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Abstract We recommend an implementation of the Markowitz problem to generate
stable portfolios with respect to perturbations of the problem parameters. The stability
is obtained proposing novel calibrations of the covariance matrix between the returns
that can be cast as convex or quasiconvex optimization problems. A statistical study
as well as a sensitivity analysis of the Markowitz problem allow us to justify these
calibrations. Our approach can be used to do a global and explicit sensitivity analysis
of a class of quadratic optimization problems. Numerical simulations finally show the
benefits of the proposed calibrations using real data.

Keywords Markowitz model · Sensitivity analysis · Covariance matrix estimation ·
Quadratic programming · Semidefinite programming

1 Introduction

We are interested in the stability of the portfolio solution of the Markowitz prob-
lem [12] and of a generalisation of this problem taking into account the transaction
costs [6]. The Markowitz approach today remains both the simplest and the most
general portfolio selection model. However, the estimation of the problem parame-
ters, the mean return vector ρ and the covariance matrix Q between the returns over
the investment period, is a complicated task. For instance, it is pointed out in [1, 2],
that if we use the empirical estimations of the parameters, the portfolio’s composi-
tion is traditionally very sensitive to changes in the returns. Our approach takes into
account the numerical risk that is linked with the first step of estimating the statisti-
cal quantities by introducing an intermediate step between this first step of statistical
estimation and the second step of selection. This intermediate step can be interpreted

V. Guigues (�)
Laboratoire de Modélisation et Calcul, IMAG, BP 53, 38041 Grenoble Cedex 9, France
e-mail: vincent.guigues@imag.fr

mailto:vincent.guigues@imag.fr


« COAP 10589 layout: Small Extended v.1.2 reference style: mathphys file: coap9260.tex (Loreta) aid: 9260 doctopic: OriginalPaper class: spr-small-v1.1 v.2009/05/07 Prn:2009/06/05; 13:57 p. 2/27»

V. Guigues

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

as a filter or as a numerical regularization of the statistical estimations and results in a
new calibration of the covariance matrix. This calibration thus focuses on the defaults
of the initial estimation of the covariance matrix. This initial estimation depends on
the model for the returns: i.i.d. as in [11] or slowly varying mean and covariance
matrix as in [7].

Our paper is organized as follows. The second section of the paper briefly recalls
the Markowitz model and the problem of estimating its parameters. It also gives a
few properties of the Markowitz model useful for our study. To control portfolio sta-
bility, given two portfolios x∗

1 and x∗
2 obtained for the values (ρ1,Q1) and (ρ2,Q2)

of the parameters, we would like to bound from above ‖x∗
2 − x∗

1‖1 or ‖x∗
2 − x∗

1‖2 in
terms of ‖Q2 − Q1‖ and ‖ρ2 − ρ1‖. Notice that contrary to ‖x∗

2 − x∗
1‖2, ‖x∗

2 − x∗
1‖1

has a physical interpretation; it represents the portfolio composition variation, but the
bounds we obtain on ‖x∗

2 − x∗
1‖2 allow us to justify some existing covariance matrix

calibrations such as [13] (which was motivated by numerical observations) and the
calibrations we introduce in Sect. 4. The third section is thus devoted to a sensitiv-
ity analysis of the Markowitz problems [12] and [6]. Three different versions of the
Markowitz model are studied. Since these three models can all be cast as quadratic
optimization problems satisfying the Slater assumption, we already know from [5]
that the solutions are locally radially Lipschitz, though in [5] the Lipschitz constant
is not explicit. On the contrary, our sensitivity analysis aims at finding explicit and
global bounds. For the version where the return constraint is aggregated in the objec-
tive, we show that the solutions are radially Lipschitz with respect to the parameters.
We then study a version of the problem integrating a return constraint without trans-
actions costs as in [12] and with transaction costs as in [6]. Roughly speaking, the
sensitivity analysis of all models tends to show that the portfolios generated using the
Markowitz model will be stable with respect to small perturbations of the parameters
if the lowest eigenvalue of the estimated covariance matrix and at least one mean
return are sufficiently large. The sensitivity analysis, through Theorems 3.1 and 3.2,
is thus the theoretical support for the stable covariance matrix calibrations we pro-
pose in Sect. 4. Numerical simulations in Sect. 5 show that one of the calibrations
we propose leads to the most stable portfolios (among a set of competing calibration
methods) while providing performing portfolios.

2 Markowitz model, sources of instabilities and statistical framework

2.1 Markowitz mean-variance model

We recall the formulations of [6, 12]. The Markowitz model is a portfolio optimiza-
tion model corresponding to a single investment over a given investment period of
H time steps. Given n risky assets and a risk-free asset, the Markowitz model gives
the proportion of the different assets composing the optimal portfolio. The return ri
of each asset i over the investment period is unknown. The standard mean-variance
Markowitz model uses the first and second moments of the distribution of the returns.
Therefore, the probability distribution of the returns r over the investment period is
characterized by a vector of expected returns E[r] = ρ and a covariance matrix be-
tween the returns Q such that Q = E[(r −ρ)(r −ρ)�]. A portfolio is then given by a
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vector x ∈ R
n of risky asset weights. The weight of the risk-free asset (whose return

is ρ0) is x0 = 1 − x�e, where in this expression, and in what follows, e is a vector
with all components equal to one. Hence, the expected total return of the portfolio is
E[x�r +x0ρ0] = x�ρ +x0ρ0 and the risk of the investment is defined by the variance
of the total return of the portfolio E[(x�r − x�ρ)

2] = x�Qx.
The optimal portfolio is then a solution of the following problem P(k,ρ,Q) pa-

rameterized by k, ρ and Q:

P(k,ρ,Q)

{
min 1

2 x�Qx − k x�(ρ − ρ0e)
x ∈ �n,

where k ≥ 0 depends on the investor’s risk aversion and �n = {x ∈ R
n | x�e ≤ 1,

x ≥ 0} denotes the unit simplex. The model simultaneously tries to minimize the
variance of the portfolio return and to maximize the expected return of the portfolio
over the investment period.

Another approach is based on a target value � for the expected return and yields
the following problem P ′(�, ρ,Q):

P ′(�, ρ,Q)

{
min 1

2 x�Qx

x�(ρ − ρ0e) ≥ � − ρ0, x ∈ �n.

Finally, it is also possible to take transaction costs into account as in [6]. In [6],
the i-th component xi of a portfolio x = (x1, . . . , xn) gives the amount invested in
asset i, the amount x0 being invested in the risk-free asset. We introduce the following
notation:

• x−
i : the initial value of i-th asset before the rebalancing of the portfolio;

• yi : the amount of risky asset i we sell at the beginning of the period, with the
corresponding transaction cost μi (0 < μi < 1);

• zi : the amount of risky asset i we buy at the beginning of the period, with the
corresponding transaction cost νi (0 < νi < 1).

The set of portfolios is then defined by the following constraints:⎧⎪⎨
⎪⎩

xi = x−
i − yi + zi, i = 1, . . . , n,

x0 = x−
0 + ∑n

i=1 (1 − μi) yi − ∑n
i=1 (1 + νi) zi,

x ≥ 0, x0 ≥ 0, y ≥ 0, z ≥ 0,

where (x−, x−
0 ) ≥ 0 and (x−, x−

0 ) 	= 0. Notice that if (x−, x−
0 ) was null, the only

admissible portfolio would be x = 0. The Markowitz problem taking into account
the transaction costs then reads:

P ′′(�, ρ,Q)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min 1
2x�Qx

ρ� x + ρ0
(
x−

0 + (e − μ)�y − (e + ν)�z
) ≥ � (e� x− + x−

0 ),

x + y − z = x−,

(e + ν)�z − (e − μ)�y ≤ x−
0 ,

x ≥ 0, y ≥ 0, z ≥ 0.

(1)
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The return constraint in P ′ (resp. P ′′) is equivalent to x�ρ + x0ρ0 ≥ � (resp.
x�ρ + ρ0x0 ≥ � (e�x− + x−

0 )); meaning indeed that � is a target mean return. Also
if x∗ (resp. (x∗, y∗, z∗)) is an optimal solution of problem P ′ (resp. P ′′) then the
weight (resp. the amount) of the risk-free asset is x∗

0 = 1 − e�x∗ (resp. x∗
0 = x−

0 +
(e − μ)�y∗ − (e + ν)�z∗). From now on, we use the following hypotheses:

H1. The covariance matrix Q is positive definite.

H2. For problem P ′, 0 < ρ0 < �, and for problem P ′′, 0 < ρ0 <
�(e�x−+x−

0 )

(e−μ)�x−+x−
0

.

H3. There exists κ > 0 such that for problem P ′, for at least one component i,
ρ(i) > � + κ, and for problem P ′′, for at least one component i, we have
ρ(i) >

(1+νi )

(e−μ)�x−+x−
0

(� + κ)(e�x− + x−
0 ). Also, for P ′ and P ′′, vectors ρ and e

are linearly independent.

In what follows, we say that problem P(k,ρ1,Q1), P ′(�, ρ1,Q1) or P ′′(�, ρ1,Q1)

satisfies hypotheses H1, H2 and H3 if the above hypotheses H1, H2 and H3 are sat-
isfied replacing ρ by ρ1 and Q by Q1.

A few comments on hypotheses H1, H2 and H3 The covariance matrix Q is always
positive semidefinite. Hypothesis H1 is needed for the sensitivity analysis but is also
consistent with the commonly used assumption of arbitrage free markets. Indeed, if
Q had a null eigenvalue with eigenvector v, the portfolio x = v

v�e
(if we allow for

short sellings) would be risk-free. We would then have the illusion of being able to
invest without risk on risky assets.

If hypothesis H2 does not hold for P ′(�, ρ,Q) or P ′′(�, ρ,Q), then an optimal
strategy consists of investing everything in the risk-free asset.

Condition H3 is not too demanding: it requires a mean return ρ(i) to be sufficiently
large. For instance, for problem P ′, it requires a mean return to be strictly greater than
the target mean return �; but for problem P ′ to be feasible, there must be at least one
asset i such that ρ(i) ≥ �. For P ′′, hypothesis H3 implies that at least one asset has
mean return strictly greater than � and guarantees that the portfolio obtained investing
all the money in asset i satisfies the return constraint i.e., has a mean return greater
than �(e�x− + x−

0 ). Hypothesis H3 also allows us to show the Slater assumption for
P ′ and P ′′. Finally, notice that hypotheses H2 and H3 for problem P ′ can be obtained
replacing μ and ν by 0 (there are no transaction costs) in H2 and H3 for P ′′.

2.2 A few properties of the Markowitz model

We give a few properties of the Markowitz model that will be useful for our sensitivity
analysis. Since the objective function of problem P ′(�, ρ,Q) (resp. P ′′(�, ρ,Q))
is defined everywhere, and bounded from below on the polyhedral and nonempty
feasible set, both primal problem P ′ (resp. P ′′) and its dual are equivalent to each
other. We will thus be able to either work on problem P ′ or P ′′ directly or on their
duals.

Lemma 2.1 A constraint of a convex problem that is not active at the optimum can
be removed without changing the optimal value.
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Proof Let us write the convex problem under the form:

P1

{
minh(x)

gi(x) ≤ 0, i ∈ J.

Let us denote by X1 the feasible set of P1, x1 the minimizer of h over X1 and h1
the optimal value of P1. Let us consider a non-active constraint at the optimum with
index i0 ∈ J. We thus have gi0(x1) < 0. We show that P1 is equivalent to the problem
of minimizing h over the set X2 = {x ∈ R

n | gi(x) ≤ 0, i ∈ J\i0}.
Since X1 ⊆ X2, the minimum h2 of h over X2 is clearly less than or equal to h1.

We show that in fact, for all x ∈ X2, h(x) ≥ h1 (which will imply that h2 ≥ h1 and
that the two problems have the same optimal values). Let x ∈ X2. If gi0(x) ≤ 0 then
x ∈ X1 and h(x) ≥ h1 by definition of x1. Contrarily, if gi0(x) > 0, since gi0(x1) < 0
and since gi0 is continuous, the intermediate value theorem gives the existence of
t∗ ∈ ]0,1[ such that gi0(t

∗x1 + (1 − t∗)x) = 0. Besides, from the convexity of the
set X2, it follows that x0 = t∗x1 + (1 − t∗)x ∈ X2 (since x1 and x are in X2). This
implies x0 ∈ X1 and h(x0) ≥ h1. Finally, since h is convex, we obtain h1 ≤ h(x0) ≤
t∗h1 + (1 − t∗)h(x). �

Lemma 2.2 Consider problems P ′(�, ρ,Q) and P ′′(�, ρ,Q) and suppose that As-
sumptions H1, H2 and H3 are satisfied for P ′(�, ρ,Q) and P ′′(�, ρ,Q). The follow-
ing holds:

(i) The Slater condition of qualification of constraints is satisfied for P ′ and P ′′.
(ii) The return constraint is active at the optimal solution x∗ : (ρ − ρ0 e)�x∗ = �−ρ0

for problem P ′ and ρ�x∗ + ρ0x
∗
0 = � (e�x− + x−

0 ) for problem P ′′.

Proof Let us show (i) for P ′. From H3, we can find an index i such that ρ(i) > �.

Let ε > 0 and let us define the portfolio x ∈ R
n by xi = 1 − nε and xk = ε for k 	= i.

We have x� e < 1 and if ε < 1
n
, we also have x > 0. Finally, since x�(ρ − ρ0 e) =

ρ(i) − ρ0 + aε, for some a ∈ R, we can choose ε sufficiently small in such a way
that x�(ρ − ρ0 e) > � − ρ0 and thus that no constraint is active at x. We now show
(i) for P ′′. Let i be such that ρ(i) >

(1+νi )

(e−μ)�x−+x−
0

(�+ κ)(e�x− + x−
0 ). Let ε > 0 and

let (x, y, z) ∈ R
n×R

n×R
n be such that x = x− − y + z and⎧⎪⎨

⎪⎩
if k 	= i and x−

k = 0, then yk = ε and zk = 2ε,

if k 	= i and x−
k > 0, then yk = x−

k and zk = ε,

finally, yi = x−
i + ε, and zi is such that x0 = ε.

(2)

The amount zi can be expressed as zi = 1
1+νi

(x−
0 + ∑n

j=1 (1 − μj )x
−
j ) + aε,

for some a ∈ R and we have xi = −ε + zi and ρ�x + ρ0x0 = ρ(i)
1+νi

(x−
0 +∑n

j=1 (1 − μj )x
−
j ) + a′ε, for some a′ ∈ R. Since (x−, x−

0 ) ≥ 0, with (x−, x−
0 ) 	= 0,

and since H3 holds, we can choose ε sufficiently small to have zi > 0, xi > 0 and
ρ�x + ρ0x0 > �(e�x− + x−

0 ). No inequality constraint is thus active at (x, y, z).

Let us now prove (ii). First, from (i), the feasible set of both P ′ and P ′′ is not
empty (and compact) and both P and P ′ have optimal solutions that satisfy the return
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constraint. Now by contradiction, suppose the return constraint is not active at the
optimum for P ′ and P ′′. Then, since H1 holds, using Lemma 2.1, we could remove
this constraint for convex problems P and P ′ without changing the optimal value and
the solution of problem P ′ would be x∗ = 0. But x = 0 does not satisfy the return
constraint since H2 holds so the return constraint is active for P ′. For problem P ′′,
(x∗ = 0, x∗

0 = x−
0 + ∑n

j=1 (1 − μj )x−
j , y∗ = x−, z∗ = 0), would be a feasible point

and the objective function at this point is 0. We would thus necessarily have x∗ = 0 for
problem P ′′ and the optimal value of P ′′ would be 0. However, the return constraint
cannot be satisfied with x = 0. Indeed, the maximal return that can be obtained with
x = 0 is the optimal value of the following optimization problem:

⎧⎪⎨
⎪⎩

maxρ0(x
−
0 + (e − μ)�y − (e + ν)�z)

y − z = x−, y ≥ 0, z ≥ 0,

(e + ν)�z − (e − μ)�y ≤ x−
0 .

(3)

Since the optimal value of the above optimization problem (3) is ρ0(x
−
0 +∑n

j=1(1 −
μj )x

−
j ) (obtained with yj = x−

j , zj = 0), and since H2 holds, the return constraint
cannot be satisfied for P ′′ with x = 0. Thus the return constraint cannot be removed
from P ′′ neither and it is also active for P ′′. �

Notice that if the optimal solution x∗ of P ′(�, ρ,Q) satisfies x∗
i > 0 for i =

1, . . . , n, then it suffices to apply the KKT Theorem (pp. 305–306 of [9]) to get an
explicit expression of x∗. We also have an explicit expression of the solution if short
sellings are allowed for P(k,ρ,Q) and P ′(�, ρ,Q), i.e., if the constraints (x, x0) ≥ 0
are removed. Indeed, in this case, problems P(k,ρ,Q) and P ′(�, ρ,Q) amount to
solving problems P̃ (k, ρ,Q) and P̃ ′(�, ρ,Q) below:

P̃ (k, ρ,Q)

{
min 1

2 x�Qx − k x�(ρ − ρ0e)
x ∈ R

n,

P̃ ′(�, ρ,Q)

{
min 1

2 x�Qx

x�(ρ − ρ0e) ≥ � − ρ0.

Lemma 2.3 If Q is positive definite, if ρ0 < � and if ρ and e are linearly indepen-
dent, then optimal solutions to P̃ (k, ρ,Q) and P̃ ′(�, ρ,Q) are respectively given
by:

x∗(k, ρ,Q) = kQ−1(ρ − ρ0e) and

x∗(�, ρ,Q) = � − ρ0

(ρ − ρ0e)�Q−1(ρ − ρ0e)
Q−1(ρ − ρ0e).

We conclude this section discussing the sources of instability of the composition
of the portfolios.
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2.3 Sources of instabilities and statistical framework

The sources of instability are the parameters of the model, i.e., the mean return vector
ρ and the covariance matrix Q. The stability of the portfolio selection process thus
depends on the calibration of ρ and Q. More precisely, the next section will provide
a desirable property of the calibrated covariance matrix for stability.

We will thus focus on covariance matrix calibration for portfolio selection and will
do this study in two statistical frameworks for the underlying process of returns:

(A) The case of i.i.d. returns.
(B) The case of a weakly stationary process for the returns where the mean ρ and

the covariance matrix Q slowly vary in time as in [7] (see details below).

Though many papers study the calibration of the covariance matrix of stock returns
assuming i.i.d. returns, this assumption may only be valid on short periods of time.
It is thus of interest to consider model (B) above which is more realistic for stock
returns on arbitrary time periods.

Let rt , t = 1, . . . , T , be T observations of the returns, available the day of the
investment. When the returns are i.i.d., the traditional estimations of the mean and of
the covariance matrix are the empirical mean ρ̂ and the empirical covariance matrix
Q̂ defined by

ρ̂ = 1

T

T∑
t=1

rt and Q̂ = 1

T

T∑
t=1

(rt − ρ̂)(rt − ρ̂)�.

Some criticisms are commonly formulated on this estimation Q̂. The rank of the
empirical covariance matrix is less than or equal to T so if n ≥ T + 1, this matrix
is not invertible. If the number of assets n is close to the number of available obser-
vations per asset T , then the total number of parameters to estimate is close to the
total number of observations which is problematic. In practice, we realize that even
if the number of observations T per asset is much greater than the number of assets,
the estimated covariance matrix is ill-conditioned. Taking for instance the assets of
the Dow Jones (from January 1999 to January 2002), we observed that in most cases,
using different samples of size T = 900, about one half of the eigenvalues of the
empirical covariance matrix is nearly 0 and the condition number is around 107.

With model (B) above (see [7]), we suppose the returns follow the quite general
and distribution-free model

rt = ρt + ζt , with Ert = ρt , Eζt ζ
�
t = Qt � 0,

where ζt are independent random vectors in R
n with a mean of zero. We also suppose

that for some σ > 0, E‖rt‖4∞ ≤ σ 4. Let τ be the investment date and H be the invest-
ment horizon. Using this model for the returns and if there is an interval of local time
homogeneity, then a procedure is detailed in [7] to determine adaptive estimations ρ̂

and Q̂ of the H time steps mean return ρ = ρτ over the investment period and of
the covariance matrix Q = Qτ between the H time steps returns. An interval of local
time homogeneity is an interval where ρt and Qt slowly vary on this interval. A more
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precise definition of this interval can be found in [7]. The adaptive estimations are the
empirical estimations of the mean and of the covariance matrix when using only the
data of the interval of homogeneity. The criticisms formulated above for the empir-
ical covariance matrix are thus valid for the adaptive covariance matrix replacing T

by the length of this interval.
However, if the empirical or adaptive (depending on the statistical context) esti-

mations have known defaults, they contain information and permit, not only to give
bounds on the errors we make using them, but also to give a reasonable estimation
of the solution [7]. Moreover, in the case when the returns are i.i.d., the empirical
covariance matrix also has nice properties such as being maximum likelihood under
normality. By definition, in this framework, it is thus the most likely covariance ma-
trix given the data. We thus propose to take as a starting point of the estimation of
the Markowitz model parameters, the empirical or adaptive (depending on the con-
text) estimations. In what follows, these estimations will be denoted by ρ̂ and Q̂

for respectively the mean and the covariance matrix. We will explain in Sect. 4 how
to correct this estimation Q̂ of the covariance matrix. To this aim, we start with a
sensitivity analysis of the Markowitz problem.

3 Sensitivity analysis of the Markowitz problem

We fix nominal values k (or �) and (ρ1,Q1) for the parameters of the Markowitz
problem, and consider the corresponding optimization problem as the unperturbed
problem. For a given perturbation (ρ2,Q2) of parameters (ρ1,Q1), we consider the
corresponding perturbed Markowitz problem, the parameter k (or �) remaining fixed.
The objective function of the unperturbed and perturbed problems will respectively
be denoted by f1 and f2 (whose expressions may differ, depending on the Markowitz
problem studied). We denote the solution of P(k,ρi,Qi) or P ′(�, ρi,Qi) by x∗

i (it is
unique because Qi is positive definite) and a solution of P ′′(�, ρi,Qi) by (x∗

i , y∗
i , z∗

i ).
Finally, in what follows, Sn(R) is the set of real symmetric matrices of size n and for
X ∈ Sn(R), X � 0 (resp. X 
 0) means the real symmetric matrix X is positive
semidefinite (resp. positive definite).

In [1, 2], a sensitivity analysis of P is done through a parametric quadratic pro-
gramming formulation but in a simplified setting: without risk-free asset and consid-
ering Q fixed. In [5], Daniel shows that under the Slater Assumption (which holds
for problems P ′ and P ′′ due to Lemma 2.2), solutions to a general quadratic op-
timization problem are locally radially Lipschitz, but without providing an explicit
Lipschitz constant.

Our contribution is to provide global bounds that are explicit functions of the para-
meters. The study can be extended to the sensitivity analysis of quadratic optimization
problems.

3.1 Sensitivity analysis of problem P

The feasible set of problem P is fixed when ρ and Q vary. Since f1 satisfies a second
order growth condition on �n, we can apply the following proposition to obtain the
sensitivity of the solutions.



« COAP 10589 layout: Small Extended v.1.2 reference style: mathphys file: coap9260.tex (Loreta) aid: 9260 doctopic: OriginalPaper class: spr-small-v1.1 v.2009/05/07 Prn:2009/06/05; 13:57 p. 9/27»

Sensitivity analysis and calibration of the covariance matrix

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Proposition 3.1 (Proposition 4.32, p. 287 in [3].) Let us consider the two optimiza-
tion problems

P1

{
minf1(x)

x ∈ X
and P2

{
minf2(x)

x ∈ X,

where f1, f2 : X → R. Let S1 be the set of solutions of P1 and let x∗
2 be a solution

of problem P2. If (i) f1 satisfies a second-order growth condition on X (∃ c > 0 such
that for every x ∈ X and x∗

1 ∈ S1, f1(x) ≥ f1(x
∗
1 )+ c‖x − x∗

1‖2) and (ii) the function
f2(·) − f1(·) is Lipschitz continuous with modulus β on X, then

dist(x∗
2 , S1) ≤ β

c
.

Definition 3.1 For any symmetric matrix Q, let β(Q) be such that the quadratic
function x�Qx is β(Q)-strongly convex with respect to ‖ .‖1, i.e.,

β(Q) = inf
x 	=0

x�Qx

‖x‖2
1

.

We will make use of the following lemma:

Lemma 3.1 Let Q ∈ Sn(R), then supx∈�n
‖Qx‖2 = maxi ‖Ci(Q)‖2, where Ci(Q)

is the i-th column of Q.

Proof Let us denote by q̃ij the elements of the matrix Q�Q. Then q̃ii = ∑n
j=1 qji

2 =
‖Ci(Q)‖2

2. Hence, if ei, i = 1, . . . , n, are the vectors of the canonical basis:

sup
x∈�n

‖Qx‖2 = sup
x∈�n

(x�Q�Qx)
1
2 = max

i
(e�

i Q�Qei)
1
2

= max
i

(q̃ii )
1
2 = max

i
‖Ci(Q)‖2.

The second equality comes from the convexity of the problem: the maximum is at-
tained at an extremal point of the feasible set. �

The following theorem provides a sensitivity analysis of problem P :

Theorem 3.1 Consider problem P(k,ρ1,Q1) and its perturbed version
P(k,ρ2,Q2). Let Assumption H1 hold for these problems. For i = 1,2, if x∗

i is
the solution of P(k,ρi,Qi), then:

|f2(x
∗
2 ) − f1(x

∗
1 )| ≤ 1

2
‖Q2 − Q1‖∞ + k‖ρ2 − ρ1‖∞, (4)

‖x∗
2 − x∗

1‖1 ≤ 2

max(β(Q1), β(Q2))
(‖Q2 − Q1‖∞ + k‖ρ2 − ρ1‖∞), (5)
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‖x∗
2 − x∗

1‖2 ≤ 2

max(λmin(Q1), λmin(Q2))

(
max

i
‖Ci(Q2 − Q1)‖2 + k‖ρ2 − ρ1‖2

)
,

(6)

where Ci(Q) is the i-th column of Q.

Proof Let us show (4). We suppose f2(x
∗
2 ) ≥ f1(x

∗
1 ) (the other case is symmetric). In

this case, |f2(x
∗
2 )−f1(x

∗
1 )| = f2(x

∗
2 )−f1(x

∗
1 ) = f2(x

∗
2 )−f2(x

∗
1 )+f2(x

∗
1 )−f1(x

∗
1 ).

But since x∗
1 ∈ �n, by definition of x∗

2 , f2(x
∗
2 ) − f2(x

∗
1 ) ≤ 0. Thus,

|f2(x
∗
2 ) − f1(x

∗
1 )| ≤ x∗

1
�(Q2 − Q1)x

∗
1

2
− k(ρ2 − ρ1)

�x∗
1

≤ ‖x∗
1‖2

1‖Q2 − Q1‖∞
2

+ k‖ρ2 − ρ1‖∞‖x∗
1‖1

with ‖x∗
1‖1 ≤ 1. Let us now show (5). First note that the objective function f1 of the

Markowitz problem P(k,ρ1,Q1) satisfies a second-order growth condition on �n:

∃c > 0, ∀x ∈ �n f1(x) ≥ f1(x
∗
1 ) + c‖x − x∗

1‖2
1.

Indeed, a second-order Taylor series expansion of f1 at x∗
1 gives:

f1(x) = f1(x
∗
1 ) + (x − x∗

1 )�∇f1(x
∗
1 ) + 1

2
(x − x∗

1 )�∇2f1(x
∗
1 )(x − x∗

1 ),

where ∇f1(x
∗
1 ) = Q1x

∗
1 − k(ρ1 − ρ0e) and ∇2f1(x

∗
1 ) = Q1. The first-order optimal-

ity conditions give (x − x∗
1 )�∇f1(x

∗
1 ) ≥ 0 for all x ∈ �n. On the other hand:

(x − x∗
1 )�∇2f1(x

∗
1 )(x − x∗

1 ) ≥ β(Q1)‖x − x∗
1‖2

1.

Hence, (3.1) is satisfied with c = β(Q1)
2 and c > 0 since Q1 
 0 (hypothesis H1). It

remains to show that the function h(·) = f2(·) − f1(·) is Lipschitz continuous on �n

which is straightforward. Indeed, since h is continuous and differentiable, we can use
the mean value theorem to get:

∀(x, y) ∈ �n |h(x) − h(y)| ≤ sup
x∈�n

(‖∇h(x)‖∞)‖x − y‖1.

Further, for all x ∈ �n:

‖∇h(x)‖∞ = ‖(Q2 − Q1)x − k(ρ2 − ρ1)‖∞ ≤ ‖Q2 − Q1‖∞ + k‖ρ2 − ρ1‖∞ = β.

We then apply Proposition 3.1 to obtain ‖x∗
2 − x∗

1‖1 ≤ 2
β(Q1)

(‖Q2 − Q1‖∞ +
k‖ρ2 − ρ1‖∞). Exchanging the role of x1, f1, ρ1,Q1, and x2, f2, ρ2,Q2, we can
also show that ‖x∗

2 − x∗
1‖1 ≤ 2

β(Q2)
(‖Q2 − Q1‖∞ + k‖ρ2 − ρ1‖∞) and (5) follows.

We can then show (6) following the proof of (5) and applying Lemma 3.1. �

Notice that the use of norm ‖.‖1 gives a bound with β(Q1) instead of λmin(Q1),

the latter being easily computed.
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3.2 Sensitivity analysis of problems P ′ and P ′′

The method we use for the sensitivity analysis of problems P ′ and P ′′ consists of
introducing the dual problem obtained dualizing the return constraint and to work on
this dual problem which is equivalent to the primal problem. Thus, the inner mini-
mization problem solved to compute the value of the dual function for fixed λ, has a
fixed feasible set. We then write the first order optimality conditions for this problem
and bound the Lagrange multipliers. Notice that the Slater assumption for problems
P ′ and P ′′ (which holds, due to Lemma 2.2) is a necessary and sufficient condition
for the set of Lagrange multipliers to be bounded (Theorem 2.3.2, p. 312 of [9]).

Theorem 3.2 Consider problem P ′(�, ρ1,Q1) (resp. P ′′(�, ρ1,Q1)) and its per-
turbed version P ′(�, ρ2,Q2) (resp. P ′′(�, ρ2,Q2)). Let Assumptions H1, H2 and H3
hold for these problems and let κ = min(κ1, κ2) where κi is a value of κ such that
H3 holds for P ′(�, ρi,Qi) (resp. P ′′(�, ρi,Qi)). For i = 1,2, if x∗

i is the solution
of P ′(�, ρi,Qi) (resp. if (x∗

i , y∗
i , z∗

i ) is a solution of P ′′(�, ρi,Qi)), then ‖x∗
2 − x∗

1‖1

(resp. ‖ x∗
2 −x∗

1
e�x−+x−

0
‖1) is bounded from above by

‖Q2 − Q1‖∞
2β(Q1)

+
√

‖Q2 − Q1‖2∞ + 2
κ
(‖Q1‖∞ + ‖Q2‖∞)β(Q1)‖ρ2 − ρ1‖∞

2β(Q1)
, (7)

and ‖x∗
2 − x∗

1‖2 (resp. ‖ x∗
2 −x∗

1
e�x−+x−

0
‖2) is bounded from above by

maxi ‖Ci(Q2 − Q1)‖2

2λmin(Q1)

+
√

maxi ‖Ci(Q2 − Q1)‖2
2 + 2

κ
(‖Q1‖∞ + ‖Q2‖∞)λmin(Q1)‖ρ2 − ρ1‖∞
2λmin(Q1)

. (8)

Upper bound (7) (resp. (8)) is valid replacing β(Q1) (resp. λmin(Q1)) by β(Q2)

(resp. λmin(Q2)).

Smaller upper bounds, though more involved, are given in the Appendix in the
proof of this theorem. The following result is then a corollary of this theorem.

Corollary 3.1 Consider problem P ′(�, ρ1,Q1) (resp. P ′′(�, ρ1,Q1)) and its per-
turbed version P ′(�, ρ2,Q2) (resp. P ′′(�, ρ2,Q2)). Let Assumptions H1, H2 and H3
hold for these problems. For i = 1,2, if x∗

i is the solution of P ′(�, ρi,Qi) (resp. if

(x∗
i , y∗

i , z∗
i ) is a solution of P ′′(�, ρi,Qi)), then ‖x∗

2 − x∗
1‖2 (resp. ‖ x∗

2 −x∗
1

e�x−+x−
0

‖2) is

bounded from above by

maxi ‖Ci(Q2 − Q1)‖2

max(λmin(Q1), λmin(Q2))
+

√
(‖Q1‖∞ + ‖Q2‖∞)‖ρ2 − ρ1‖∞√

2κ max(λmin(Q1), λmin(Q2))
. (9)
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Proposition 4.37, p. 291 of [3] gives a local sensitivity analysis for a generic
optimization problem where both the objective function and the feasible set vary.
If C(�,ρ) is the feasible set of P ′(�, ρ,Q) or P ′′(�, ρ,Q), the upper bound
provided for ‖x∗

2 − x∗
1‖ by this proposition depends on the Hausdorff distance

Haus(C(�,ρ1),C(�,ρ1) ∩ C(�,ρ2)). Using Hoffman bound [10] yields an upper
bound of the kind τ(ρ1, ρ2)‖ρ2 − ρ1‖ for the Hausdorff distance, but since τ(ρ1, ρ2)

is unknown, the bound is still not explicit and local. For problem P ′, the (strong)
Slater assumption implies Robinson’s constraint qualification. Proposition 4.41 of [3]
can thus be applied to get

∃K > 0, such that Haus(C(�,ρ1),C(�,ρ1) ∩ C(�,ρ2)) ≤ K‖ρ2 − ρ1‖,
but here again K is not explicit and the analysis is local.

We can extend the results of this section to study the sensitivity analysis of such
quadratic optimization problems:⎧⎪⎨

⎪⎩
min 1

2 x�Qx + c�x

x�fj = bj , j = 1, . . . ,m1,

x ∈ X,

where X is a nonempty closed convex set and the parameters fj , j = 1, . . . ,m1,

c in R
n, b ∈ R

m1 and Q 
 0 are parameters of problems from this class. We as-
sume that the set X can be described by a set of inequalities of the kind hj (x) ≤ 0,
j = 1, . . . ,m2 with given convex differentiable functions hj . We also suppose
that there exists M > 0 such that for all x ∈ X and every j , ‖∇hj (x)‖∞ ≤ M .
No equality constraints describe the set X and we suppose the Slater assumption
holds. In this case, as was done for Theorem 3.2, we can introduce the dual prob-
lem obtained by dualizing the constraints x�fj = bj , j = 1, . . . ,m1, bound from
above the optimal Lagrange multipliers and give an explicit and global bound for
‖x2(Q2, c2, f

2
1 , . . . , f 2

m1
, b2

1, . . . , b
2
m1

) − x1(Q1, c1, f
1
1 , . . . , f 1

m1
, b1

1, . . . , b
1
m1

)‖1.

4 Stable calibration of the covariance matrix

This section focuses on stable calibrations of the covariance matrix of stock returns.
We first explain what we mean by stable calibration and justify this objective.

4.1 Motivations

We can view the portfolio selection step as a black box taking as inputs the mean
return vector and the covariance matrix, and providing as an output a portfolio. The
composition of the portfolio will be stable with respect to the inputs if small perturba-
tions of these inputs produce small changes in the portfolio composition. In particular,
small perturbations in the observations of the returns which induce estimations of the
mean return and covariance matrix satisfying hypotheses H1, H2 and H3, should re-
sult in small perturbations in the selected portfolio. Such a behavior is especially of
interest for three basic reasons:



« COAP 10589 layout: Small Extended v.1.2 reference style: mathphys file: coap9260.tex (Loreta) aid: 9260 doctopic: OriginalPaper class: spr-small-v1.1 v.2009/05/07 Prn:2009/06/05; 13:57 p. 13/27»

Sensitivity analysis and calibration of the covariance matrix

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

• First, it is interesting per se, as portfolio managers prefer stable portfolios: the
portfolios obtained using closed values (ρ̂1, Q̂1) and (ρ̂2, Q̂2) of the estimated
parameters should be close.

• Second, if the inputs we use are close to the true unknown inputs, and if the selec-
tion step is stable, the composition of the portfolio it produces should be close to
that of the true (unknown) optimal portfolio.

• Finally, when portfolios are rebalanced, the more stable the composition is, the less
the transaction costs.

We start with some observations useful for all the stabilization methods we introduce
next.

4.2 Preliminary observations

Stability for P̃ (k, ρ,Q) If short sellings are allowed for P(k,ρ,Q), we obtain
problem P̃ (k, ρ,Q), and from Lemma 2.3, the optimal solution is x∗(k, ρ,Q) =
kQ−1(ρ − ρ0e) which implies ‖x∗(k, ρ,Q)‖2 ≤ k‖ρ−ρ0e‖2

λmin(Q)
. Thus if λmin(Q) ≥

k‖ρ−ρ0e‖2
r

for some 0 < r < 1, then x∗(k, ρ,Q) ∈ B(0, r) = {x | ‖x‖2 ≤ r}. In par-

ticular, if λmin(Q1) ≥ k‖ρ1−ρ0e‖2
r

and λmin(Q2) ≥ k‖ρ2−ρ0e‖2
r

, then x1 ∈ B(0, r), x2 ∈
B(0, r), and ‖x2 − x1‖2 ≤ 2r. If ρ is bounded and M is such that ‖ρ − ρ0e‖2 ≤ M,

then if λmin(Q1) ≥ kM
r

and λmin(Q2) ≥ kM
r

, we have x1 ∈ B(0, r) and x2 ∈ B(0, r).

Increasing sufficiently the smallest eigenvalue of the covariance matrix thus appears
as a way of stabilizing the selection step for P̃ (k, ρ,Q). More precisely, if this small-
est eigenvalue is greater than kM

r
, for some 0 < r < 1, we enforce the solutions to

stay in the ball B(0, r). In particular, this forbids any component of x to be greater
than r.

Stability for P̃ ′(�, ρ,Q) If short sellings are allowed for P(�,ρ,Q), we obtain
problem P̃ (�, ρ,Q) and using Lemma 2.3 we obtain the bound ‖x∗(�, ρ,Q)‖2 ≤

�−ρ0‖ρ−ρ0e‖2

λmax(Q)
λmin(Q)

for the optimal solution x∗(�, ρ,Q). If κ in hypothesis H3 for
P(�,ρ,Q) is sufficiently large and if the condition number of Q is sufficiently small,
more precisely if

κ ≥ (� − ρ0)(1 − r)

r
> 0 and

λmax(Q)

λmin(Q)
≤

(
� − ρ0 + κ

� − ρ0

)
r,

for some 0 < r < 1, then x∗(�, ρ,Q) ∈ B(0, r). However, since H2 holds, we will
never have x∗(�, ρ,Q) = 0.

Stability for P(k,ρ,Q) For P(k,ρ,Q), if the mean return vector is bounded i.e.,
if ‖ρ1‖2 ≤ M and ‖ρ2‖2 ≤ M, then using (6), if Q is fixed and such that λmin(Q) ≥
4kM

r
, for some 0 < r < 1, we have ‖x∗

2 − x∗
1‖2 ≤ r and we guarantee stability. More

generally, if In is the n×n identity matrix, we have limλ→∞ ‖x(k,ρ,Q+λIn)‖2 = 0.

Thus for any 0 < r < 1, we can find λ0(ρ,Q) > 0 such that if λ ≥ λ0(ρ,Q) then
x(k,ρ,Q + λIn) ∈ B(0, r). Since λmin(Q + λIn) = λmin(Q) + λ, increasing this
way the smallest eigenvalue of Q (replacing Q by Q+ λIn, for λ chosen sufficiently
large) thus yields stability for P .
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Stability for P ′(�, ρ,Q) and P ′′(�, ρ,Q) For problem P ′ (resp. P ′′), we have for

‖x∗
2 − x∗

1‖2 (resp ‖ x∗
2 −x∗

1
e�x−+x−

0
‖2), the upper bound (9). The first term in this upper

bound (9) can be arbitrarily small for perturbations of the covariance matrix of a given
range (maxi ‖Ci(Q2 − Q1)‖2 ≤ k for some fixed k > 0) and increasing sufficiently
the smallest eigenvalue of Q1 or Q2 (for instance for diagonal matrices Q1 and Q2 =
Q1 + εIn, with λmin(Q1) sufficiently large). However, since for any matrix Q, we

have ‖Q‖∞ ≥ λmin(Q)
n

, the second term in (9) is bounded from below by
√

‖ρ2−ρ1‖∞
2κn

,

which can be large for large perturbations of ρ. A way to allow the second term in
(9) to be small is to choose κ large enough and to consider perturbations of the mean
return of a given range (‖ρ2 − ρ2‖2 ≤ k for some fixed k > 0). For the parameter κ

to have a significant value, at least one mean return must have a value significantly
larger than the target return �, or, equivalently, the target return � must be chosen
significantly smaller than at least one mean return (while being larger than ρ0).

Remark 4.1 The observations above indicate that under hypotheses H1, H2 and H3,
to stabilize the selection steps P̃ (k, ρ,Q), P̃ ′(�, ρ,Q), and P(k,ρ,Q) the smallest
eigenvalue of the covariance matrix Q should have a significant value. For mod-
els P ′(�, ρ,Q) and P ′′(�, ρ,Q), to obtain stability, we should choose κ sufficiently
large, take a large value for the smallest eigenvalue of the covariance matrix, and
consider small perturbations.

In Sect. 2.3, we underlined the degeneracy of the empirical and adaptive estima-
tions of the covariance matrix. In [4], it is also shown that the smallest eigenvalues
of the empirical covariance matrix are underestimated. The above Remark 4.1 com-
bined with these observations indicate that the empirical and adaptive estimations
should not only be corrected for stability but also to avoid numerical problems and
obtain more relevant statistical estimations.

It can be noticed that the recommendations of Remark 4.1 impose for P ′ and P ′′
conditions on the mean return vector through hypotheses H2 and H3 (where in par-
ticular κ is involved). We now intend to propose ways of exploiting the recommenda-
tions made in this remark on the covariance matrix. The general idea is to look for a
matrix close to Q̂ that enhances the stability properties of the model. A compromise
will also have to be found between efficiency and stability.

4.3 Closest covariance matrix to Q̂

In [11], they provide a consistent estimation of the parameter α∗ such that α∗F +
(1 − α∗)Q̂ (where F is a single-index covariance matrix and Q̂ is the empirical co-
variance matrix) is the closest matrix to the matrix Q. In [8], they compute the nearest
correlation matrix to the empirical covariance matrix.

We also propose to look for the closest covariance matrix to the matrix Q̂ (the em-
pirical or adaptive) but additionally requiring this matrix to satisfy three constraints
ensuring, in particular, that the resulting matrix is positive definite. To introduce these
constraints, we need the Frobenius scalar product 〈. , .〉 defined by

∀X,Y ∈ Sn(R), 〈X,Y 〉 = Tr(XY),
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where Tr(X) is the trace of the matrix X. The first constraint X � αI, with α > 0, is
equivalent to λmin(X) ≥ α. The parameter α represents an arbitrary threshold for the
smallest eigenvalue of the estimated covariance matrix. This constraint is thus a way
of exploiting Remark 4.1. In particular, it guarantees that the smallest eigenvalue of
the calibrated covariance matrix is positive as the assumption of arbitrage free mar-
kets require. The second constraint 〈In,X〉 = 〈In, Q̂〉, ensures the conservation of the
empirical or “adaptive” total risk. Finally, we choose m portfolios qi, i = 1, . . . ,m.
We can estimate the variance σ̂ 2

i of the portfolio qi return and require that σ̂ 2
i is equal

to the estimation q�
i Xqi of the variance of the portfolio qi return, obtained using

the covariance matrix X. If we suppose the return process is stationary, all the data
will be needed to compute σ̂ 2

i . Under local time homogeneity only the data of the
homogeneity interval is used. This yields the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min‖X − Q̂‖F

〈In,X〉 = 〈In, Q̂〉, (a)

〈qiq
�
i ,X〉 = σ̂ 2

i , i = 1, . . . ,m, (b)

X � αI, (c)

(10)

where for X ∈ Sn(R), ‖X‖F denotes the Frobenius norm of X, i.e., ‖X‖F =√〈X,X〉 = √
Tr(X2). This problem can be expressed as a quadratic-semidefinite pro-

gram and solved via interior point methods ([14] for instance).
In what follows, this method of correction of the matrix Q̂ will be called

C1. We can also consider particular cases of this method. If the constraints (a)
and (b) are removed (calibration C2) and if the spectral decomposition of Q̂

is Q̂ = ∑n
i=1 λi(Q̂)viv

�
i , where vi is the i-th eigenvector of the matrix Q̂ as-

sociated to the eigenvalue λi(Q̂), then the solution of problem (10) is X =∑n
i=1 max(λi(Q̂),α)viv

�
i . Another particular case where we have an explicit so-

lution is the case where (a) is removed, α = 0 and the portfolios chosen for the
constraints (b) constitute an orthonormal basis of eigenvectors of the matrix Q̂ (cali-
bration C3).

Proposition 4.1 Consider optimisation problem (10) where (a) is removed, m = n is
the dimension of the matrix Q̂, α = 0 and the vectors qi constitute an orthonormal
basis of eigenvectors of the matrix Q̂. Then the solution of (10) is given by: X∗ =∑n

i=1σ̂
2
i qiq

�
i .

Proof The Slater hypothesis being satisfied, (X∗,Z∗, (μ∗
i )1≤i≤n) constitutes a

primal-dual solution of problem (10) if and only if:⎧⎪⎨
⎪⎩

X∗ � 0, Z∗ � 0, 〈X∗,Z∗〉 = 0, (a′)
〈qiq

�
i ,X∗〉 = σ̂ 2

i , (b′)
X∗ = Q̂ + Z∗ − ∑n

i=1 μ∗
i qiq

�
i . (c′)

Conditions (a′) give X∗Z∗ = 0 and since X∗ 
 0, we have Z∗ = 0. Condition (c′) is
thus satisfied with μ∗

i = λi(Q̂) − σ̂ 2
i where λi(Q̂) is the eigenvalue of the matrix Q̂
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associated to the eigenvector qi . Finally, (b′) is satisfied:

〈qiq
�
i ,X∗〉 =

n∑
j=1

σ̂ 2
j Tr(qj q

�
j qiq

�
i ) = σ̂ 2

i Tr(qiq
�
i ) = σ̂ 2

i ‖qi‖2
2 = σ̂ 2

i . �

Remark 4.2 An interesting feature of the calibration in Proposition 4.1 is that in
particular it corrects the estimation of the risk in directions where the risk is not
well evaluated with Q̂. These directions correspond to the eigenvectors associated to
the smallest and highest eigenvalues.

Finally, we could also remove the constraints (b) from (10) (calibration C4).

4.4 Maximizing the lowest eigenvalue

The calibrations introduced in the previous subsection depend on the choice of the
parameter α and on the portfolios qi . No natural choice seems to prevail for these
parameters. In this section, we instead intend to present a systematic calibration of the
covariance matrix. This calibration uses additional statistical information and more
directly exploits the results of Sect. 3 to allow for stability.

The statistical information (coming from [7]) provides functions ηρ(λ,n,T ) and
ηQ(λ,n,T ) such that the events

‖ρ̂ − ρ‖∞ ≤ ηρ(λ,n,T ) and ‖Q̂ − Q‖∞ ≤ ηQ(λ,n,T ) (11)

hold with probabilities functions of a positive parameter λ, of the number of risky
assets n and of the number of observations T used for estimation. With a slight abuse
of notation, in (11) we have used for the estimators of the mean and of the covariance
matrix the same notation as the estimations. Parameter λ can be chosen in such a way
that the probability that (11) holds is arbitrarily high [7]. Our idea is then to use this
information and Remark 4.1 to maximize the lowest eigenvalue of Q using the box
constraints on the covariance matrix given in (11). The quantity ηQ(λ,n,T ) is thus
chosen in such a way that with a large probability the event ‖Q̂−Q‖∞ ≤ ηQ(λ,n,T )

holds. This way, the set

E = {Q | ‖Q̂ − Q‖∞ ≤ ηQ(λ,n,T )}, (12)

where Q̂ is the empirical (or adaptive) estimation of the covariance matrix, is a con-
fidence area for the covariance matrix Q with a given confidence level. The quantity
ηQ(λ,n,T ) can also be seen as a user defined parameter that would control the size
of the search zone around Q̂.

Since Q is a covariance matrix, we also impose Q � 0. Hence we come to the
following problem: {

maxλmin(Q)

‖Q − Q̂‖∞ ≤ ηQ(λ,n,T ), Q � 0.
(13)
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This is a nondifferentiable convex optimization problem. We transform it into the
SDP program (14) below which can be efficiently solved with interior point methods:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min (−u)

V (i, j) + uδij + Y(i, j) = ηQ(λ,n,T ) + Q̂(i, j),

W(i, j) − uδij − Y(i, j) = ηQ(λ,n,T ) − Q̂(i, j),

V (i, j) ≥ 0, W(i, j) ≥ 0, Y � 0,

(14)

where δij is the Kronecker symbol. The covariance matrix Q is then given by Y ∗ +
u∗I with Y ∗ and u∗ the optimal values of Y and u in (14). We will denote by C5 this
calibration of the covariance matrix.

4.5 Best condition number

We saw in Sect. 4.2 that for stability in problem P̃ ′(�, ρ,Q), it is desirable to have a
small condition number for the estimated covariance matrix. Moreover, it is noticed
in [4] that the largest eigenvalues of the empirical covariance matrix are overesti-
mated and the lowest underestimated (and it is also the case of the adaptive estima-
tion), yielding to a large condition number. We can thus try to find the best condition
number for the covariance matrix, while imposing the same box constraints as before
on the components of this matrix. The covariance matrix Q thus solves:{

min λmax(Q)
λmin(Q)

‖Q − Q̂‖∞ ≤ ηQ(λ,n,T ), Q � 0,
(15)

where we recall that ηQ(λ,n,T ) is such that E defined in (12) is a confidence area for
Q with a given confidence level. The above problem (15) is a quasiconvex problem.
It is equivalent to solve:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min t

s ≤ λmin(Q),

v ≥ λmax(Q),

v ≤ ts,

‖Q − Q̂‖∞ ≤ ηQ(λ,n,T ), Q � 0.

(16)

We can then find a solution of this problem by dichotomy.

5 Numerical results

5.1 Stability tests

The goal of this section is to illustrate, via simulations on real data (the 30 assets
of the Dow Jones), the influence of the increase of the smallest eigenvalue of the
empirical or adaptive covariance matrix on the sensitivity of the composition of the
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Table 1 Condition number of
the solution Q∗ of problems
(14) and (16) for fixed Q̂ and
different values of ηQ

Method η1
Q

η2
Q

η3
Q

C5 80.24 16.25 6.91

Min Cond 70.85 9.06 2.29

portfolios. We also compare the behaviors of the optimal portfolios obtained using the
empirical covariance matrix or the adaptive covariance matrix Q̂ and their corrections
C2 and C5. The Markowitz problem (1) was solved using the Mosek optimization
library and optimization problem (13) using the SeDuMi library.

5.1.1 Reducing the condition number

We first illustrate the magnitude of the condition number reduction using the cali-
brations introduced in Sects. 4.4 and 4.5. We choose an empirical covariance ma-
trix Q̂ with condition number 1.11 × 106. We then compute the condition num-
ber of different matrices Q solutions of (14) (calibration C5) and (16) (calibra-
tion denoted by “Min Cond”) for the following values of ηQ: η1

Q = 0.01λmax(Q̂),

η2
Q = 0.05λmax(Q̂), and η3

Q = 0.1λmax(Q̂). The results are reported in Table 1.
The condition number thus significantly decreases even if only small variations of

the entries of Q̂ are allowed. Both calibrations yield close condition numbers in this
example.

5.1.2 Evolution of the portfolio composition in time

To observe the influence of the increase of λmin(Q̂) on the behavior of the portfolios,
we conduct the following experiment: A first investment is done on January 2, 1999
(we denote this date by t0); the investment horizon is 60 days, the yearly risk-free
rate is 5% and the target return for these 60 days is � = 2.5%. The portfolio is then
regularly rebalanced every 60 days for dates tj = t0 + 60j, j = 1, . . . ,11. For each
investment date tj , the empirical estimations ρ̂j and Q̂j of the mean and of the co-
variance matrix are computed. We want to analyse the influence of the parameter α

of the method C2 on the stability of the composition of the portfolios. At each date
tj , we compute the correction of the matrix Q̂j using calibration C2 and the values
αj (i) of α given by αj (i) = 10i−7 λmax(Q̂j ) for i = 1, . . . ,6. Let Q̂i

j be the correc-

tion of matrix Q̂j for the value αj (i) of α. We denote by xi
j the solution of problem

P ′(�, ρ̂j , Q̂
i
j ). We then compute

p(i) = 1

11

10∑
j=0

‖xi
j+1 − xi

j‖1.

The evolution of p(i) with i is shown in Fig. 1 which follows.
Hence, the increasing of λmin(Q̂) tends to stabilize the composition of the portfo-

lios in this example. This has in fact been observed using different starting dates t0,
different target returns and different risk-free rates.
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Fig. 1 Sensitivity of the
portfolio composition mean
variation as a function of α

Fig. 2 Variation of the portfolio
composition in time for three
different calibration methods

We now compare the “Empirical,” C2 and C5 methods. We call “Empirical,”
the method using the empirical estimations of the parameters. If Q̂ is the empiri-
cal covariance matrix, we choose α = 0.01λmax(Q̂) for method C2, and ηQ = α for
method C5. The date of the first investment is January 2, 1999 (date denoted by t0),
the investment horizon is still 60 days, the target return is 4%, and the yearly risk-free
rate is 5%. The portfolios are regularly rebalanced every 60 days from t0. For the i-th
rebalancing, we determine a portfolio xi

M for each method M. Figure 2 represents
the evolution of (‖xi

M − xi−1
M ‖1)i≥2 as a function of i and for each method. This

experiment also tends to show that the increase in λmin(Q̂) permits the stability of
the portfolio composition. The C2 and C5 methods seem to be particularly stable in
this example. For these methods, the modification of the composition of the optimal
portfolio is always less important than the “Empirical” method. The same experiment
was conducted using different values for the parameters of the Markowitz model. We
used different starting dates t0, different investment horizons (60 and 40 days) and
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Table 2 Portfolio composition
mean variation when the mean
returns change

“Empirical” C2 C5

0.0119 0.0060 0.0058

different target returns (2, 3 and 4%). In all the simulations, the C2 and C5 methods
were the most stable, always leading to less important modifications of the portfolio
composition than the “Empirical” method.

5.1.3 Influence of the perturbations of the mean returns on the optimal portfolio
composition

We fix a date t0 (January 2, 1999) and for each method M (M = “Empirical”, C2,
C5), we estimate (ρ,Q) by (ρ̂, Q̂M) [ρ̂ is the empirical mean of the returns and
Q̂M is the estimation of the covariance matrix using method M]. From these estima-
tions, we can compute the optimal portfolio xM associated with method M and using
model P ′. We then make n (i.e. 30) iterations. At iteration i, we envisage four per-
turbations which consist of replacing ρ̂(i) by ρ̂(i) ± 0.05|ρ̂(i)|, ρ̂(i) ± 0.1|ρ̂(i)|. At
iteration i, each perturbation j produces a portfolio x

ij
M for method M . A comparison

of 1
30∗4

∑
i,j ‖xM − x

ij
M‖1 can then be made for all methods M . This experiment was

repeated 400 times (using an increasing number of historical data) and gave the av-
erage results given in Table 2. We observe that the perturbation of ρ does not change
the composition of the portfolio much in these cases. Method C5 is the most stable
with respect to perturbations of the mean return vector in this experiment.

5.2 Diversification of the portfolios

We noticed on various simulations that the use of the corrected covariance matrices
tends to diversify the portfolios much more than if the empirical or adaptive covari-
ance matrix was used. To obtain diversified portfolios, portfolio managers tradition-
ally introduce box constraints on the components of the portfolio. It is interesting
to notice that corrections C1 and C3 seem to provide diversified portfolios without
changing the constraints of the problem.

5.3 Comparison of the calibrations of the covariance matrix on real data

We compute the optimal portfolios which would have been obtained by investing in
the assets of the Dow Jones from January 2, 1995 to June 30, 2004 and rebalancing
the portfolio every H days. The yearly risk-free rate is 1%, the transaction costs
are 0.5% and the yearly target return is � = 10%. We measure the influence of the
corrections of the adaptive covariance matrix (see Sect. 2.3) introduced in Sect. 4.
The parameters of the adaptive method are chosen a posteriori (see [7] for further
details). The result of these experiments, conducted using different values of H, is
given in Table 3. In this table, we call Rdt the return of a method over the investment
period. R̄ and σ are the empirical mean and standard deviation of the sample of the
H day return of the portfolio. We notice that the corrections of the adaptive method
tend to provide portfolios whose returns are larger and give standard deviations that
are close to each other.
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Table 3 Comparison of different calibrations of the covariance matrix using the assets of the Dow Jones
(from January 1995 to June 2004), a risk-free asset and the Markowitz model P ′′

H = 15 days H = 30 days H = 60 days

Method Rdt R̄ σ Rdt R̄ σ Rdt R̄ σ

Adaptive 2.47 1.0057 0.0184 2.4444 1.0113 0.0253 3.8672 1.0386 0.1082

C1 2.63 1.0061 0.0210 2.8044 1.0131 0.0304 4.1250 1.0409 0.1138

C2 2.50 1.0057 0.0184 2.5363 1.0117 0.0257 4.0898 1.0398 0.1045

C3 2.64 1.0062 0.0257 2.7134 1.0130 0.0387 4.1549 1.0414 0.1152

C4 2.52 1.0058 0.0183 2.5591 1.0118 0.0257 4.1487 1.0401 0.1044

C5 2.58 1.0059 0.0185 2.6058 1.0121 0.0262 4.4440 1.0421 0.1075

6 Conclusion

We first introduced a sensitivity analysis for different versions of the Markowitz
model. Using the quite general model given in [7] for the returns, we then proposed
strategies to compute stable portfolios using the Markowitz model.

One of our calibrations of the covariance matrix (the one proposed in Sect. 4.4) has
shown its efficiency numerically speaking, beating all the other methods in most of
the stability tests done while providing performing portfolios. This calibration shows
the importance of the condition number of the estimated covariance matrix. Indeed,
a lowest eigenvalue of the covariance matrix close to 0 (as is the case for the adaptive
covariance matrix) is absurd financially speaking, and yields numerical problems to
solve the Markowitz problem. On the contrary, our proposed covariance matrices are
not ill-conditioned: they are positive definite matrices as the constraints require.

Appendix

In this Appendix, we show Theorem 3.2. To show this theorem, we will make use of
the following lemma:

Lemma A.1 Let f,g1, . . . , gm : R
n → R be convex functions, and let X be a convex

subset of R
n. Let us consider the convex primal problem P below

P

⎧⎪⎨
⎪⎩

minf (x)

g(x) ≡ (g1(x), . . . , gm(x)) ≤ 0,

x ∈ X,

and the dual problem D
{

max θ(λ)

λ ≥ 0,

where

θ(λ) =
{

minf (x) + λ�g(x)

x ∈ X.
(17)

Let the Slater condition hold for P (there exists x ∈ X such that gj (x) < 0, j =
1, . . . ,m) and let us suppose that f is bounded from below on {x | g(x) ≤ 0, x ∈ X}.
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Let S∗
P and S∗

D be respectively the set of solutions of P and D and for fixed λ, let
S∗(λ) be the set of solutions of (17). Then for any λ∗ ∈ S∗

D, we have S∗
P ⊂ S∗(λ∗).

Proof Let us take λ∗ ∈ S∗
D. The hypotheses of the Convex Duality Theorem apply

and for any x∗ ∈ S∗
P , the optimal value f (x∗) of primal problem P and the optimal

value θ(λ∗) of dual problem D coincide. Moreover, by definition of θ(λ∗), since
x∗ ∈ X, we have θ(λ∗) ≤ f (x∗)+g(x∗)�λ∗. This gives f (x∗) ≤ f (x∗)+g(x∗)�λ∗,
i.e., g(x∗)�λ∗ ≥ 0. But since λ∗ ≥ 0 and g(x∗) ≤ 0, this implies g(x∗)�λ∗ = 0. We
thus have, using once again the definition of θ(λ∗) :

θ(λ∗) = f (x∗) = f (x∗) + g(x∗)�λ∗ ≤ f (x) + g(x)�λ∗, ∀x ∈ X.

Since, x∗ ∈ X, this shows that x∗ is a minimizer of f (x) + g(x)�λ∗ over X, i.e., that
x∗ ∈ S∗(λ∗). �

Proof of Theorem 3.2 For convenience, we use the notation ρ̄1 = ρ1 −ρ0e, ρ̄2 = ρ2 −
ρ0e and �̄ = � − ρ0. For i = 1,2, let x∗

i be the solution of P ′(�, ρi,Qi). Let us first
show that (7) and (8) are upper bounds for respectively ‖x∗

2 − x∗
1‖1 and ‖x∗

2 − x∗
1‖2.

Let λ ∈ R, let

θi(λ) =
{

inf 1
2x�Qix + λ(�̄ − x�ρ̄i )

x ∈ �n,
(18)

be the dual function of the problem P ′(�, ρi,Qi) where only the uncertain constraint
has been dualized, and let λ∗

i be an optimal solution of the dual problem consisting
of solving maxλ∈R+ θi(λ). Both primal problem P ′(�, ρi,Qi) and its dual problem
are equivalent to each other and have the same optimal value. The hypotheses of
Lemma A.1 hold for primal problem P ′(�, ρi,Qi) and its dual problem. Since the
objective function of P ′(�, ρi,Qi) is strictly convex, the set of solutions of this prob-
lem is reduced to x∗

i . Also, for any fixed λ, since the objective function of problem
(18) is strictly convex, the solution to (18) is unique and denoted by x(λ). For prob-
lem P ′(�, ρi,Qi), Lemma A.1 thus tells us that x∗

i = x(λ∗
i ). From the optimality of

x(λ∗
i ) = x∗

i , we then have for i = 1,2:

∀x ∈ �n, (x − x∗
i )

�
(Qix

∗
i − λ∗

i ρ̄i ) ≥ 0.

Since x∗
1 and x∗

2 are in �n we can use the previous inequality for x = x∗
2 , i = 1 and

x = x∗
1 , i = 2, which gives:{

(x∗
2 − x∗

1 )�(Q1x
∗
1 − λ∗

1ρ̄1) ≥ 0

(x∗
1 − x∗

2 )�(Q2x
∗
2 − λ∗

2ρ̄2) ≥ 0.
(19)

Adding the inequalities (19) and rearranging the terms we get:

(x∗
2 − x∗

1 )�Q1(x
∗
2 − x∗

1 ) ≤ (x∗
2 − x∗

1 )
�
(Q1 − Q2)x

∗
2 + R (20)

with R = (x∗
2 − x∗

1 )�(−λ∗
1ρ̄1 + λ∗

2ρ̄2). Since for i = 1,2, x∗
i

�ρ̄i = �̄, we have
(x∗

2 − x∗
1 )�(−λ∗

1ρ̄1 + λ∗
2ρ̄2) = (ρ̄2 − ρ̄1)

�(−λ∗
2x

∗
1 + λ∗

1x
∗
2 ). Plugging this result in
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(20) and observing that ‖x∗
1‖1 ≤ 1 and ‖x∗

2‖1 ≤ 1, we obtain:

β(Q1)‖x∗
2 − x∗

1‖1
2 ≤ ‖Q2 − Q1‖∞ ‖x∗

2 − x∗
1‖1 + ‖ρ2 − ρ1‖∞(λ∗

1 + λ∗
2). (21)

It remains to bound the multipliers λ∗
i . First, we can bound from below the optimal

value of P ′(�, ρi,Qi) by 0, i.e., θi(λ
∗
i ) ≥ 0. Let ej , j = 1, . . . , n, be the vectors of the

canonical basis. From H3, for i = 1,2, there exists ji ∈ 1, . . . , n, such that ρi(ji) >

� + κ, with κ > 0. Since for i = 1,2 we have eji
∈ �n, by definition of the dual

function, for i = 1,2:

∀λ θi(λ) ≤ 1

2
eji

�Qieji
+ λ(�̄ − ρ̄i (ji)). (22)

Using (22) for λ = λ∗
i and since θi(λ

∗
i ) ≥ 0, we have:

κλ∗
i ≤ λ∗

i (ρi(ji) − �) ≤ 1

2
Qi(ji, ji) ≤ ‖Qi‖∞

2
. (23)

We thus have for λ∗
i the upper bound λ∗

i ≤ ‖Qi‖∞
2κ

. If we plug these bounds for λ∗
1

and λ∗
2 in (21), we see that P(‖x∗

2 −x∗
1‖1) ≤ 0, P being the second-order polynomial

defined by P(x) = β(Q1)x
2 − ‖Q2 − Q1‖∞x − (‖Q1‖∞+‖Q2‖∞)

2κ
‖ρ2 − ρ1‖∞. Thus,

‖x∗
2 − x∗

1‖1 is lower or equal to the largest root of P, which shows (7).
Exchanging x∗

1 , ρ1,Q1 and x∗
2 , ρ2,Q2, we then obtain for ‖x∗

2 − x∗
1‖1 the upper

bound (7) with β(Q1) replaced with β(Q2).

Let us now show that (8) is an upper bound for ‖x∗
2 − x∗

1‖2. Using (20), the upper

bound λ∗
i ≤ ‖Qi‖∞

2κ
for λ∗

i , and since x∗
2 ∈ �n, we obtain:

λmin(Q1)
2‖x∗

2 − x∗
1‖2

2

≤ ‖x∗
2 − x∗

1‖2 max
x∈�n

‖(Q2 − Q1)x‖2 + (‖Q1‖∞ + ‖Q2‖∞)

2κ
‖ρ2 − ρ1‖∞.

Using Lemma 3.1 we then see that P(‖x∗
2 − x∗

1‖2) ≤ 0 where P(x) = λmin(Q1)x
2 −

maxi ‖Ci(Q2 − Q1)‖2x − (‖Q1‖∞+‖Q2‖∞)
2κ

‖ρ2 − ρ1‖∞ and we conclude as before.
However, we could have obtained smaller upper bounds, though more involved.

These upper bounds could be obtained using the above proofs of (7) and (8) and using
a smaller upper bound for λ∗

i . This upper bound for λ∗
i is obtained as follows.

We first improve the lower bound on the optimal value of P ′(�, ρi,Qi). More
precisely, we have for this optimal value, the lower bound 1

2yi
�Qiyi where yi is the

solution of the following relaxed problem:{
min 1

2 y�Qiy

ρ̄�
i y = �̄.

(24)

Hence we have:

θi(λ
∗
i ) ≥ 1

2
y�
i Qiyi . (25)
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Further, for i = {1,2}, there can be various indexes ji such that ρ̄i (ji) > �̄. We thus
have for i = {1,2} and for every index j such that ρ̄i (j) > �̄:

∀λ θi(λ) ≤ 1

2
ej

�Qiej + λ(�̄ − ρ̄i (j)). (26)

Using (24) and (25) with λ = λ∗
i one has:

λ∗
i ≤ 1

2
min

ρi(j)>�

1

ρi(j) − �
(Qi(j, j) − yi

�Qiyi). (27)

The solution of (25) is given by yi = �̄

ρ̄�
i Qi

−1ρ̄i
Qi

−1ρ̄i . Finally, plugging this expres-

sion of yi into (27) gives the following improved upper bound for λ∗
i :

λ∗
i ≤ 1

2
min

ρi(j)>�

1

ρi(j) − �

(
Qi(j, j) − �̄2

ρ̄�
i Qi

−1ρ̄i

)
.

If (x∗
i , y∗

i , z∗
i ) is a solution of P ′′(�, ρi,Qi), we now show that (7) and (8) are

upper bounds for respectively ‖ x∗
2 −x∗

1
e�x−+x−

0
‖1 and ‖ x∗

2 −x∗
1

e�x−+x−
0

‖2.

The feasible set of P ′′ is the intersection of the hyperplane defined by the return
constraint (this constraint is active, see Lemma 2.2) and a set defined by the remaining
constraints that we will denote by Y(μ, ν, x−). Let here �̄ = � (e�x− + x−

0 ) − ρ0 x−
0 ,

let

W =
⎛
⎝x

y

z

⎞
⎠

be the vector of decision variables, let W ∗
i be a solution of P ′′(�, ρi,Qi), let λ ∈ R,

and let

θi(λ) =
{

inf 1
2x�Qix + λ

(
�̄ − x� ρi − ρ0 (e − μ)� y + ρ0 (e + ν)� z

)
W = (x, y, z)� ∈ Y(μ, ν, x−),

(28)

be the dual function of problem P ′′(�, ρi,Qi) where only the return constraint has
been dualized. Let us also introduce the dual problem maxλ≥0 θi(λ). Primal problem
P ′′(�, ρi,Qi) and its dual are equivalent to each other and have the same optimal
value. Also, using Lemma A.1 (whose hypotheses are satisfied for P ′′), there is an
optimal solution λ∗

i to the dual problem and a solution W(λ∗
i ) to problem (28) for

λ = λ∗
i , such that W ∗

i = W(λ∗
i ). From the optimality of W(λ∗

i ), we get:

∀W = (x, y, z)� ∈ Y(μ, ν, x−), (W − W ∗
i )

�

⎛
⎝Qi x

∗
i − λ∗

i ρi

λ∗
i ρ0(μ − e)

λ∗
i ρ0(ν + e)

⎞
⎠ ≥ 0.

Using the previous inequality for W = W ∗
2 , i = 1 and W = W ∗

1 , i = 2, we get:{
(x∗

2 − x∗
1 )�(Q1 x∗

1 − λ∗
1ρ1) + λ∗

1ρ0
(
(y∗

2 − y∗
1 )�(μ − e) + (ν + e)�(z∗

2 − z∗
1)

) ≥ 0

(x∗
1 − x∗

2 )�(Q2 x∗
2 − λ∗

2 ρ2) + λ∗
2 ρ0

(
(y∗

1 − y∗
2 )�(μ − e) + (ν + e)�(z∗

1 − z∗
2)

) ≥ 0.
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Adding the two previous inequalities and rearranging the terms we get:

(x∗
1 − x∗

2 )�Q1 (x∗
1 − x∗

2 )

≤ (x∗
2 − x∗

1 )� (Q1 − Q2) x∗
2 + (x∗

2 − x∗
1 )�(λ∗

2ρ2 − λ∗
1ρ1) + M, (29)

with

M = ρ0(λ
∗
1 − λ∗

2)((y
∗
2 − y∗

1 )� (μ − e) + (z∗
2 − z∗

1)
�(ν + e)).

Since the return constraint is active, we have, for i = 1,2,

x∗
i

�
ρi + ρ0(x

−
0 + (e − μ)� y∗

i − (ν + e)� z∗
i ) = � (e�x− + x−

0 ).

Thus, M = (λ∗
1 − λ∗

2) (x∗
2

� ρ2 − x∗
1

� ρ1). Plugging this result in (29) and observing
that for any W = (x, y, z)� ∈ Y(μ, ν, x−) we have ‖x‖1 ≤ e�x− + x−

0 , (which im-
plies ‖x∗

i ‖1 ≤ e�x− + x−
0 for i = 1,2), we then have:

β(Q1)‖x∗
2 − x∗

1‖2
1

≤ (‖x∗
2 − x∗

1‖1‖Q2 − Q1‖∞ + (λ∗
1 + λ∗

2)‖ρ2 − ρ1‖∞)(e�x− + x−
0 ). (30)

It remains to bound from above the Lagrange multipliers λ∗
i . We can bound from be-

low the optimal value of P ′′(�, ρi,Qi) by 0. Thus, we have θi(λ
∗
i ) ≥ 0. From hypoth-

esis H3, for i = 1,2 there exists ji such that ρi(ji) >
(1+νji

)

(e−μ)�x−+x−
0

(� + κ)(e�x− +
x−

0 ). Let ε > 0 and let us then introduce for i = 1,2, the point Wi = (xi, yi, zi)
� ∈

Y(μ, ν, x−) defined replacing i by ji in (2). We thus have, xi = x− − yi + zi and

⎧⎪⎨
⎪⎩

if k 	= ji and x−
k = 0, yi(k) = ε, zi(k) = 2ε,

if k 	= ji and x−
k > 0, yi(k) = x−

k , zi(k) = ε,

finally yi(ji) = x−
ji

+ ε and zi(ji) is such that xi(0) = ε.

By definition of the dual function, we then have

∀λ, θi(λ) ≤ 1

2
x�
i Qixi + λ(� (e�x− + x−

0 ) − ρ�
i xi − ρ0xi(0)). (31)

We have ρ�
i xi + ρ0xi(0) = ρi(ji )

1+νji
(x−

0 + (e − μ)�x−) + a′
iε, for some a′

i ∈ R. As was

done in the proof of Lemma 2.2, since H3 holds, we can then choose ε sufficiently
small to have

ρ�
i xi + ρ0xi(0) > (� + κ)(e�x− + x−

0 ). (32)

Using (31) with λ = λ∗
i , (32), and since θi(λ

∗
i ) ≥ 0 we then get:

λ∗
i κ(e�x− + x−

0 ) ≤ 1

2
‖Qi‖∞‖xi‖2

1 ≤ 1

2
‖Qi‖∞(e�x− + x−

0 )2.
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This gives for λ∗
i the upper bound λ∗

i ≤ ‖Qi‖∞
2κ

(e�x− + x−
0 ). Plugging this bound in

(30), we see that P(‖ x∗
2 −x∗

1
e�x−+x−

0
‖1) ≤ 0, where

P(x) = β(Q1)x
2 − ‖Q2 − Q1‖∞x − (‖Q1‖∞ + ‖Q2‖∞)

2κ
‖ρ2 − ρ1‖∞.

Consequently, ‖ x∗
2 −x∗

1
e�x−+x−

0
‖1 is lower than or equal to the largest root of P which is

given by (7).

We finally show that for problem P ′′, ‖ x∗
2 −x∗

1
e�x−+x−

0
‖2 is bounded from above by (8).

We first have

(x∗
2 − x∗

1 )�(Q1 − Q2) x∗
2 ≤ (e�x− + x−

0 )‖x∗
2 − x∗

1‖2 max
x∈�n

‖(Q2 − Q1)x‖2,

≤ (e�x− + x−
0 )‖x∗

2 − x∗
1‖2 max

i
‖Ci(Q2 − Q1)‖2, (33)

using Lemma 3.1. Using (29) and (33) we then obtain P(‖ x∗
2 −x∗

1
e�x−+x−

0
‖2) ≤ 0, now with

P(x) = λmin(Q1)x
2 − max

i
‖Ci(Q2 − Q1)‖∞x − (‖Q1‖∞ + ‖Q2‖∞)

2κ
‖ρ2 − ρ1‖∞

and we can conclude as before. �
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