propositions 2.1 and 2.2 and under Assumption 2.3 for P(θ), we
thus see that to control the accuracy of P(θ̂) and P̃(θ̂), we need to define a statistical
estimation θ̂ of θ such that ‖θ̂ − θ‖∞ is controlled.

3 Adaptive estimation of the parameters

3.1 Parameter estimation problem
In this section, we address the problem of estimation of the parameter θ for P(θ). We
suppose the process rt follows model (1.1) and satisfies the following assumption.

Assumption 3.1 For some σ > 0, E‖rt‖4∞ ≤ σ4, t = 1, . . . , N.



112 Guigues

Our contribution is to determine estimations of the parameters ρN+1 and QN+1 which
allow us to solve problemP(θ) with a good accuracy. As mentioned in Section 2, we intend
to define estimations ρ̂N+1 (associated to the estimator ρ̂N+1) and Q̂N+1 (associated to
the estimator Q̂N+1), of respectively ρN+1 and QN+1 such that ‖ρ̂N+1 − ρN+1‖∞ and
‖Q̂N+1 − QN+1‖∞ are small with high probability. In the particular case where the mean
ρt = ρ and the covariance matrix Qt = Q are not time varying, the estimations ρ̂N+1

and Q̂N+1 use as many past available data as possible. Let us fix a positive parameter λ,

and let K0(N) and [·]K , for K > 0, be the constant and the truncation operator defined
by

K0(N) = σ

(
N

ln n(n + 1) + λ ln N

) 1
4 ; [x]K =

⎧⎨
⎩

K if x > K,

−K if x < −K,

x otherwise.
(3.1)

Given the N observations rt, t = 1, . . . , N, we choose for ρ̂N+1 and Q̂N+1 the empirical
mean and covariance matrix of a process αt derived from the process rt :

ρ̂N+1 = 1

N

N∑
t=1

αt , and Q̂N+1 = 1

N

N∑
t=1

(αt − ρ̂N+1)(αt − ρ̂N+1)
�, (3.2)

where for i = 1, . . . , n, t = 1, . . . , N, αt (i) = [rt(i)]K0(N).

Notice that for technical reasons, we do not use the empirical estimations directly (the
accuracy of the approximate problem is more tightly controlled with our estimations and
under less restrictive hypotheses). However, the results of this paper can be extended to
the case where the empirical estimations of the mean and of the covariance matrix are
used (see [Gui05]). Estimations (3.2) are all the closer to the empirical estimations as the
number N of data used to compute them grows.
In the more general case where the parameters ρt and Qt slowly vary on a given past
interval (this notion of slowly varying functions is defined more precisely in the next
subsection), there is a need for an adaptive procedure. In this case, using the terminology
of [MS04a], we call interval of local time homogeneity (ILTH) an interval where ρt and
Qt slowly vary. The adaptive procedure determines an estimation Î of the best interval for
parameter estimation i.e. of the largest ILTH. This question is addressed in Section 3.3.
Once the interval Î is found, the estimations ρ̂N+1 and Q̂N+1 of ρN+1 and QN+1 are

given by ρ̂ Î and Q̂ Î where for any nonempty interval I we define ρ̂I and Q̂ I by:

ρ̂I = 1

|I |
∑
t∈I

α I
t , and Q̂ I = 1

|I |
∑
t∈I

(α I
t − ρ̂I )(α

I
t − ρ̂I )

�, (3.3)

where for i = 1, . . . , n, and t ∈ I, α I
t (i) = [rt(i)]K0(|I |) with K0(·) defined in (3.1) and

λ a positive parameter (of the adaptive algorithm).

3.2 Hypotheses on the means, variances and covariances
Under local time homogeneity, we suppose that there exists a past interval of right endpoint
N + 1 such that the means, variances and covariances slowly vary or are almost constant
in this interval. The adaptive procedure we describe in the next subsection aims at finding
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the largest interval satisfying this assumption. For a given past interval of right endpoint
N + 1, we should thus be able to decide, from a theoretical point of view, whether we
can consider that the means, the variances and covariances slowly vary on this interval or
not. If ρt and Qt slowly vary on the interval I = [N + 1 − m, N + 1], where m ∈ N∗,
then the quantities:

�
ρ
I =

√
1

|I |
∑
t∈I

‖ρt − ρN+1‖2∞, and �
Q
I =

√
1

|I |
∑
t∈I

‖Qt − QN+1‖2∞,

should be small. Similarly, we expect �
ρ
J and �

Q
J to be small for all subintervals J of

the interval I . In particular, if I(I ) is a finite set of testing subintervals of the interval I
(the choice of I(I ) is discussed later) then �

ρ
J and �

Q
J should be small for every interval

J ∈ I(I ). To take into account the variance of the estimators, we then define for every
interval I :

Vρ
I = E‖ρ̂ I − Eρ̂I‖∞, V Q

I = E‖Q̂ I − EQ̂ I‖∞.

Let us fix a small and non-negative constant D. If we set I+(I ) = I(I ) ∪ I, we say that
ρt and Qt are slowly varying on the interval I if:

�
ρ
J ≤ DVρ

J , �
Q
J ≤ DV Q

J , for J ∈ I+(I ). (3.4)

Let now I be a family of candidate intervals. We suppose that (3.4) holds on the smallest
candidate interval I. Notice that from a practical point of view, if no interval I satisfies the
above relations (3.4), then the adaptive algorithm returns a minimal interval. The tests of
homogeneity are thus in fact only made for intervals of length greater than the length of
this minimal interval.

The ideal interval I of local time homogeneity that the oracle we build in Section
3.3 aims at approximating is then the largest interval (among the family of candidate
intervals) such that (3.4) holds:

I = argmax {|I | | I ∈ I, �
ρ
J ≤ DVρ

J , �
Q
J ≤ DV Q

J , for J ∈ I+(I )}, (3.5)

where D is a fixed and non-negative constant. Our definition of ideal interval of local
time homogeneity differs from that of [MS04b]. In [MS04b], condition (3.4) has to be
satisfied only for J = I . However, suppose that a sufficiently large interval I is such
that Qt = Q for all t in I and ρt is varying a lot only on the left of the interval. Using
the definition of [MS04b] of an interval of local time homogeneity, we would probably
accept I as an interval of local time homogeneity whereas our definition would probably
conclude the contrary, which makes more sense in this case.

3.3 Adaptive method
We suppose that the mean ρt of the process rt and the covariance matrix Qt are slowly
varying on an ILTH to determine. Under this hypothesis, there are intervals Iρ = [N +
1 − mρ, N + 1] and IQ = [N + 1 − mQ, N + 1], such that the mean ρt does not vary
much on Iρ and Qt does not vary much on IQ . From a theoretical point of view, there can
be a change point in the mean; the variances and covariances being constant. However,
in this case, we should take the change in the mean into account in the estimation of the
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covariance matrix and the estimation of IQ would be more difficult. We will thus look for
the largest interval Î (an estimation of I) such that the means, variances and covariances
slowly vary on Î which amounts to finding an estimation of the intersection of Iρ and IQ .
An alternative method consists in first determining an estimation Îρ of Iρ and to further
determine an estimation ÎQ of the largest interval contained in Iρ such that Qt is slowly
varying on this interval. We give the theoretical accuracy of the estimators obtained using
one interval of homogeneity. The proofs can be directly adapted to show the accuracy of
the resulting estimators ρ̂ Îρ

and Q̂ Î Q
when two intervals of homogeneity Îρ and ÎQ are

determined. To illustrate, we give the accuracy of the estimation of the mean by ρ̂ Îρ
when

separate intervals of homogeneity are determined to estimate, on the one hand, the mean
and on the other hand, the variances and covariances. We use an adaptive algorithm which
is described in the next subsection to determine an estimation Î of I . The key question
will be to decide, from a practical point of view, whether on a given interval, ρt and Qt
are slowly varying or not.

3.3.1 Algorithm description

The choice of the adaptive interval of time homogeneity is done as follows. Let I be
a family of ordered candidate intervals and for every I ∈ I, let I(I ) be a family of testing
subintervals. Notice that we suppose that N + 1 belongs to the ILTH. This justifies the
estimation of ρN+1 and QN+1 by empirical estimations of the mean and of the covariance
matrix using the data of the ILTH. However, as we do not have observations for time step
N + 1, the candidate intervals are of the form [N + 1 − m, N], where m ∈ N∗ (the return
rN+1 is in the ILTH but is not used for estimation as it is not available). We suppose
we have a rule which allows us to know if we can consider that on a given candidate
interval I , the means, variances and covariances slowly vary on I or not (this question is
addressed next). The selected interval of time homogeneity Î is such that for all I ∈ I
satisfying I ⊆ Î , I is accepted as ILTH and the smallest interval I ∈ I such that Î � I
is rejected.
Now we should be able to decide, from a practical point of view, if on a given interval I , the
mean ρt and the covariance matrix Qt are slowly varying or not. If on I = [N+1−m, N],
ρt does not “vary much”, then the mean value of ρt on I is close to the mean value of ρt
on every subinterval J ∈ I(I ). But the mean value of ρt on I is close to the mean value
of rt on I which is close to the mean value of α I

t on I for |I | large enough. Thus, if ρt

does not “vary much” on I, then for every subinterval J ∈ I(I ), ρ̂J is close to ρ̂I where
ρ̂I is defined in (3.3). Similarly, if Qt is nearly constant on I , then for every subinterval
J ∈ I(I ), Q̂ J is close to Q̂ I . In fact, deciding whether a given interval I is of time
homogeneity or not boils down to doing a test. For instance, in the particular case of
piecewise constant functions ρt and Qt , we have to do the test:

H I
0 : ∀(t, t′) ∈ I2, ρt = ρt ′, Qt = Qt ′ H I

1 : ∃(t, t′) ∈ I2 | ρt �= ρt ′ or Qt �= Qt ′ .

We then need the following theorem which quantifies the proximity between two estima-
tions ρ̂I and ρ̂J of the mean or Q̂ I and Q̂ J of the covariance matrix done on embedded
intervals I ∈ I and J ∈ I(I ).
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Theorem 3.2 Let rt satisfy Assumptions 2.3 and 3.1, let I be a nonempty interval of local
time homogeneity (which means that (3.4) holds) and let J ∈ I(I ) with |J| > 0. Let ρ̂ I
and Q̂I be the estimators associated to the estimations in (3.3). Then for every λ > 0
such that ln n(n + 1) + λ ln |I | ≤ |I | and ln n(n + 1) + λ ln |J| ≤ |J|, we have:

P
(‖ρ̂ I − ρ̂ J‖∞ ≥ γρ(|I |, |J|, λ)

) ≤ 1

|I |λ + 1

|J|λ , (3.6)

P
(
‖Q̂ I − Q̂ J‖∞ ≥ γQ(|I |, |J|, λ)

)
≤ 2

(
1

|I |λ + 1

|J|λ
)

, (3.7)

with

γρ(|I |, |J|, λ) = 4
√

2
ln 2 Dσ

(√
ln n
|I | +

√
ln n
|J |

)
+ ( 7

3 + √
2
)
σ ( f(|I |, λ) + f(|J|, λ)) ,

γQ(|I |, |J|, λ) = (kQ D + k′
Q)σ2( f(|I |, λ) + f(|J|, λ)),

where f(|I |, λ) =
√

ln n(n+1)+λ ln |I |
|I | , and kQ and k′

Q are constants given in the appendix.

Remark 3.3 Conditions ln n(n + 1) + λ ln |I | ≤ |I | and ln n(n + 1) + λ ln |J| ≤ |J| in
Theorem 3.2 above can be suppressed. In this case, we get more complicated expressions
of γρ and γQ . This more general case is studied in the appendix.

In virtue of Theorem 3.2, we will accept I as an interval of homogeneity if for every
subinterval J ∈ I(I ) :

‖ρ̂I − ρ̂J‖∞ ≤ γρ(|I |, |J|, λ) and ‖ Q̂ I − Q̂ J‖∞ ≤ γQ(|I |, |J|, λ), (3.8)

where λ is the positive parameter involved in the definition of K0, and reject I otherwise.
Thus, if I is indeed an interval of local time homogeneity then the probability that (3.8)
holds (where we replaced in (3.8) the estimations by the estimators) can be controlled
with an appropriate choice of λ. Notice that when the length of I and J grows, then the
right hand sides of (3.6) and (3.7) rapidly go to 0, as expected. We now discuss the choice
of the sets I, I(I ) and of the parameter λ.

3.3.2 Choice of the sets III, III(III ) and of the parameter λλλ

The simplest way to choose the sets I and I(I ) is described in [MS04a] and [MS04b].
We briefly recall this choice. Let m0 be the length of the smallest candidate interval (with
the hypotheses of Subsection 3.2, the last m0 time steps thus automatically belong to the
ILTH). We choose a grid G = {tk = m0k, k ∈ N∗} where m0 ∈ N∗ is the grid step. Let
N + 1 = k∗m0 > 2m0, be a point where we want to carry out the adaptive algorithm to
determine estimations of ρN+1 and QN+1. The set I is defined as follows:

I = {[tk, tk∗ [, 1 ≤ k < k∗}.
In [MS04b], for every Ik = [tk, tk∗ [∈ I, the set I(Ik) of testing subintervals of interval
Ik is then the set of all smaller intervals whose endpoints belong to G and with either the
same left endpoint or the same right endpoint as Ik:

I(Ik) = {[tk, tk′ [∪[tk′ , tk∗ [, with k < k′ < k∗}.
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In [MS04a], only the subintervals of interval Ik with the same right endpoint are consid-
ered. When N + 1 is not a point from the grid, we can use a dynamic grid adapted to the
time N +1 of estimation and the intervals of the set I are of the kind [N +1−m0k, N +1[
where k ∈ N∗. If we decide to determine two intervals of homogeneity Îρ and ÎQ , to
estimate respectively the mean and the covariance matrix, the length m0(ρ) of the small-
est testing subinterval chosen to find Îρ and the length m0(Q) of the smallest testing
subinterval chosen to find ÎQ , are not necessarily the same. These values depend on the
variance of the components on Iρ and IQ . We need less data to obtain a good estimation
of the mean. However, to determine an estimation of IQ , we should take greater values
for m0(Q), say at least n where n is the number of components (if the number of data is
less than the number of components, the empirical covariance matrix is not invertible).
This means that we will have a very rough estimate of IQ if the step m0(Q) is large.
The same will hold for Iρ if the step m0(ρ) is large. We thus now intend to introduce
a few modifications of the implementation choices proposed in [MS04b] (that we have
just mentioned) to increase the algorithm performance or speed. In what follows, we drop
the dependence of m0 on ρ and Q (all further remarks on m0 will be valid for m0(ρ) and
m0(Q)).

• First, we can introduce more flexibility in the choice of the set I. Indeed, the length
difference of two successive intervals in I is not necessarily m0, where m0 is the
length of the smallest testing subinterval. Let the smallest interval from I be made
of the last m0 observations. Now, if I = [t
, N + 1[ is an interval from I, the
successor of I in I can be obtained adding k data instead of m0 thus yielding the
interval [t
 − k, N + 1[ where k ∈ N∗ and k < m0. Even values of k as small as
one (the successor of an interval from I has the length of its father plus one) can
yield spectacular improvements (see [Gui05]). This simple modification of the set
I allows us to find the optimal intervals of homogeneity with a higher probability.

• We can also modify the testing subintervals without changing much the performance
of the algorithm while improving its rapidity. At a given iteration of the algorithm,
if we have accepted an interval I = [t
, N + 1[ as an interval of homogeneity, the
data from the next interval I ′ = [t
−k, N+1[ the most prone to be before the break
point (if there is one) in I ′ is the k left data. That’s why a simple modification of the
testing subintervals consists in only taking one subinterval J = [t
 −k, t
 −k+m0[
of interval I ′ (in this case I(I ′) is reduced to J). If an interval is of homogeneity then
this procedure will accept it with a higher probability than the adaptive algorithm as
it is presented in [MS04b]. Indeed, the test done to know if this interval is accepted
is one of the tests done by the adaptive algorithm used in [MS04b]. Now if there is
a break point in I ′, as the previous interval I was accepted, the break point certainly
lies on the left of the interval. Thus, the m0 data lying on the left of interval I ′ is
the m0 data most prone to provide estimations far from those obtained using the
data of the whole interval I ′ (this implementation choice is called choice (a)). Also,
instead of checking the difference between the estimations on I ′ = [t
 − k, N + 1[
and J = [t
 − k, t
 − k +m0[, we can check the difference between the estimations
on J and J ′ = [N +1 −m0, N +1[, which is thus a fixed interval (implementation
choice (b)). In this manner, at least the mean and covariance matrix are slowly
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varying on the whole of one of the two intervals (the interval J ′). Having the
same objective in mind, we can also check the difference between the estimators
on J and J ′ = [N + 1 − m0, N + 1[ if the length of I ′ is less than or equal to
2m0 and on J and J ′ = [t
 − k + m0, N + 1[ otherwise (implementation choice
(c)). For choices (b) and (c), I(I ′) is reduced to J ∪ J ′. From a practical point of
view and using the above notation, I ′ is accepted as an ILTH for the mean using
implementation choice (a) (resp. (b) or (c)) if ‖ρ̂ I ′ − ρ̂J‖∞ ≤ γρ(|I ′|, |J|, λ) (resp.
‖ρ̂ J − ρ̂J ′‖∞ ≤ γρ(|J|, |J ′|, λ)). Thus, at each iteration of the algorithm, we only
have to perform one test, in which we are confident if m0 is not too small.

We can show (see [Gui05]), both from a theoretical and practical point of view, the
close behavior of these variants of the adaptive algorithm. Finally, we can calibrate λ

using different techniques. We can for instance determine λ such that the type I error is
controlled in a change point model. Parameter λ can also be chosen using Monte Carlo
simulations.

3.3.3 Quality of the estimation

The key question we address now is to determine the quality of the approximation of
ρN+1 and QN+1 by our adaptive estimators ρ̂ Î and Q̂ Î . Recall that the ideal interval I is
the interval which checks:

I = argmax {|I | | I ∈ I, �
ρ
J ≤ DVρ

J , �
Q
J ≤ DV Q

J , for J ∈ I+(I )}, (3.9)

where D is a fixed and small constant.
We first give the quality of the estimation θ̂I = (ρ̂I

�
, svec( Q̂I)

�)� that would be used
if the ideal interval of local time homogeneity was known.

Theorem 3.4 If λ > 0 is such that ln n(n + 1) + λ ln |I| ≤ |I|, then there is a constant
k(D) (given in the appendix) depending affinely on D, such that

P

(
‖θ̂I − θ‖∞ ≥ k(D) max(σ, σ2)

√
ln n(n + 1) + λ ln |I|

|I|

)
≤ 3

|I|λ . (3.10)

The following theorem gives the accuracy of the adaptive estimates.

Theorem 3.5 Let Î be the interval selected by the adaptive algorithm and λ be the
parameter involved in the definition of K0. We suppose that ln n(n + 1) + λ ln m0 ≤ m0,

where m0 is the length of the smallest testing subinterval. Then there is a constant k(D)

(given in the appendix) depending affinely on D, such that if θ̂ Î = (ρ̂
�
Î
, svec(Q̂ Î )

�)�, we
get:

P

(
‖θ̂ Î − θ‖∞ ≥ k(D) max(σ, σ2)

√
ln n(n + 1) + λ ln |I|

|I|

)

≤
∑

I∈I |I⊆I

∑
J∈I+(I )

3

|J|λ .

(3.11)
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Notice that the estimation is all the closer to the estimated parameter as D and σ are
small and as the length of I is large. Also, the number of terms on the right hand side
of the inequality above in Theorem 3.5 depends on the choice of the candidate intervals
and on the choice of the subintervals. This theorem shows in fact that the quality of the
adaptive estimators is close to the quality of the estimators ρ̂I and Q̂I that would be used
if the ideal interval I was known in advance. The adaptive algorithm can be viewed as an
oracle which, receiving as input a collection of observations rt, t = 1, . . . , N, of a process
satisfying Assumption 3.1, gives estimations of ρN+1 and QN+1 that are close to the true
(unknown) values. In order to determine two intervals of homogeneity Îρ and ÎQ for the
mean and the covariance matrix respectively, we can adapt the definition of the optimal
intervals of homogeneity. The optimal interval of time homogeneity Iρ for ρ checks:

Iρ = argmax {|I | | I ∈ I, �
ρ
J ≤ DVρ

J , for J ∈ I+(I )}; (3.12)

and the optimal interval of time homogeneity IQ for Q:

IQ = argmax {|I | | I ⊆ Iρ, I ∈ I, �
Q
J ≤ DV Q

J , for J ∈ I+(I )}. (3.13)

An adaptive estimation Îρ of Iρ can then be determined using the same acceptance rule
concerning the mean as for the determination of Î . Following the proof of Theorem 3.5,
we can then get the accuracy of ρ̂ Îρ

:

P

(
‖ρ̂ Îρ

− ρN+1‖∞ ≥ k(D) σ

√
ln n(n + 1) + λ ln |Iρ|

|Iρ|

)
≤

∑
I∈I |I⊆Iρ

∑
J∈I+(I )

1

|J|λ ;

where the constant k(D) = 7 +3
√

2+12
√

2
ln 2 D. A similar result can be obtained for the

accuracy of the estimation of QN+1 by Q̂ Î Q
using the data of the interval ÎQ . Notice that

the condition ln n(n + 1) + λ ln m0 ≤ m0 in the above Theorem 3.5 can be suppressed
but this leads to more complicated left hand sides. However, this condition is not too
restrictive. For instance for n = 40, if we take m0 = n, then we can take values of λ as
large as 8.84. If we choose λ = 1 and m0 = n, then it suffices for rt to have more than six
components (n ≥ 6) to get ln n(n + 1) + λ ln m0 ≤ m0. Notice that, following the proof
of Theorem 3.5, we can give the accuracy of the adaptive estimators obtained using the
different implementations of the adaptive algorithm described in Section 3.3.2.

Theorem 3.6 Let Iρ = [N + 1 − m0 − kI, N + 1[ (kI ∈ N) be the optimal homogeneity
interval for the mean, let λ > 0 satisfy ln n(n + 1) + λ ln m0 ≤ m0 and let

Pρ = P
(

‖ρ̂ Îρ
− ρN+1‖∞ ≥ k(D) σ

√
ln n(n + 1) + λ ln |Iρ|

|Iρ|

)
,

where k(D) = 7 + 3
√

2 + 12
√

2
ln 2 D. Different choices of testing subintervals were

envisaged in Section 3.3.2. If we want to test the homogeneity on I = [N +1 − k, N +1[,
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we can check the difference of the estimations on I and J = [N+1−k, N−k+m0] (choice
(a)), on J and J ′ = [N+1−m0, N+1[ (choice (b)), or on J and (J ′ = [N+1−m0, N+1[
if k ≤ 2m0 and J ′ = [N + 1 − k + m0, N + 1[ otherwise) (choice (c)). For these different
implementation choices, we have:

(a) Pρ ≤ kI
mλ

0

+
kI∑

k=1

1

(m0 + k)λ
, (b) Pρ ≤ kI + 1

mλ
0

+ 1

(m0 + kI)λ
,

(c) Pρ ≤ kI + 1

mλ
0

+ 1

(m0 + kI)λ
+

kI∑
k=m0+1

1

kλ
.

A similar result can be given on the accuracy of Q̂ Î Q
.

4 Accuracy of the approximate problem
4.1 The stationary case
We first consider the case of constant means, variances and covariances. We suppose
that N returns ri, i = 1, . . . , N, satisfying Assumption 3.1 are available to compute the
empirical estimations ρ̂N+1 and Q̂N+1 of the mean and the covariance matrix of the
process αt defined in Subsection 3.1.

Definition 4.1 For any n×n real symmetric matrix Q, let β(Q) be such that the quadratic
function x� Qx is β(Q)-strongly convex w.r.t. ‖ · ‖1, i.e.

β(Q) = inf
x �=0

x� Qx

‖x‖2
1

.

Theorem 4.2 Let the process rt satisfy (1.1) with constant mean ρt = ρ and covariance
matrix Qt = Q and let Assumption 3.1 hold. Let λ > 0 and let (ρ̂N+1, Q̂N+1) be the
estimations of (ρN+1, QN+1) given in (3.2). If ln n(n + 1) + λ ln N ≤ N, then there is
a constant k (given in the appendix) and a set S ⊆ � of probability at least 1 − 3

Nλ such

that for any ω ∈ S, the accuracy of problem P(θ̂) is bounded as follows:

ε(P(θ̂)) ≤ k max(σα0 , σ2α0)

(
ln n(n + 1) + λ ln N

N

) α0
2

max
x∈X

‖x‖p0
1 . (4.1)

Theorem 4.3 Let the process rt satisfy (1.1) with constant mean ρt = ρ and covariance
matrix Qt = Q and let Assumption 3.1 hold. Let λ > 0 and let (ρ̂N+1, Q̂N+1) be the
estimations of (ρN+1, QN+1) given in (3.2). If ln n(n + 1) + λ ln N ≤ N, then there are
constants k1 and k2 (given in the appendix) and a set S ⊆ � of probability at least 1− 3

Nλ

such that for any ω ∈ S the accuracy of problem P̃(θ̂) is bounded as follows:

ε(P̃(θ̂)) ≤ (k1 + 2κ
√

k2)σ

(
ln n(n + 1) + λ ln N

N

) 1
4

max
x∈X

‖x‖1. (4.2)
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Further, if the matrix Q is non-degenerate, i.e. if β(Q) > 0, then

ε(P̃(θ̂)) ≤
(

k1 + 2κk2σ√
β(Q)

)
σ

√
ln n(n + 1) + λ ln N

N
max
x∈X

‖x‖1. (4.3)

The accuracy of the approximate problem can also be bounded without the condition
ln n(n + 1) + λ ln N ≤ N. In the general case, we get more complicated bounds (see the
appendix).

4.2 Slowly varying parameters
In the case of slowly varying parameters, the accuracy of the approximate problem is
roughly obtained by replacing, in the results given in the stationary case, the number of
observations N with the length |I| of the ideal interval of local time homogeneity. Indeed,
ρ̂ Î and Q̂ Î are close to ρ̂I and Q̂I (see Theorems 3.4 and 3.5).

Theorem 4.4 Let (ρ̂N+1, Q̂N+1) be the estimations of (ρN+1, QN+1) given in Subsec-
tion 3.1 in the case of slowly varying parameters. Let λ > 0 be the parameter involved
in the definition of K0 and such that ln n(n + 1) + λ ln m0 ≤ m0, where m0 is the length
of the smallest testing subinterval. Then there is a constant k(D) (given in the appendix)

and a set S ⊆ � of probability at least 1 −
∑

I∈I |I⊆I

∑
J∈I+(I )

3

|J|λ such that for any ω ∈ S

ε(P(θ̂)) ≤ k(D) max
(
σα0 , σ2α0

)(
ln n(n + 1) + λ ln |I|

|I|
) α0

2

max
x∈X

‖x‖p0
1 . (4.4)

Theorem 4.5 Let (ρ̂N+1, Q̂N+1) be the estimations of (ρN+1, QN+1) given in Subsec-
tion 3.1 in the case of slowly varying parameters. Let λ > 0 be the parameter involved
in the definition of K0 and such that ln n(n + 1) + λ ln m0 ≤ m0, where m0 is the
length of the smallest testing subinterval. Then there are constants k1(D) and k2(D)

(given in the appendix) depending affinely on D and a set S ⊆ � of probability at least

1 −
∑

I∈I |I⊆I

∑
J∈I+(I )

3

|J|λ such that for any ω ∈ S

ε(P̃(θ̂)) ≤ (k1(D) + 2κ
√

k2(D))σ

(
ln n(n + 1) + λ ln |I|

|I|
) 1

4

max
x∈X

‖x‖1. (4.5)

Further, if the matrix QN+1 is non-degenerate, i.e. if β(QN+1) > 0, then

ε(P̃(θ̂)) ≤
(

k1(D) + 2κk2(D)σ√
β(QN+1)

)
σ

√
ln n(n + 1) + λ ln |I|

|I| max
x∈X

‖x‖1. (4.6)

It is interesting to notice that the upper bound we obtain on the accuracy of the
problem weakly increases with problem dimension. Thus, if I is sufficiently long, we can
build an approximate problem of good quality even when the number n of components is
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very large. For problem (V) (see the application we consider in the next section), we can
bound from above max

x∈X
‖x‖1 (appearing in (4.2), (4.3), (4.5) and (4.6)) by ‖x−‖1, where

x− is the portfolio before reallocation.

5 Numerical simulations: application in finance
5.1 Presentation of the application
We introduce in this subsection a portfolio selection model belonging to the class P̃(θ) for
which we build an approximate problem as explained before using both simulated and real
data. Let H be the investment horizon, N+1 the date of the investment, and let st = (st(1),
. . . ,st(n)) be an observed asset process in discrete time, t = 1, . . . , N + 1, where n is the
number of risky assets, whose prices at time t are collected in the vector st ∈ Rn . We define
the corresponding H time steps return rH

t at time t by rH
t = st+H

st
, t = 1, . . . , N + 1 − H ,

where the division should be understood componentwise: rH
t (i) = st+H(i)

st(i)
, i = 1, . . . , n.

Notice that though we are at time N + 1, the data rH
t , t = N + 2 − H, . . . , N + 1, is not

available. However, the returns we are interested in are the returns rH
N+1(i), i = 1, . . . , n,

over the investment period. We suppose that there is a past interval with right endpoint
N + 1 such that the parameters ρt and Qt slowly vary on this interval. We also suppose
that this interval is of a length greater than H + k where k is the minimal number
of data needed for estimation. Finally, to enter the framework specified in this article,
we suppose the returns rt are independent. We thus first simulate independent returns.
However, in practice, the assumption of independence of the returns is not true (though
it is a simplification commonly made) but we also test our procedure using real data
to measure in practice the behavior of our methodology when applied to this portfolio
selection model.

We fix an investment horizon H = 1 and denote from now on by rt the returns at time t.
In addition to the n risky assets, we have a risk-free asset and we take into account the
transaction costs. We consider a single investment period and have to decide the amount
of money to invest in the different assets over this investment period. The quantities
referring to the risk-free asset are indexed by n + 1. In this setting, a simplified portfolio
selection problem ([DI93]) is as follows. Let xi be the amount of asset i in the portfolio
at the beginning of the period. The flow balance equations for the xi are then given by:⎧⎪⎨

⎪⎩
xi = x−

i − yi + zi for the risky assets, i = 1, . . . , n,

xn+1 = x−
n+1 +

n∑
i=1

(1 − μi) yi −
n∑

i=1

(1 + νi) zi for the risk-free asset,

once we have defined

• x−
i : the initial value of i-th asset before the rebalancing of the portfolio;

• yi : the amount of risky asset i we sell at the beginning of the period, μi being the
corresponding transaction cost (with 0 < μi < 1);

• zi : the amount of risky asset i we buy at the beginning of the period, with the
corresponding transaction cost νi (with 0 < νi < 1).
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In what follows, a portfolio is thus a vector x = (x1, . . . , xn)
� of n amounts invested in

the different risky assets plus risk-free asset xn+1 and rN+1 = (rN+1(1), . . . , rN+1(n))�

is the vector of risky asset returns over the investment period. Note that the risk-free asset
return r(n + 1) is known. The goal is then naturally to maximize the final total value of
the portfolio given by x�rN+1 + r(n + 1)xn+1.

Case of complete information. If we knew the returns rN+1, we could solve the
following linear program:

ALLOC

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max x�rN+1 + r(n + 1)xn+1,

xi = x−
i − yi + zi , i = 1, . . . , n,

xn+1 = x−
n+1 +

n∑
i=1

(1 − μi) yi −
n∑

i=1

(1 + νi) zi ,

x ≥ 0, xn+1 ≥ 0, y ≥ 0, z ≥ 0.

We denote by X(μ, ν, x−) the set of admissible portfolios defined by the above flow
balance equations and the positivity constraints on x, xn+1, y and z.

The problem of data uncertainty. In fact, the data which are known the moment we
choose the portfolio are the transaction costs μ and ν and the return r(n + 1) of the risk-
free asset. In order to solve the previous allocation problem, we could use a realization of
the returns over the investment period and plug these values intoALLOC. At first glance,
this approach fails in ensuring a given target income with high probability. This means
that we have to take into account the risk of our investment.

We use the Value-at-Risk technique, which is a modelling tool to make a decision in
an uncertain environment. In the Value-at-Risk model, an investment is considered risky if
its return has little chance of exceeding a certain reasonable value, fixed in advance. More
precisely, given the distribution of the returns, if we fix a confidence level 0 < ε < 1

2 , the
maximal return that can be reached with probability greater than or equal to 1 − ε, for an
admissible portfolio (x1, . . . , xn+1), is the Value-at-Risk of level ε, Vε(x1, . . . , xn+1), of
this portfolio:

Vε(x, xn+1) = max γ subject to P
(
r�

N+1 x + r(n + 1)xn+1 ≥ γ
) ≥ 1 − ε.

A VaR asset allocation problem then amounts to solving:

max Vε(x, xn+1) subject to (x, xn+1, y, z) ∈ X(μ, ν, x−). (5.1)

If the distribution of the risky asset returns rN+1 is Gaussian with given mean E[rN+1] =
ρN+1 and covariance matrixE[(rN+1 −ρN+1)(rN+1 − ρN+1)

�] = QN+1, then we obtain
Vε(x, xn+1) = ρ�

N+1 x +r(n +1) xn+1 −�−1(1−ε)
√

x� QN+1x, where � is the CDF of
the Gaussian density. Using the exact version of Chebyshev bound (see [BP05, Smi95]),
we can show that if the returns are not Gaussian, an upper bound on the optimal value of
(5.1) is given solving

(V)

{
min κ(ε)

√
x� QN+1x − ρ�

N+1 x − r(n + 1)xn+1

(x, xn+1, y, z) ∈ X(μ, ν, x−) = X,
(5.2)
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where now κ(ε) =
√

1−ε
ε

. Thus, in every case, the problem of maximizing the Value-
at-Risk over all admissible portfolios reduces to (5.2), which is a problem of the form
P̃(θ), where κ(ε) is a risk factor depending on the assumptions for the distribution of the
returns:

• κ(ε) = �−1(1 − ε) > 0 for Gaussian returns,

• κ(ε) =
√

1−ε
ε

for non-Gaussian random returns in L1(R) ∩ L2(R).

We now intend to test the accuracy of the approximate problem (V̂) using the adaptive
estimations of problem (V) parameters. We use both simulated and real data for the
returns rt, t = 1, . . . , N, available the day N + 1 of the investment. The efficiency of the
adaptive algorithm itself (introduced in Section 3) is tested in [Gui05] (to detect break
points in a change point model).

For more flexibility, we use the empirical adaptive estimators of the mean and of the co-
variance matrix. The empirical adaptive estimators are defined in [Gui05] and are obtained
using the adaptive algorithm and replacing α I

t by rt in (3.3) (which leads to more standard
definitions for ρ̂I and Q̂ I ). In this manner, we can show (see [Gui05]) that the adaptive
algorithm now depends on two positive parameters λ and μ. We then use the following
acceptance rules for a given interval I . We accept the interval I as an interval of local

time homogeneity if for all J ∈ I(I ), ‖ρ̂ I − ρ̂ J‖∞ ≤ k1σ
(√

ln n+λ ln |I |
|I | +

√
ln n+λ ln |J |

|J |
)

and ‖Q̂ I − Q̂ J‖∞ ≤ k2σ
2
(√

ln n(n+1)+μ ln |I |
|I | +

√
ln n(n+1)+μ ln |J |

|J |
)

where (λ,μ, k1, k2)

are positive constants. The parameter σ is estimated from the data. From a theoretical
point of view, we can still bound from above the accuracy of the approximate problem
which uses the empirical adaptive estimations (see [Gui05]). We did not choose to present
this approach as it leads to more complicated and less precise upper bounds which are
obtained under more restrictive conditions on the process rt . However, the definition of
the approximate problem as a function of the adaptive estimators, the dependence of the
upper bounds on the quality of the approximate problem as a function of n and |I|, and
the tools used to show the results are the same (see [Gui05]).

To reduce the computational cost, we use the choice of testing subintervals denoted
by choice (b) in Theorem 3.6. The intervals of the set I are of the form Ik = [N + 1 −
m0 − k, N +1[, where k ∈ N. Finally, the optimization problems are solved using Matlab
and the Mosek optimization library.

5.2 Simulated data

In this section we are interested in the accuracy of the approximate VaR problem (V̂)

in the particular case where the model for the returns is a change point model. The
day of the investment, N = T1 + T2 independent observations of the returns are avail-
able where the first T1 data is drawn from the Gaussian density N (ρ1, Q1) and the
last T2 observations from the Gaussian density N (ρ2, Q2). Assumption 3.1 is thus sat-
isfied. We then assume that the mean return and the covariance matrix between the
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returns over the investment period are respectively ρ2 and Q2. We thus know the op-
timal portfolio x∗ that would be obtained solving the VaR problem (V) with the val-
ues ρ2 and Q2 of the parameters. To use meaningful values of ρ1 and Q1 we choose
ρ1 = ρ and Q1 = Q where ρ and Q are the empirical mean and covariance ma-
trix obtained using the available 3 month returns of the assets of the Dow Jones we
have (see the next subsection) on January 2, 1995. The matrix Q is thus an n × n
matrix with n = 30. We consider a change point model with a change in the mean
only: ρ2 = 1.25ρ1 and Q2 = Q1. We consider 200 realizations of such a change
point time series and for each realization, we compute the portfolios obtained solving
(V̂) using the empirical estimations of the parameters with different estimation hori-
zons:

• a fixed estimation horizon using the last T2 observations (method denoted by
“Last”); a fixed estimation horizon using the first T1 observations (method denoted
by “First”); a fixed estimation horizon using all the data (method denoted by
“Emp”);

• the estimation horizon provided by the adaptive algorithm (method denoted by
“Adap”).

The risk-free rate chosen is the American federal bank loan rate the day of the invest-
ment (January 2, 1995). We choose κ(ε) = 0.25 and T1 = T2 with T1 = 50, T1 = 100
or T1 = 200. We also test the procedure for different values of the number n of as-
sets: n = 30, 100, 500 and n = 1000. When n = 30, we have just described how ρ

and Q are computed. When n = 100, we choose ρ = [ρ�
30, ρ

�
30, ρ

�
30, ρ

�
30(1:10)]� and

Q =blkdiag(Q30, Q30, Q30, Q30(1:10,1:10)) where ρ30 and Q30 are the mean ρ and
covariance matrix Q computed when n = 30, and where blkdiag(Q1,Q2), for matri-

ces Q1 and Q2, is the block diagonal matrix

(
Q1 0
0 Q2

)
. When n > 100, we choose

ρ = 0.98 + 0.22 i−1
n−1 , i = 1, . . . , n, and Q =diag(0.25ρ2) (not to get an ill-conditioned

matrix Q in high dimension). The parameters λ and μ of the adaptive algorithm are fixed:
λ = μ = 1. For fixed T1 and T2, the parameters k1 and k2 are those (among a grid of
values for k1 and k2) providing the smallest type II error while providing a type I error
of at most 5% for a stationary model with ρ2 = ρ1 = 1.25ρ and Q2 = Q1 = Q. More
precisely, we simulate 200 samples of size T1 + T2 drawn from the Gaussian density
N (1.25ρ, Q). For each sample, a type I error is made when the whole interval of length
T1 + T2 is not accepted as an interval of homogeneity. The same procedure is conducted
with a change point model where ρ2 = 1.25ρ1 and Q2 = Q1. In this case, a type II error
is made when the length of the adaptive interval is greater than T2. The grids of values
chosen for k1 and k2 are the same: [0.05;0.1;0.2;0.3;0.4;0.5;1]. We then compute the 90th

percentile of the accuracy. The results are given in Table 5.1.
We then conduct the same experiment with a stationary time series: ρ2 = ρ1 = ρ and

Q2 = Q1 = Q. The results are given in Table 5.2 which follows. The accuracy of the
approximate problem is satisfying, close to the accuracy obtained using the true interval
of homogeneity and much better than the accuracy obtained using all the data in the case
of a change point time series.
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n N Emp Adap First Last σ̂ Mean(| Î |)
30 100 29.12 25.82 26.90 25.82 2.03 49.40

30 200 23.04 19.57 21.03 18.92 2.077 98.8

30 400 20.48 15.89 17.83 14.09 2.104 195.85

100 100 19.00 11.11 12.20 11.35 2.084 49.8

100 200 16.05 11.25 11.48 11.39 2.14 100.05

100 400 9.01 8.46 6.48 7.51 2.22 199.25

500 100 10.22 6.47 6.32 6.47 2.22 50.00

500 200 8.50 4.64 5.23 4.64 2.26 100.1

500 400 6.06 2.84 2.96 2.84 2.26 199.3

1000 100 11.36 7.45 6.82 7.45 2.26 50.00

1000 200 8.04 4.28 4.40 4.28 2.22 100.00

1000 400 7.82 3.20 3.84 3.20 2.30 200.00

Table 5.1 Comparison of the 90th percentile of the accuracy (defined in Section 2) of the
approximate problem (V̂) using different estimation procedures for the parameters. Change
point time series for the returns.

n N Emp Adap First Last σ̂ Mean(| Î |)
30 100 15.06 15.96 18.92 18.96 1.118 96.8

30 200 9.19 10.81 13.25 13.29 2.034 191.6

30 400 4.25 5.30 8.16 8.99 1.828 388.85

100 100 16.19 18.97 25.57 23.01 1.840 98.9

100 200 8.25 9.38 15.64 14.22 1.8703 196.05

100 400 3.46 3.46 7.74 7.92 2.047 383.9

500 100 14.07 14.07 29.59 22.46 1.923 98.8

500 200 2.54 2.54 5.63 4.53 2.029 195.45

500 400 1.45 1.45 2.44 2.47 2.047 388.45

1000 100 4.83 4.83 8.37 7.45 1.9376 100

1000 200 2.84 2.84 4.74 6.11 2.081 195.05

1000 400 1.70 1.70 3.50 2.95 2.048 391.1

Table 5.2 Comparison of the 90th percentile of the accuracy (defined in Section 2) of the
approximate problem (V̂) using different estimation procedures for the parameters. Stationary
time series for the returns.
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5.3 Simulations with real data

Our objective is now to compare the evolution of portfolios obtained with Value-at-Risk
model (V) rebalancing the portfolio for different dates and using different methods of
calibration of the problem parameters. We are interested in the portfolio return and in
the volatility of the portfolio return over the investment period. The different calibrations
tested are the empirical estimations (using all the available data the day of the investment
and computing the empirical estimations), the empirical estimations using a fixed given
estimation horizon and the empirical adaptive estimations. The performances of the
portfolios are also compared with a portfolio tracking the Dow Jones and with a risk-free
investment (investing everything in the risk-free asset). We consider the 30 assets of the
Dow Jones. We have the prices of these assets from January 2, 1992 to June 30, 2004.
Notice that these prices are corrected and take into account the splits and capital growth.
We invest $1000 (this money is initially held in the risk-free asset) on January 2, 1995.
We choose an investment horizon H . Different values of H are tested: H = 90 days of
open stock markets (approximately 4 months and a half), H = 60 and H = 20. The
portfolio is then regularly rebalanced every H days of open stock market, using model
(V). The risk-free rate used for an investment is the H-day American federal bank loan
rate the day of the investment. The transaction costs amount to 0.5 %.

Different policies of choice of parameters of the adaptive algorithm will provide dif-
ferent estimation horizons. We now explain how the parameters of the adaptive algorithm
are chosen.

5.3.1 A posteriori choice of parameters

The parameters of the adaptive algorithm are first determined a posteriori to show the
influence of the estimation horizon on the performance of the portfolios. We determine
one homogeneity interval Î , the intersection of Îρ and ÎQ . A grid of values is chosen
for the parameters k1, k2 and m0. The values of λ and μ are fixed to 0.5 to reduce
the computational costs. We envisage all possible combinations of the values of the
parameters k1, k2 and m0 and choose the combination giving the maximal return over
the investment period. Notice that the same parameters are used at each rebalancing.
A dynamic choice of parameters could still improve the results. The results are sum-
marized in Table 5.3 which follows. In this table (and in what follows) RAd is the
return of the portfolio obtained with the adaptive method over the whole investment
period and REmp is the return of the portfolio obtained with the empirical method over
the same period. Knowing the evolution of the portfolio wealth over the investment
period, we can compute the sample of H-day returns of the portfolio. The empirical
mean of this sample (the H-day mean return) is R′

Ad (if the adaptive method is used)
or R′

Emp (if the empirical method is used) and its empirical standard deviation (which
measures the volatility of the portfolio return) is σAd for the adaptive method and σEmp
for the empirical method. We see that we can always find values of the parameters
which provide a portfolio having a return larger than the “empirical portfolio” over
the investment period. It seems that the shorter the investment horizon, the more inter-
esting the adaptive algorithm. This would mean that the shorter the H , the more the
means and variances of the returns vary (in particular for H = 20 where the use of
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Horizon k1 k2 m0 RAd R′
Ad σAd REmp R′

Emp σEmp

H = 20 0.05 0.1 30 3.801 1.02 0.065 1.3425 1.0043 0.0003

H = 60 0.3 0.1 30 4.39 1.069 0.11 2.6217 1.0474 0.0765

H = 90 0.3 0.1 30 7.025 1.126 0.1806 4.1285 1.1019 0.1028

Table 5.3 Comparison between the adaptive and the empirical method. Static a posteriori choice
of the parameters.

the empirical estimations gives a portfolio performing less well than a risk-free asset
based investment). This method of choice of parameters is called Best Adap in what
follows.

5.3.2 A priori choices of parameters

From a practical point of view, we have to determine a policy of choice of parameters
using only the available information the day of the investment. We use the same grid
of admissible values for the parameters of the adaptive algorithm as for the a posteriori
determination of parameters. Parameters are chosen in a way to optimize a certain error
criterion. We use three different dynamical techniques (the values of the parameters can
change from one rebalancing to another) to solve this problem. We can first find the values
of the parameters giving the smallest Mean Absolute Forecast Error (MAFE). If ρ̂(t) is
the forecasted adaptive mean for time step t, then using the observations (r1, . . . , rt−H)

available at time step t, the MAFE computed at time step t is:

MAFE = 1

t0

t−H∑
k=t−H−t0+1

‖rk − ρ̂(k)‖∞,

where t0 > 0 is a parameter. For our simulations, the dates chosen are the last t0 = 5 dates
for which the returns of the assets are known. Notice that if we decide to find two different
intervals Îρ and ÎQ , this method provides a calibration of k1 and λ. This method will be
tested if we only determine one interval of homogeneity. In this case, the values of k2 and
μ also influence the estimation of the interval of homogeneity and consequently influence
the estimation of the mean. We call this method Adap 1. A second way of calibrating
the parameters of the adaptive algorithm consists of simulating different investments in
the past. We choose 5 different investment dates preceding the day of the rebalancing
(for which we want to calibrate the parameters) and such that the prices of the assets are
known for H days following these different dates. This allows us to compute the optimal
portfolios for every value of parameters and to see the real evolution of the different
portfolios. We then choose the values of parameters giving the maximal mean return
over all testing dates (method Adap 2) or the maximal Sharpe ratio which is defined
as the H-day mean return divided by the H-day standard deviation (method denoted
by Adap 3). We call “Fix” the method using a fixed estimation horizon (different fixed
estimation horizons are considered: 50, 100, 150, 200, 250 and 300 and the one providing
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Model R90 R′
90 σ90 Sharpe90 R60 R′

60 σ60 Sharpe60

Emp 4.13 1.100 0.103 10.72 2.62 1.047 0.077 13.69

Fix 5.88 1.131 0.148 7.64 4.56 1.070 0.128 8.37

Best Adap 7.02 1.126 0.181 6.23 4.39 1.069 0.110 9.74

Adap 1 2.64 1.069 0.116 9.25 3.63 1.061 0.097 15.23

Adap 2 2.85 1.075 0.155 6.95 1.94 1.034 0.131 7.89

Adap 3 4.45 1.107 0.157 7.04 2.04 1.034 0.120 10.34

Table 5.4 Comparison of different methods of estimation of the parameters of model (V) for
H = 90 and H = 60.

Model R20 R′
20 σ20 Sharpe20

Emp 1.34 1.004 0.0003 3348

Fix 5.37 1.026 0.065 15.76

Best Adap 3.80 1.020 0.065 15.62

Adap 1 1.08 1.002 0.032 31.49

Adap 2 2.66 1.018 0.048 21.21

Adap 3 2.92 1.019 0.050 20.38

Table 5.5 Comparison of different methods of estimation of the parameters of model (V) for
H = 20.

the best return over the investment period is chosen). Emp stands for the method using all
the available data to compute the empirical estimations of the parameters. Two investment
periods are chosen: the first one goes from January 2, 1995 to the beginning of May 2000;
the second one goes from January 2, 1995 to June 30, 2004.

We first report in Tables 5.4 and 5.5 above, for the first investment period (from
January 2, 1995 to the beginning of May 2000), the global return RH for each method,

the mean return R′
H , the standard deviation σH and the Sharpe ratio SharpeH = R′

H
σH

for
the H-day return sample.

Not all the adaptive methods allow one to obtain either a better global return or a better
Sharpe ratio over the investment period. Nevertheless, for every investment horizon H,

there is always an adaptive method yielding a global return larger than the global return
of method “Emp”. In particular, method “Adap 3” beats method “Emp” for H = 90 and
for H = 20 where the global return is more than doubled.

We now plot, in Figure 5.1 which follows, the evolution of the portfolios using the
different investment methods and the two investment periods. Only the adaptive method
(Adap 1, Adap 2 or Adap 3) providing the maximal return is shown in this figure.
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Figure 5.1 Comparison of the portfolios performances using asset allocation model (V). On
the left, the plots correspond to the first investment period going from January 2, 1995 to the
beginning of May, 2000 and on the right, the plots correspond to the second investment period
going from January 2, 1995 to June 30, 2004. “DJ” stands for a Dow Jones based portfolio and
“Cash” for a risk-free asset based portfolio.
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6 Concluding remarks
We generalized the work of [MS04a] to find the interval of local time homogeneity
in a distribution-free and multidimensional context. We have then shown, using this
procedure, how to treat the uncertainty in a class of stochastic optimization problems.
The quality of the approximate problem we define to solve the stochastic optimization
problem is theoretically controlled. The procedure has been tested on a portfolio selection
model on both simulated and real data. In particular, on real data, one of the methods of
calibration of the parameters of our adaptive algorithm has been shown to be competitive.

It remains to see how the adaptive estimations could be used to treat a broader class
of stochastic optimization problems where the uncertainty is also in the constraints.

A Appendix

Proof of Proposition 2.1: For every x ∈ X, for every θ = (ρ�
N+1, svec(QN+1)

�)� and

every θ ′ = (ρ′�
N+1, svec(Q′

N+1)
�)�; the objective function f0 of problem P̃(θ) checks:

| f0(x, θ) − f0(x, θ
′)| ≤ κ

∣∣∣√x� QN+1x −
√

x� Q′
N+1x

∣∣∣ + |(ρ′
N+1 − ρN+1)

�x|.

Notice that |(ρ′
N+1 −ρN+1)

�x| ≤ ‖ρ′
N+1 −ρN+1‖∞‖x‖1 ≤ ‖θ − θ ′‖∞‖x‖1. If Q′

N+1 =
QN+1 we are done and else for any β > 0 and x �= 0 :

δ =
∣∣∣√x� QN+1x −

√
x� Q′

N+1x
∣∣∣

≤
∣∣∣∣ x� Q′

N+1x − x� QN+1x

β

∣∣∣∣ kβ(x) + β 1
(

max
(√

x� Q′
N+1x,

√
x� QN+1x

)
< β

)
,

where kβ(x) = 1
(

max(
√

x� Q′
N+1x,

√
x� QN+1x ) ≥ β

)
. We then choose β =√

‖Q′
N+1 − QN+1‖∞‖x‖1 and obtain

δ ≤
√

‖Q′
N+1 − QN+1‖∞ ‖x‖1 ≤ √‖θ ′ − θ‖∞ ‖x‖1. �

Proof of Proposition 2.2: Since f0(x̂, θ̂) ≤ f0(x∗, θ̂), we have:

ε(P(θ̂)) = | f0(x̂, θ) − f0(x
∗, θ)|

= f0(x̂, θ) − f0(x̂, θ̂) + f0(x̂, θ̂) − f0(x
∗, θ̂) + f0(x

∗, θ̂) − f0(x
∗, θ)

≤ 2 sup
x∈X

| f0(x, θ) − f0(x, θ̂)|.
�

Before showing the theorems of this paper, we need the three following Lemmas A.1,
A.3 and A.4. The two last ones provide, for a process satisfying Assumption 3.1, new
non-asymptotic bounds on the quality of the estimators of the mean and of the covariance
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matrix given in Section 3.1 (Lemma A.4) and on the quality of two other close estimators
(Lemma A.3). For short, we will sometimes write K0 instead of K0(N).

Lemma A.1 Let Xt, t = 1, . . . , N, be N independent observations of a zero mean
random vector in Rn with n ≥ 2. If in addition, we have for every t : E‖Xt‖2∞ ≤ σ2,

then:

E

∥∥∥ 1

N

N∑
t=1

Xt

∥∥∥∞ ≤ 2

√
2

ln 2
σ

√
ln n

N
. (A.1)

Proof: Of the two integers E
[2 lnn

ln 2

]+ 1 and E
[2 ln n

ln 2

]+ 2, (where E[x] is the integer part
of x), let q be the one that is even and let W(x) = ‖x‖2

q/2. The proof is based on the
following lemma.

Lemma A.2 Let n ≥ 2, and of the two integers E
[2 ln n

ln 2

] + 1 and E
[2 ln n

ln 2

] + 2, let q be
the one that is even. Then the function

W(x) = 1

2
‖x‖2

q : Rn → R

satisfies for every x, h ∈ Rn, the relation:

W(x + h) ≤ W(x) + h� f(x) + c∗(n)‖h‖2∞, c∗(n) = 4 ln n

ln 2
, (A.2)

where f : Rn → Rn is defined by f(x) = ∇W(x) if x �= 0 and f(0) = 0.

Proof of Lemma A.2: Let us fix x, h ∈ Rn. We distinguish four cases for the pair
(x, x +h): first case: (0, h); second case: (x, 0); third case: 0 belongs to the open segment
]x, x + h[; and fourth case: 0 does not belong to the segment [x, x + h].

First notice that since q is even, W(x) = 1
2 (

∑n
i=1 xq

i )
2
q and for x �= 0, fi(x) =

∇i W(x) = xq−1
i ‖x‖2−q

q .

In the first three cases, we can write x as x = −kh, with k = 0 in the first case, k = 1
in the second case, and k < 1 in the third case. In these three cases, we thus have

W(x + h) − W(x) − h� f(x) = 1

2
‖h‖2

q . (A.3)

Since q ≥ 2 ln n
ln 2 , we then obtain

1

2
‖h‖2

q ≤ 1

2
n

2
q ‖h‖2∞ ≤ ‖h‖2∞ ≤ 4 ln n

ln 2
‖h‖2∞. (A.4)

Plugging (A.4) into (A.3) gives (A.2) in the first three cases.
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In the fourth case, since W is continuously differentiable on [x, x + h] and twice
continuously differentiable on ]x, x + h[, using Taylor formula, we have for some z =
x + αh, with 0 < α < 1,

W(x + h) = W(x) + h�∇W(x) + 1

2
h�∇2W(z)h. (A.5)

Now for x �= 0, we have ∇2W(x) = −(q − 2)X X� + (q − 1)
diag(xq−2

i )

‖x‖q−2
q

, with

X = (X1, . . . , Xn)
�, where Xi = xq−1

i

‖x‖q−1
q

. Observing that q > 2, and using (A.5) and

Hölder’s inequality, we then have

W(x + h) ≤ W(x) + h�∇W(x) + q

2
‖h‖2

q ≤ W(x) + h� f(x) + q‖h‖2∞.

We conclude bounding q from above by 4 lnn
ln 2 , for n ≥ 2. �

Let us now show (A.1). For k = 0, . . . , N − 1, we have, using Lemma A.2:

W
( k+1∑

t=1

Xt

)
≤ W

( k∑
t=1

Xt

)
+ (Xk+1)

� f
( k∑

t=1

Xt

)
+ c∗(n)‖Xk+1‖2∞.

Hence, taking expectation, and since the random vectors Xt are independent and centered:

E
[
W

( k+1∑
t=1

Xt

) ]
≤ E

[
W

( k∑
t=1

Xt

) ]
+ c∗(n) σ2.

We then have: E [W(
∑N

t=1 Xt) ] ≤ N c∗(n) σ2, and since W(z) ≥ 1
2‖z‖2∞,

E
[∥∥∥ N∑

t=1

Xt

∥∥∥2

∞

]
≤ 8

ln 2
σ2 N ln n, (A.6)

which achieves the proof of (A.1). �

Lemma A.3 Let rt , t = 1, . . . , N, be N independent observations of a random vector in
Rn satisfying Assumption 3.1 and (1.1) where ρt = ρ and Qt = Q are constant. Let us

fix λ > 0 and let K0(N) = σ
(

N
ln n(n+1)+λ ln N

) 1
4
. We suppose that N is sufficiently large to

have ln(n(n + 1))+λ ln N ≤ N. We define the following statistics: ρ̂N+1 = 1
N

∑N
t=1 αt ,

Q̂
b
N+1 = 1

N

N∑
t=1

(αt − ρ)(αt − ρ)�, and Q̂N+1 = 1

N

N∑
t=1

(αt − ρ̂N+1)(αt − ρ̂N+1)
�,
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with αt = rt 1(‖rt‖∞ ≤ K0). Then there exist constants m1 = 7
3 +√

2, m2 = 25
3 +4

√
2,

and m3 = m2
1 + m2 such that:

‖Eρ̂N+1 − ρ‖∞ ≤ σ

(
ln n(n + 1) + λ ln N

N

) 3
4

, (A.7)

P

(
‖ρ̂N+1 − ρ‖∞ ≥ m1σ

√
ln n(n + 1) + λ ln N

N

)
≤ 1

Nλ
, (A.8)

‖EQ̂
b
N+1 − Q‖∞ ≤ 3σ2

√
ln n(n + 1) + λ ln N

N
, (A.9)

P

(
‖Q̂

b
N+1 − Q‖∞ ≥ m2σ

2

√
ln n(n + 1) + λ ln N

N

)
≤ 1

Nλ
, (A.10)

P

(
‖Q̂N+1 − Q‖∞ ≥ m3σ

2

√
ln n(n + 1) + λ ln N

N

)
≤ 2

Nλ
. (A.11)

Proof of Lemma A.3: Note first that for k = 1, . . . , n and t = 1, . . . , N:

|Eαt(k) − ρ(k)| = |Eαt(k) − Ert(k)| = |Ert(k)1(‖rt‖∞ > K0)|
≤ E‖rt‖∞1(‖rt‖∞ > K0),

and thus |Eρ̂N+1(k) − ρ(k)| is bounded above by σ4

K3
0
. This shows (A.7). Now if δ1 =

ln 2n + λ ln N, we show that:

P

(
‖ρ̂N+1 − ρ‖∞ ≥ η1 = σ4

K3
0

+ η′
1

)
≤ 1

Nλ
,

with

η′
1 = √

2σ

√
δ1

N
+ 4

3

K0δ1

N
,

and thus (A.8) will follow with m1 = 7
3 + √

2. We can bound from above P(‖ρ̂N+1 −
ρ‖∞ ≥ η1) by

n max
k=1,...,n

P(|ρ̂N+1(k) − Eρ̂N+1(k)| ≥ η1 − |Eρ̂N+1(k) − ρ(k)|),

which itself is bounded from above by

n max
k=1,...,n

P

(∣∣∣ N∑
i=1

αi(k) − Eαi(k)
∣∣∣ ≥ Nη′

1

)
. (A.12)

Further, notice that

η′
1 ≥ η′′

1 = 2

3

K0δ1

N
+

√(2

3

K0δ1

N

)2 + 2σ2 δ1

N
.
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Now, if Xi
k = αi(k) −Eαi(k), for all fixed k, the random variables Xi

k, i = 1, . . . , N, are
independent with zero mean and such that

Var(Xi
k) = E(Xi

k)
2 ≤ Eαi(k)

2 ≤ σ2 and |Xi
k| ≤ 2 K0.

Thus, when using the Bernstein inequality for (A.12), we get (A.8):

P(‖ρ̂N+1 − ρ‖∞ ≥ η1) ≤ 2n exp

(
−1

2

Nη′′
1

2

σ2 + 2
3 K0η

′′
1

)
= 1

Nλ
.

Now let α̃t = E(αt − ρ)(αt − ρ)� − Q. We have, for all 1 ≤ j, k ≤ n, and t = 1, . . . , N :
|α̃t( j, k)| ≤ E|rt( j)rt(k) − αt( j)αt(k)| + |ρ(k)||Eαt( j) − ρ( j)|

+ |ρ( j)||Eαt(k) − ρ(k)| (A.13)

≤ E|rt( j)rt(k)1(‖rt‖∞ > K0)| + |ρ(k)||Ert( j)1(‖rt‖∞ > K0)|
+ |ρ( j)| |Ert(k)1(‖rt‖∞ > K0)| ≤ σ4

K2
0

+ 2
σ5

K3
0

;

and (A.9) follows. We now introduce δ2 = ln n(n + 1) + λ ln N and show that:

P

(
‖Q̂

b
N+1 − Q‖∞ ≥ η′

2 = σ4

K2
0

+ 2
σ5

K3
0

+ η′′
2

)
≤ 1

Nλ
,

where

η′′
2(N, λ) = 4

3

(K0 + σ)2δ2

N
+ 4

√
2σ2

√
δ2

N
; (A.14)

which will prove (A.10). Reasoning as above and, for short, writing η′′
2 for η′′

2(N, λ), we
have

P(‖Q̂
b
N+1 − Q‖∞ ≥ η′

2) ≤ n(n + 1)

2
max

1≤ j≤k≤n
P(|Q̂b

N+1( j, k) − EQ̂
b
N+1( j, k)| ≥ η′′

2)

≤ n(n + 1)

2
max

1≤ j≤k≤n
P

(∣∣∣ N∑
i=1

A j,k
i − EA j,k

i

∣∣∣ ≥ Nη̃

)

with

η̃ = 2

3

(K0 + σ)2δ2

N
+

√(
2

3

(K0 + σ)2δ2

N

)2

+ 32σ4 δ2

N
≤ η′′

2,

and A j,k
i = (αi( j)− ρ( j))(αi(k) −ρ(k)). If we set X j,k

i = A j,k
i −EA j,k

i , for every ( j, k),

the random variables (X j,k
i )i are independent, with zero mean, and satisfy

|X j,k
i | ≤ 2(K0 + σ)2, and Var(X j,k

i ) = E(X j,k
i )2 ≤ E(‖αi‖∞ + σ)4 ≤ 16σ4.
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We then conclude the proof of (A.10) using Bernstein inequality. Further, since:

‖Q̂
b
N+1 − Q̂N+1‖∞ = ‖(ρ − ρ̂N+1)(ρ − ρ̂N+1)

�‖∞ = ‖ρ − ρ̂N+1‖2∞,

if η2 = m3σ
2
√

δ2
N , we have:

P(‖Q̂N+1 − Q‖∞ ≥ η2)

≤ P
(

‖ρ̂N+1 − ρ‖2∞ ≥ m2
1σ

2

√
δ2

N

)
+ P

(
‖Q̂

b
N+1 − Q‖∞ ≥ m2σ

2

√
δ2

N

)
.

Since
√

δ2
N ≥ δ2

N , (A.8) allows us to bound from above the first term of the right hand side

by 1
Nλ and from (A.10) the second term is also bounded above by 1

Nλ . �

Lemma A.4 Under the hypotheses of Lemma A.3, we define the following statistics:
ρ̂N+1 = 1

N

∑N
t=1 αt ,

Q̂b
N+1 = 1

N

N∑
t=1

(αt − ρ)(αt − ρ)�, and Q̂N+1 = 1

N

N∑
t=1

(αt − ρ̂N+1)(αt − ρ̂N+1)
�,

where for i = 1, . . . , n, αt(i) = [rt(i)]K0(N), with [·]K0(N) a truncation operator (defined

in (3.1)). The estimators ρ̂N+1 , Q̂
b
N+1 and Q̂N+1 satisfy (A.7), (A.8), (A.10), (A.11) (with

m1 = 7
3 + √

2, m2 = 31
3 + 4

√
2, m3 = m2

1 + m2) and

‖EQ̂
b
N+1 − Q‖∞ ≤ 5σ2

√
ln n(n + 1) + λ ln N

N
. (A.15)

The condition ln(n(n + 1)) + λ ln N ≤ N in the above Lemmas A.3 and A.4 can be
suppressed but this leads to more complicated left hand sides.

Proof of Lemma A.4: If we notice that |αt(i)| ≤ |rt(i)|, we see, (following the proof of
Lemma A.3), that (A.7), (A.8), (A.10) and (A.11) remain valid for Lemma A.4 provided
that constants m2 and m3 are updated. For instance for k = 1, . . . , n, and t = 1, . . . , N,

|Eαt(k) − ρ(k)| = |E[K0
rt(k)

|rt(k)| − rt(k)]1(|rt(k)| > K0)|

≤ E|rt(k)|1(|rt(k)| > K0) ≤ σ4

K3
0

,

and (A.7) follows. Let us now bound ‖EQ̂
b
N+1 − Q‖∞ from above. Let us fix j, k in

1, . . . , n, and t in 1, . . . , N. First, note that (A.13) holds. Let us then denote by k+ (resp.
k−) the quantity 1(|r1(k)| > K0) (resp. 1(|r1(k)| ≤ K0)) and by j+ (resp. j−) the quantity
1(|r1( j)| > K0) (resp. 1(|r1( j)| ≤ K0)). Further, we have

|ρ(k)||Ert( j) − αt( j)| ≤ σE|rt( j)| j+ ≤ σ4

K2
0

.
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We then bound from above E|αt( j)αt(k) − rt( j)rt(k)| by the sum of three terms At( j, k),
Bt( j, k), and Ct( j, k) defined by

At( j, k) = E|rt(k)||rt( j)|
∣∣∣ K0

|rt( j)| − 1
∣∣∣k− j+,

Bt( j, k) = E|rt(k)||rt( j)|
∣∣∣ K0

|rt(k)| − 1
∣∣∣k+ j−,

Ct( j, k) = E|rt( j)rt(k)|
∣∣∣ K2

0

|rt( j)rt(k)| − 1
∣∣∣k+ j+.

Since each of these terms is bounded from above by σ4

K2
0

, (A.15) follows. �

The following lemma will also be useful. Even if Vρ
I and V Q

I are unknown, this lemma

allows us to have a (non-asymptotic) bound on these quantities: Vρ
I ≤ 4

√
2

ln 2σ
√

ln n
|I | and

V Q
I ≤ kQσ2

√
ln n(n+1)+λ ln |I |

|I | , for some constant kQ . If I is an interval of local time

homogeneity, this lemma will also provide an upper bound for �
ρ
I and �

Q
I . In what

follows, we denote 1
|I |

∑
t∈I

ρt and 1
|I |

∑
t∈I

Qt by respectively ρ̄I and Q̄ I . For short, we will

write αI
t for αt .

Lemma A.5 Let λ > 0, let n ≥ 2, let I be a nonempty interval such that ln n(n + 1) +
λ ln |I | ≤ |I | and let ρ̂ I and Q̂I be the estimators defined in (3.3). Then there is a constant
kQ = 2 + 64

ln 2 + 16√
ln 2

(2 + √
2) such that

E‖ρ̂ I − Eρ̂ I‖2∞ ≤ 32

ln 2
σ2

(
ln n

|I |
)

, (A.16)

E‖Q̂ I − EQ̂ I‖∞ ≤ kQσ2

√
ln n(n + 1) + λ ln |I |

|I | . (A.17)

Proof: Notice that random vectors Xk = αk − Eαk, for k ∈ I , are independent with zero
mean and check:

E‖Xk‖2∞ ≤ E(‖αk‖∞ + E‖αk‖∞)2 ≤ E(‖rk‖∞ + σ)2 ≤ 4σ2.

It then suffices to follow the proof of Lemma A.1 to show (A.16). Now, let Q̃
b
I =

1
|I |

∑
t∈I

(αt − ρ̄ I )(αt − ρ̄ I )
�. We first prove that:

E‖Q̃
b
I − EQ̃

b
I‖∞ ≤ 32√

ln 2
σ2

√
ln n

|I | . (A.18)



Mean and covariance matrix adaptive estimation for a weakly stationary process 137

Indeed, E‖Q̃
b
I − EQ̃

b
I‖∞ = 1

|I | E‖
∑
t∈I

ζ̃t‖∞, where ζ̃t is the symmetric vectorisation of

(αt − ρ̄ I )(αt − ρ̄ I )
� − E(αt − ρ̄ I )(αt − ρ̄ I )

�. The random vectors (ζ̃t)t∈I in R
n(n+1)

2 are
independent with zero mean and E‖ζ̃t‖2∞ ≤ E((‖rt‖∞ + σ)2 + 4σ2)2 ≤ 64σ4. Using
Lemma A.1, we get (A.18). Now,

E‖Q̂ I − EQ̂ I‖∞ ≤ E‖Q̂ I − Q̃b
I ‖∞ + E‖Q̃

b
I − EQ̃

b
I‖∞ + ‖EQ̃

b
I − EQ̂ I‖∞

≤ 2E‖Q̂ I − Q̃
b
I‖∞ + 32√

ln 2
σ2

√
ln n

|I | . (A.19)

Reasoning as in the proof of (A.7), we then have ‖Eρ̂ I − ρ̄ I‖∞ ≤ σ

√
ln n(n+1)+λ ln |I |

|I | .

Also, ‖Q̂ I − Q̃
b
I‖∞ = ‖ρ̂ I − ρ̄I‖2∞ and it follows that

E‖ρ̂ I − ρ̄ I‖2∞ ≤ E(‖ρ̂ I − Eρ̂I‖∞ + ‖Eρ̂ I − ρ̄ I‖∞)2

≤ E
(

‖ρ̂ I − Eρ̂ I‖∞ + σ

√
ln n(n + 1) + λ ln |I |

|I |

)2

. (A.20)

We then use (A.16), (A.19) and (A.20) to prove (A.17). �

Proof of Theorem 3.2: Let rt satisfy Assumption 3.1. We have:

‖ρ̂ I − ρ̂ J‖∞ ≤ ‖ρ̂ I − ρ̄ I‖∞ + ‖ρ̄ I − ρ̄ J‖∞ + ‖ρ̄ J − ρ̂J‖∞. (A.21)

Now ‖ρ̄ I − ρ̄J‖∞ ≤ ‖ρ̄ I − ρN+1‖∞ + ‖ρN+1 − ρ̄ J‖∞ and from the Cauchy–Schwartz
inequality ‖ρ̄ I − ρN+1‖∞ ≤ �

ρ
I and ‖ρN+1 − ρ̄ J‖∞ ≤ �

ρ
J . Since I is an interval of

local time homogeneity and J ∈ I(I ), we have �
ρ
I ≤ DVρ

I and �
ρ
J ≤ DVρ

J . Using
Lemma A.5, we then get:

‖ρ̄ I − ρ̄J‖∞ ≤ 4

√
2

ln 2
Dσ

(√
ln n

|I | +
√

ln n

|J|

)
. (A.22)

We can then easily adapt the proof of (A.8) to show that for every nonempty interval I
and λ > 0:

P(‖ρ̂ I − ρ̄ I‖∞ ≥ η1(|I |, λ)) ≤ 1

|I |λ , (A.23)

with

η1(|I |, λ) = σ4

K3
0(|I |) + √

2σ

√
ln 2n + λ ln |I |

|I | + 4

3

K0(|I |)(ln 2n + λ ln |I |)
|I | , (A.24)
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where K0(|I |) = σ
( |I |

ln n(n+1)+λ ln |I |
) 1

4
. Note that if ln n(n + 1) + λ ln |I | ≤ |I |, then

(A.23) holds with η1(|I |, λ) = m1σ

√
ln n(n+1)+λ ln |I |

|I | , where m1 = 7
3 + √

2. Since
ln n(n + 1) + λ ln |I | ≤ |I | and ln n(n + 1) + λ ln |J| ≤ |J|, we then use (A.21), (A.22)

and (A.23) with η1(|I |, λ) = ( 7
3 + √

2)σ

√
ln n(n+1)+λ ln |I |

|I | to obtain (3.6). We now need
the following lemma to prove (3.7).

Lemma A.6 If I is a nonempty interval of local time homogeneity, then for all λ > 0,

P

(
‖Q̂ I − Q̄ I‖∞ ≥ η(|I |, λ) (A.25)

= η2
1(|I |, λ) + η′′

2(|I |, λ) + kσ2

√
ln n(n + 1) + λ ln |I |

|I |
)

≤ 2

|I |λ ,

where k = 5 + 8
√

2
ln 2 D and the functions η1 and η′′

2 are defined in (A.24) and (A.14).

Proof of Lemma A.6: Note first that:

‖Q̂ I − Q̄ I‖∞ ≤ ‖ρ̂ I − ρ̄ I‖2∞ + 1

|I |
∥∥∥∑

t∈I

(αt − ρ̄ I )(αt − ρ̄I )
� − Qt

∥∥∥∞. (A.26)

We now have to bound from above: ‖�‖∞ = 1
|I |

∥∥∥∑
t∈I

E(αt − ρ̄ I )(αt − ρ̄ I )
� − Qt

∥∥∥∞.

We have, for all 1 ≤ j, k ≤ n:

|�( j, k)| ≤ 1

|I |
∑
t∈I

|E[αt( j)αt(k) − rt( j)rt(k)]| + |ρ̄ I (k)|
|I |

∣∣∣∑
t∈I

ρt( j) − Eαt( j)
∣∣∣

+ 1

|I |
∑
t∈I

|ρt( j)||ρt(k) − Eαt(k)| + 1

|I |
∑
t∈I

|Eαt(k)||ρt( j) − ρ̄ I ( j)|

≤ 5σ4

K2
0(|I |) + σ

|I |

(∑
t∈I

|(ρt − ρN+1)( j)| + |(ρN+1 − ρ̄I )( j)|
)

≤ 5σ4

K2
0(|I |) + 2σ�

ρ
I ≤

(
5 + 8

√
2

ln 2
D

)
σ2

√
ln n(n + 1) + λ ln |I |

|I | .

We then use (A.26), (A.23) and follow the proof of (A.10) to conclude. �

Remark A.7 In the case when ln n(n + 1) + λ ln |I | ≤ |I | and if k′
Q = 160

9 + 26
3

√
2 +

8
√

2
ln 2 D, then the above lemma holds with η(|I |, λ) = k′

Q σ2
√

ln n(n+1)+λ ln |I |
|I | .
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Similarly, we have:

‖Q̂ I − Q̂ J‖∞ ≤ ‖Q̂ I − Q̄ I‖∞ + ‖Q̄ I − Q̄ J‖∞ + ‖Q̄ J − Q̂ J‖∞. (A.27)

Using Cauchy–Schwartz inequality, Lemma A.5 and since I is of local time homogeneity
we get:

‖Q̄ I − Q̄ J‖∞ ≤ D(V Q
I + V Q

J ) (A.28)

≤ kQ Dσ2
(√

ln n(n + 1) + λ ln |J|
|J| +

√
ln n(n + 1) + λ ln |I |

|I |
)

.

We conclude using (A.27), (A.29) and Remark A.7. �

Proof of Theorem 3.4: We show that (3.10) holds with k(D) = k′
Q + kQ D, where k′

Q
and kQ are defined in Remark A.7 and Lemma A.5. If δ2 = ln n(n + 1) + λ ln |I| and

k′(D) = 7
3 +√

2+4
√

2
ln 2 D, since k(D) max(σ, σ2) ≥ k′(D)σ, we can bound from above

P
(
‖θ̂I − θ‖∞ ≥ k(D) max(σ, σ2)

√
δ2|I|

)
by

P

(
‖ρ̂I − ρN+1‖∞ ≥ k′(D)σ

√
δ2

|I|

)
+ P

(
‖Q̂I − QN+1‖∞ ≥ k(D)σ2

√
δ2

|I|

)
.

(A.29)

We then observe that

‖ρ̂I − ρN+1‖∞ ≤ 1

|I|
∑
t∈I

‖αt − ρt‖∞ + 1

|I|
∑
t∈I

‖ρt − ρN+1‖∞. (A.30)

Then using Cauchy–Schwartz inequality, the definition of I and Lemma A.5:

1

|I|
∑
t∈I

‖ρt − ρN+1‖∞ ≤ �
ρ
I ≤ DVρ

I ≤ 4

√
2

ln 2
Dσ

√
ln n

|I| . (A.31)

Using (A.30), (A.31) and (A.23) with η1(|I|, λ) =
(

7
3 + √

2
)
σ

√
δ2|I| , we can bound from

above the first term in (A.29) by 1
|I|λ . Similarly for the covariance matrix:

‖Q̂I − QN+1‖∞ ≤ ‖Q̂I − Q̄I‖∞ + �
Q
I , (A.32)

with �
Q
I ≤ DV Q

I . We then use (A.32) and Lemmas A.5 and A.6 to bound from above
the second term in (A.29) by 2

|I|λ . �

Proof of Theorem 3.5: We show that (3.11) is valid with k(D) = 3(kQ D + k′
Q) where

k′
Q and kQ are defined in Remark A.7 and Lemma A.5. To this end, we prove that the
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union of the event:{
‖ρ̂ Î − ρN+1‖∞ > 3η1(|I|, λ) + 8

√
2

ln 2
Dσ

√
ln n

|I| + �
ρ
I

}
(A.33)

and of the event{
‖Q̂ Î − QN+1‖∞ > 3η(|I|, λ) + 2kQ Dσ2

√
ln n(n + 1) + λ ln |I|

|I| + �
Q
I

}
(A.34)

implies the event⋃
I∈I | I⊆I

⋃
J∈I+(I )

{
‖ρ̂ J − ρ̄ J‖∞ > η1(|J|, λ) ∪ ‖Q̂ J − Q̄ J‖∞ > η(|J|, λ)

}
, (A.35)

where η(|I |, λ) = k′
Q σ2

√
ln n(n+1)+λ ln |I |

|I | and η1(|I |, λ) = m1σ

√
ln n(n+1)+λ ln |I |

|I | with

m1 = 7
3 + √

2. Since we easily check that the probability

P

(
‖θ̂ Î − θ‖∞ ≥ k(D) max(σ, σ2)

√
ln n(n + 1) + λ ln |I|

|I|
)

is bounded above by the probability of the union of the two events (A.33) and (A.34), and
since every testing subinterval J satisfies |J| ≥ m0, this will prove the theorem.

Let us thus now prove that the union of the events (A.33) and (A.34) implies the
event (A.35). Let us suppose that for all I in I such that I ⊆ I and J ∈ I+(I ),
‖ρ̂ J − ρ̄ J‖∞ ≤ η1(|J|, λ) and ‖Q̂ J − Q̄ J‖∞ ≤ η(|J|, λ). We intend to prove that

‖ρ̂ Î −ρN+1‖∞ ≤ 3η1(|I|, λ)+8
√

2
ln 2 Dσ

√
ln n
|I| +�

ρ
I and ‖Q̂ Î − QN+1‖∞ ≤ 3η(|I|, λ)+

2kQ Dσ2
√

ln n(n+1)+λ ln |I|
|I| + �

Q
I . First, note that I is not rejected. Indeed, for all I ∈ I

such that I ⊆ I and for all J ∈ I(I ):

‖ρ̂ I − ρ̂ J‖∞ ≤ ‖ρ̂ I − ρ̄ I‖∞ + ‖ρ̄ I − ρN+1‖∞ + ‖ρN+1 − ρ̄ J‖∞ + ‖ρ̄ J − ρ̂ J‖∞
≤ η1(|I |, λ) + η1(|J|, λ) + �

ρ
I + �

ρ
J .

Now due to the definition of I, �
ρ
I ≤ DVρ

I , �
ρ
J ≤ DVρ

J and using Lemma A.5 gives:

‖ρ̂ I − ρ̂ J‖∞ ≤ η1(|I |, λ) + η1(|J|, λ) + 4

√
2

ln 2
Dσ

(√
ln n

|I | +
√

ln n

|J|

)
.

Similarly we show that:

‖Q̂ I − Q̂ J‖∞ ≤ η(|I |, λ) + η(|J|, λ)

+ kQ Dσ2

(√
ln n(n + 1) + λ ln |I |

|I | +
√

ln n(n + 1) + λ ln |J|
|J|

)
.
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So for all I ∈ I such that I ⊆ I, I is accepted and I is accepted so I ⊆ Î . This implies

‖ρ̂I − ρ̂ Î‖∞ ≤ η1(|I|, λ) + η1(| Î |, λ) + 4

√
2

ln 2
Dσ

(√
ln n

|I| +
√

ln n

| Î |

)

≤ 2η1(|I|, λ) + 8

√
2

ln 2
Dσ

√
ln n

|I| ,

since η1(|I |, λ) is a decreasing function of |I |. Now

‖ρ̂ Î − ρN+1‖∞ ≤ ‖ρ̂ Î − ρ̂I‖∞ + ‖ρ̂I − ρ̄I‖∞ + ‖ρ̄I − ρN+1‖∞

≤ 3η1(|I|, λ) + 8

√
2

ln 2
Dσ

√
ln n

|I| + �
ρ
I .

Since η(|I |, λ) is also a decreasing function of |I |, we can show in the same fashion that

‖Q̂ Î − QN+1‖∞ ≤ 3η(|I|, λ) + 2kQ Dσ2

√
ln n(n + 1) + λ ln |I|

|I| + �
Q
I ,

which achieves the proof. �

Proof of Theorems 4.2–4.5: In the stationary case, let λ > 0 be such that ln n(n +
1) + λ ln N ≤ N and in the case of slowly varying parameters let λ be the parameter
of the adaptive algorithm such that ln n(n + 1) + λ ln m0 ≤ m0. In the stationary case
(resp. in the case of slowly varying parameters), on the basis of Lemma A.4 (resp. fol-
lowing the proof of Theorem 3.5) we can find a random set S of probability at least

1 − 3
Nλ

(
resp. at least 1 −

∑
I∈I | I⊆I

∑
J∈I+(I )

3

|J|λ
)

and functions ηρ and ηQ depending

on λ, σ, n and N (resp. λ, σ, n and |I|) such that if ω ∈ S: ‖ρ̂N+1 − ρN+1‖∞ ≤ ηρ

and ‖ Q̂N+1 − QN+1‖∞ ≤ ηQ . More precisely, in the stationary case we have ηρ =(
7
3 + √

2
)
σ

√
ln n(n+1)+λ ln N

N and ηQ =
(

160
9 + 26

3

√
2

)
σ2

√
ln n(n+1)+λ ln N

N , and in the

case of slowly varying parameters, ηρ =
(

3
√

2 + 7 + 12
√

2
ln 2 D

)
σ

√
ln n(n+1)+λ ln |I|

|I| and

ηQ = 3(kQ D+k′
Q)σ2

√
ln n(n+1)+λ ln |I|

|I| . Also, if ω ∈ S, then ‖θ̂ −θ‖∞ ≤ ηQ

σ2 max(σ, σ2).

Using Proposition 2.2, we then see that (4.1) is valid with k = 2C0

(
160

9 + 26
3

√
2
)α0

and that (4.4) holds with k(D) = 2C0

(
3(kQ D + k′

Q)
)α0

.

Let us now study the accuracy of P̃(θ̂). Following the proof of Proposition 2.2, we
have on S the bound:

ε(P̃(θ̂)) ≤ 2(ηρ + κ
√

ηQ) max
x∈X

‖x‖1;
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which gives the bounds in (4.2) and (4.5). Note that if QN+1 is definite positive, we can

improve the bound for sup
x∈X

∣∣∣√x� Q̂N+1x − √
x� QN+1x

∣∣∣. Indeed, in this case, for any

x ∈ X,
√

x� QN+1x ≥ √
β(QN+1) ‖x‖1 and∣∣∣∣∣∣

x� QN+1x − x� Q̂N+1x√
x� QN+1x +

√
x� Q̂N+1x

∣∣∣∣∣∣ ≤ ‖ Q̂N+1 − QN+1‖∞ maxx∈X ‖x‖1√
β(QN+1)

.

This implies on S: sup
x∈X

∣∣∣√x� Q̂N+1x − √
x� QN+1x

∣∣∣ ≤ ηQ maxx∈X ‖x‖1√
β(QN+1)

, what implies

the estimation in (4.3) and (4.6). Notice that for (4.2) and (4.3), we have k1 = 14
3 + 2

√
2

and k2 = 160
9 + 26

3

√
2, and for (4.5) and (4.6), we have k1(D) = 2

(
7+3

√
2+12

√
2

ln 2 D
)

and k2(D) = 3(kQ D + k′
Q). �
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