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Abstract. We introduce a nonparametric breakpoint detection method for the means and co-

variances of a multivariate discrete time stochastic process. Breakpoints are defined as left or

right endpoints of maximal intervals of local time homogeneity for the means and covariances.

The breakpoint detection method is an adaptive algorithm that estimates the last maximal

interval of homogeneity. Applied recursively, it allows us to find an arbitrary number of break-

points. We then study a second breakpoint detection algorithm that makes use of a sliding

window. The quality of both methods is analyzed. For the adaptive algorithm, we provide

the quality of the estimation of the one step ahead means and covariance matrix as well as

upper bounds on the type I and type II errors when applying the procedure to a change-point

model. Regarding the second method, the probability of correctly detecting the breakpoint of

a change-point model is bounded from below. Numerical simulations assess the performance of

both methods using simulated data.

AMS subject classifications: 62M10, 62G05.

1. Introduction

Detecting breakpoints in multidimensional time series allows us to identify structural changes

in discrete time stochastic processes. Solving this challenging question is useful for a wide range of

applications in bioinformatics (Fridlyand, Snijders, Pinkel, Albertson, and Jain 2004; Tibshirani

andWang 2007; Zhang and Siegmund 2007), finance (Mikosch and Starica 2000; Fan, Jiang, Zhang,

and Zhou 2003; Mercurio and Spokoiny 2004), image processing (Désobry, Davy, and Doncarli

2005), or production management (Guigues 2009); see also (Basseville and Nikiforov 1993). More

specifically, considering breakpoints yields a wider and more flexible class of models and is of

interest for forecasting; for instance to generate short-term scenarios for stochastic optimization

problems (Heitsch and Römisch 2009).

Breakpoint detection consists in looking for homogeneous segments where some or all the model

parameters are constant or slowly varying in each segment. The definition of a breakpoint may

vary from a study to another. In our case, a breakpoint is an endpoint of an interval of local time

homogeneity (ILTH). The definition of an ILTH for a discrete time stochastic process dates back

to Mercurio and Spokoiny (2004) in the one-dimensional case. In Guigues (2008), we extended the

definition of ILTH to the multivariate case. This definition can be found in Section 2. Roughly

speaking, an interval is said to be of local time homogeneity if the first two moments (mean and

covariance matrix) are slowly varying on this interval.

Most of the works on breakpoint detection are based on parametric models and often use

a strong a priori information. Such is the case of Hidden Markov Models using the Bayesian

Key words and phrases. Breakpoint detection and Time series and Multivariate data and Covariance matrix esti-
mation and Adaptive algorithm.
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Information Criterion (BIC) or Akaike Information Criterion (AIC) (Fridlyand et al. 2004) and

of varying coefficient models (Fan and Zhang 1999; Cai, Fan, and Li 2000; Mercurio and Spokoiny

2004).

Nonparametric methods to detect sharp changes have also been developed. Popular exam-

ples from this class include kernel-based (Désobry, Davy, and Doncarli 2005) and wavelet-based

(Wang 1995; Antoniadis and Gijbels 2002) algorithms. Wavelet methods deal in general with one-

dimensional signals and detect changes looking at large values of wavelet coefficients at certain

scales. These wavelet-based methods differ in the choice of the threshold above which wavelet co-

efficients are declared “large”. Another popular and natural nonparametric breakpoint detection

method useful both in the one-dimensional and the multidimensional case is based on the use of

sliding windows (Müller 1992; Harchaoui, Bach, and Moulines 2008; Lévy-Leduc and Roueff 2009).

In this context, typically, at each time, a test is performed to compare estimators on the left and

right part of the corresponding window. However, most of the works mentioned above consider a

finite and known number of breakpoints, which may appear as a strong limitation.

On the contrary, in this paper, we propose an adaptive algorithm to detect breakpoints in a non-

parametric context for multidimensional data without assuming a specific number of breakpoints.

This algorithm builds on our previous work Guigues (2008) where we extended the definition of

ILTH to the multivariate case and presented an adaptive algorithm to estimate the ILTH in a

nonparametric framework. Applied recursively, our algorithm allows us to estimate breakpoints

defined as endpoints of maximal ILTH. The work Guigues (2008) is itself an extension of Mercurio

and Spokoiny (2004). This latter paper explains how to obtain an adaptive estimation of an ILTH

in a one-dimensional and parametric context with an application for forecasting the volatility of

financial time series. Pointwise adaptive estimation methods first appeared in Lepski (1990) and

were used in (Lepski and Spokoiny 1997; Spokoiny 1998). In this setting, the contributions of this

paper are threefold.

First, we detail a modified version of the adaptive algorithm introduced in Guigues (2008) and

show that the corresponding quality of the estimations of the one step ahead means and covariance

matrix is theoretically controlled (Theorem 3.2).

Second, the procedure is applied to detect breakpoints in the means, variances, and covariances

of a multivariate discrete time stochastic process in a nonparametric framework; a situation which

has not received a lot of attention in the literature so far. In this context, for a change-point

model, in Theorems 3.3 and 3.7, we bound from above the type I error (made when the algorithm

sees an ILTH as an interval which is not of time homogeneity), and in Theorems 3.4 and 3.8, we

bound from above the type II error (made when an interval which is not an ILTH is seen as ILTH).

Finally, we study a second breakpoint detection method which uses left and right sliding win-

dows. Using the same probabilistic (nonparametric) framework as before, we bound from below

the probability of correctly detecting the breakpoint for change-point models (Theorems 4.1, 4.2,

4.3, 4.4, 4.5, 4.6, and 4.7).

The paper is organized as follows. The ILTH and breakpoints are defined in Section 2. The

adaptive algorithm is presented and studied in Section 3. The second breakpoint detection method

is studied in Section 4. Finally, in Section 5, we assess the efficiency of the proposed methods

using simulated change-point models.
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The proofs of the theorems as well as some new technical large deviation results (interesting

per se) are given in the Appendix. We use the same notation for a random variable and for a

particular realization; the context allowing us to know which concept is being referred to.

We start by setting down some notation:

• The integer part of x ∈ R will be denoted by E[x].

• For a random vector X , we denote its expectation by E[X ].

• By ‖x‖∞, we denote the infinity norm of the vector x ∈ R
n, i.e., ‖x‖∞ = max(|xi|, i =

1, . . . , n).

• The cardinality of a set I is denoted by |I|.

2. ILTH and breakpoints

Let rt, t = 1, . . . , N , (with N > 1), be N independent observations of a time series generated

by the model

(1) rt = ρt + ζt, with E[rt] = ρt and E[ζtζ
⊤

t ] = Qt, t = 1, . . . , N,

where ζt are independent random vectors in R
n with zero mean and n ≥ 2. In what follows,

depending on the context, we will make use of one of the following two assumptions:

(A1) For t = 1, . . . , N , E[‖ζt‖p∞] ≤ σp and ‖ρt‖∞ ≤ σ′ for some finite p > 4, σ > 0, and σ′ > 0.

(A2) For t = 1, . . . , N , E[‖rt‖4∞] ≤ σ4 for some finite σ > 0.

We first need to introduce the key notion of interval1 of local time homogeneity (ILTH). The

definition of an ILTH can be found in Guigues (2008) for the multivariate case and in Mercurio

and Spokoiny (2004) for the one-dimensional case. An ILTH is an interval where the parameters

ρt (the means) and Qt (the covariance matrices) slowly vary. To define more precisely an ILTH,

for any nonempty interval I, let ρ̂I and Q̂I be the following estimators of the mean and of the

covariance matrix using the data of interval I:

(2) ρ̂I =
1

|I|
∑

t∈I

rt and Q̂I =
1

|I|
∑

t∈I

(rt − ρ̂I)(rt − ρ̂I)
⊤.

We also set for any nonempty interval I

∆ρ
I =

√

1

|I|
∑

t∈I

‖ρt − ρN+1‖2∞ and ∆Q
I =

√

1

|I|
∑

t∈I

‖Qt −QN+1‖2∞.

If the parameters ρt and Qt slowly vary on a set I embedded in {1, . . . , N+1} with right endpoint

N + 1, we expect every ρt (resp. Qt) for t ∈ I to be close to ρN+1 (resp. QN+1) and hence ∆ρ
I

(resp. ∆Q
I ) to be small. Similarly, for any subinterval J of an interval I where ρt and Qt slowly

vary, we expect ∆ρ
J and ∆Q

J to be small. To take into account the variability of the estimators ρ̂I

and Q̂I of ρN+1 and QN+1 obtained using a set I embedded in {1, . . . , N +1} with right endpoint

N + 1, we introduce

V
ρ
I = E[‖ρ̂I − E[ρ̂I ]‖∞] and V

Q
I = E[‖Q̂I − E[Q̂I ]‖∞],

(notice that V
ρ
I simply reads V

ρ
I = E[‖ 1

|I|
∑

t∈I ζt‖∞]). For any nonempty interval I, let I(I)
be a finite set of testing subintervals for I. An interval I embedded in {1, . . . , N + 1} with right

1Since we deal with a discrete time stochastic process, the intervals I considered are discrete sets of consecutive
time steps belonging to {1, . . . , N + 1}.
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endpoint N+1 is said to be of local time homogeneity if ∆ρ
J ≤ DV

ρ
J and ∆Q

J ≤ DV
Q
J for J = I and

J ∈ I(I) where D is a fixed (small) constant. Different choices are possible for I(I). A possibility

is to take all intervals of length proportional to m0 (m0 > 0 being fixed) strictly embedded in I

with either the same left endpoint or the same right endpoint as I (see the numerical simulations

of Section 5 for another possibility).

Next, we define a family I of candidate intervals of local time homogeneity as follows. Though

we assume that N +1 belongs to the ILTH, since we do not have observations for time step N +1,

time step N will be the right endpoint of all intervals from I: the intervals in I have right endpoint

N and length greater than or equal to m0, i.e., they are of the form {N −m0−k, . . . , N} for some

k ∈ N.

In this context, the maximal ILTH denoted by I is defined as follows:

(3) I = argmax{|I| | I ∈ I, ∆ρ
J ≤ DV

ρ
J , ∆Q

J ≤ DV
Q
J , for J = I and J ∈ I(I)}.

We then define a breakpoint as a right or a left endpoint of a maximal ILTH. For I to be well

defined, we assume that there is at least an ILTH (the smallest interval in I is an ILTH). By

definition, the maximal ILTH is the largest interval I, among a family of candidate intervals,

such that the means, variances, and covariances slowly vary on interval I. The estimation of this

maximal ILTH, via an adaptive algorithm, is addressed in the next section. Under the hypothesis

of LTH, since it is assumed that N +1 belongs to I, this adaptive algorithm not only allows us to

determine an estimation of the maximal ILTH but also estimations (on the basis of the available

past data rt, t = 1, . . . , N) of the mean ρN+1 and of the covariance matrix QN+1 for the time step

following the instant of the last observation.

Notice that instead of using one interval of homogeneity for both the mean and the covari-

ance matrix, we could use two separate intervals of homogeneity Iρ for the mean and IQ for the

covariance matrix. Intervals Iρ and IQ would be defined as follows:

Iρ = argmax{|I| | I ∈ I, ∆ρ
J ≤ DV

ρ
J , for J = I and J ∈ I(I)}

and

IQ = argmax{|I| | I ⊆ Iρ, I ∈ I, ∆Q
J ≤ DV

Q
J , for J = I and J ∈ I(I)}.

3. Adaptive algorithm

3.1. Algorithm implementation and accuracy. The adaptive algorithm determines an esti-

mation Î of the largest interval I among a family I of ordered candidate intervals I1 ⊂ I2 ⊂ . . . ⊂
IT such that the means, variances, and covariances slowly vary on I. With this notation, I1 (the

smallest candidate interval) is assumed to be an ILTH and I = It where It is such that I1, . . . , It
are ILTH but It+1 is not an ILTH. It remains to explain how to decide if on a given candidate

interval I ∈ I, we can consider that ρt and Qt are slowly varying or not. This decision will be

based on Theorem 3.1 below. We first introduce for λ > 0 the following notation:

(4) K1(λ) = 2 +

(

10 p(γ + λ)

3e(p− 2− 2λ)

)
p
2

and K2(λ) = 1 +

(

10E[p2 ](2γ + λ)

3 e(E[p2 ]− 2− 2λ)

)

E[
p
2
]

2

,

where γ is chosen such that n ≤ Nγ and p is the integer from Assumption (A1).
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Theorem 3.1. Let rt, t = 1, . . . , N , be N independent observations of a model generated by (1).

Let Assumption (A1) hold, let I ∈ I be an ILTH and let J ∈ I(I). Let ρ̂I and Q̂I be the estimators

defined in (2). We set σ′′ = σ2 + (2σ′ + σ)2 and σ′′′ = 2(2σ′ + σ)2. Then for every λ > 0 such

that 10(lnn+ λ lnm0) ≤ 3m0, p > 2(1 + λ) and µ > 0 such that 10(lnn(n+ 1) + µ lnm0) ≤ 3m0,

E[p2 ] > 2(1 + µ) (m0 being the length of the smallest interval of the set I(I)), we have:

P (‖ρ̂I − ρ̂J‖∞ ≥ γρ(|I|, |J |, λ)) ≤ K1(λ)(
1

|I|λ +
1

|J |λ ),(5)

P

(

‖Q̂I − Q̂J‖∞ ≥ γQ(|I|, |J |, µ)
)

≤ (K1(µ) +K2(µ))(
1

|I|µ +
1

|J |µ ),(6)

where

γρ(|I|, |J |, λ) = 2

√

10

3
σ(

√

lnn+ λ ln |I|
|I| +

√

lnn+ λ ln |J |
|J | ) + 2

√

2

ln 2
Dσ

(
√

lnn

|I| +

√

lnn

|J |

)

,

and where γQ(|I|, |J |, µ) is given by

k1(σ, σ
′′)

(
√

lnn(n+ 1) + µ ln |I|
|I| +

√

lnn(n+ 1) + µ ln |J |
|J |

)

+ k2(σ, σ
′′′)D

(
√

lnn

|I| +

√

lnn

|J |

)

,

with k1(σ, σ
′′) = 2

√

10
3 (2σ

2 + σ′′) and k2(σ, σ
′′′) = 16σ2

ln 2 + 4σ′′′

√
ln 2

.

Now let I ∈ I be a candidate interval and let (λ, µ) be two positive parameters satisfying the

conditions given in Theorem 3.1. Using this theorem, we will consider that the mean is slowly

varying on interval I, if for every interval J ∈ I(I) :

(7) ‖ρ̂I − ρ̂J‖∞ ≤ γρ(|I|, |J |, λ).

Similarly, we will consider that the covariance matrix is slowly varying on interval I if for every

interval J ∈ I(I) :

(8) ‖Q̂I − Q̂J‖∞ ≤ γQ(|I|, |J |, µ).

After running the adaptive algorithm, we end up with an estimation of a maximal interval I of

homogeneity and we have detected a breakpoint. This breakpoint is a breakpoint in the mean

(resp. in the covariance matrix) if inequality (7) (resp. (8)) is not satisfied for at least one

subinterval J ∈ I(I).
We see that the adaptive algorithm has two positive parameters λ and µ which respectively

control the calibration of the (one step ahead) mean ρN+1 and of the (one step ahead) covariance

matrix QN+1.

Once an estimation Î of I is determined, the estimations of these one step ahead mean ρN+1

and one step ahead covariance matrix QN+1 are given by ρ̂
Î
and Q̂

Î
.

In Theorem 3.2 which follows, we give the accuracy of the adaptive estimations ρ̂
Îρ

of the mean

ρN+1 and Q̂
ÎQ

of the covariance matrix QN+1 when two intervals of homogeneity Iρ and IQ are

used. A similar result can be given when one ILTH is used. In the sequel, we set I+(I) := I(I)∪I.

Theorem 3.2. Let Assumption (A1) hold and let ρ̂
Îρ

and Q̂
ÎQ

be the empirical adaptive estima-

tions of the mean ρN+1 and of the covariance matrix QN+1. Let (λ, µ) be the parameters of the

adaptive algorithm such that λ > 0, p > 2(1+λ), 10(lnn+λ lnm0) ≤ 3m0, µ > 0, E[p2 ] > 2(1+µ),
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and 10(lnn(n+ 1) + µ lnm0) ≤ 3m0. Then

P

(

‖ρ̂
Îρ

− ρN+1‖∞ > (6
√

10
3 + 6

√

2
ln 2D)σ

√

lnn+λ ln |Iρ|
|Iρ|

)

≤
∑

I∈I |I⊆Iρ

∑

J∈I+(I)

K1(λ)

|J |λ ,(9)

P

(

‖Q̂
ÎQ

−QN+1‖∞ > f(σ, σ′)
√

lnn(n+1)+µ ln |IQ|
|IQ|

)

≤
∑

I∈I|I⊆IQ

∑

J∈I+(I)

K1(µ) +K2(µ)

|J |µ ,(10)

with f(σ, σ′) = 6
√

10
3 (2σ2 + σ′′) + 3D(16σ

2

ln 2 + 4σ′′′

√
ln 2

), σ′′ = σ2 + (2σ′ + σ)2, and σ′′′ = 2(2σ′ + σ)2.

For fixed λ and µ, the confidence areas for the mean ρN+1 and for the covariance matrix QN+1

provided by the above theorem (of the form ‖ρ̂−ρN+1‖∞ ≤ k1σ
√

lnn+λ ln |Iρ|
|Iρ| and ‖Q̂−QN+1‖∞ ≤

k2(σ+ σ′)2
√

2 lnn+µ ln |IQ|
|IQ| for some constants k1 and k2) are all the smaller as D and σ are small.

Also, the volume of these confidence areas is slowly increasing when the number of components n

increases and rapidly decreases when the lengths of Iρ and IQ increase. Finally, notice that the

conditions 10(lnn + λ lnm0) ≤ 3m0 and 10(lnn(n + 1) + µ lnm0) ≤ 3m0 in the above theorem

can be suppressed but this would lead to more complicated left-hand sides (see the Appendix).

However, these conditions are not too restrictive. For instance, for n = 40, if we take m0 = n then

we can take for µ values as large as 8.84. If µ = 1 and m0 = n then it suffices for rt to have more

than 6 components (n ≥ 6) to get 10(lnn(n+ 1) + µ lnm0) ≤ 3m0.

3.2. Type I and type II errors for a change-point model. An interesting particular case

where the hypothesis of LTH holds is when ρt and Qt are piecewise constant functions. For a given

time N + 1, on the basis of N past observations rt, t = 1, . . . , N , of a change-point time series

satisfying Assumption (A1), we would like to determine the last breakpoint in the mean or the

covariance matrix. Using the adaptive algorithm, we can determine an estimation of the largest

interval with right endpoint N without breakpoints in the means, variances, and covariances. It

boils down to a multiple testing problem. In order to obtain a small type I error (made when a

homogeneity interval is rejected), each test should be conducted with a small type I error. The

following theorem provides an upper bound for the type I error if we use the adaptive algorithm

with a change-point model.

Theorem 3.3. Let (rt) be a discrete time stochastic process generated by (1). Let Assumption

(A1) hold and let I ∈ I be an ILTH with right endpoint N such that for every t, t′ ∈ I, ρt =

ρt′ and Qt = Qt′ . Then if (λ, µ) > 0 are the parameters of the adaptive algorithm such that

10(lnn+λ lnm0) ≤ 3m0, p > 2(1+λ), 10(lnn(n+1)+µ lnm0) ≤ 3m0, and E[p2 ] > 2(1+µ) (m0

being the length of the smallest interval of the set I(I)), we have

(11) P(I is rejected) ≤ 2
Card(I(I))
m

min(λ,µ)
0

(K1(λ) +K1(µ) +K2(µ)) .

We would also like the algorithm to detect breakpoints in the means, variances, and covariances,

if these changes are important enough. The following theorem provides an upper bound for the

type II error when applying the adaptive algorithm to a change-point model with a sufficiently

important breakpoint in the mean.

Theorem 3.4. Let (rt) be a discrete time stochastic process generated by (1). Let Assumption

(A1) hold and let I = {Tbp − m, . . . , N} be an interval with a breakpoint at Tbp: for t = Tbp −
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m, . . . , Tbp − 1 (m ≥ m0 is a multiple of m0), ρt = m1 and for t = Tbp, . . . , N , ρt = m2. Let

m′ = N + 1 − Tbp ≥ m0 and let λ > 0 such that 10(lnn + λ lnm0) ≤ 3m0. If the changes in the

means are sufficiently important, i.e., if ‖m2 −m1‖∞ is greater than

m+m′

m′

(

2f1(m+m′, λ) + 2f1(m,λ) + 2

√

2

ln 2
Dσ(

√

lnn

m+m′ +

√

lnn

m
)

)

,(12)

where for any nonempty interval I

(13) f1(|I|, λ) = 2

√

10

3
σ

√

lnn+ λ ln |I|
|I| ,

then the probability for interval I to be accepted as an interval of homogeneity is bounded from

above as follows:

P(I accepted) ≤ K1(λ)

(

1

mλ
+

1

(m+m′)λ

)

.

A similar result can be given if we are interested in detecting breakpoints in the variances

and covariances. We assumed m multiple of m0 and 10(lnn + λ lnm0) ≤ 3m0 to simplify the

presentation of the result but the type II error can be controlled without this last condition (see

the Appendix).

The adaptive algorithm can also be implemented as in Guigues (2008) replacing ρ̂I and Q̂I by

other (close) estimators. In this case, making Assumption (A2), the type I and type II errors can

be more easily controlled (see Theorems 3.7 and 3.8 which follow). These questions are addressed

in the next section.

3.3. A modified version of the adaptive algorithm. Let us fix a positive parameter λ, and

for any nonempty interval I, let K0(|I|) and [·]K , for K > 0, be the constant and the truncation

operator defined by

(14) K0(|I|) = σ
(

|I|
lnn(n+1)+λ ln |I|

)
1
4

; [x]K =











K if x > K,

−K if x < −K,

x otherwise.

Instead of using estimations ρ̂I and Q̂I given by (2), the adaptive algorithm can be implemented

using (as in Guigues (2008))

(15) ρ̂I =
1

|I|
∑

t∈I

αI
t and Q̂I =

1

|I|
∑

t∈I

(αI
t − ρ̂I)(α

I
t − ρ̂I)

⊤,

where for i = 1, . . . , n, and t ∈ I, αI
t (i) = [rt(i)]K0(|I|). In this context, λ becomes the only

parameter of the adaptive algorithm. The estimations (15) are close to the estimations (2) when

the length of I is large enough. It is explained in the Appendix (in the proof of Theorems 3.7 and

3.8 below) how this version of the adaptive algorithm is implemented. On the one hand, the upper

bounds we get with this algorithm, in particular for the type I and type II errors when applied to

a change-point model, are simpler than those obtained with the algorithm presented in the present

paper. On the other hand, instead of using the estimators (15), this latter algorithm makes use of

the more natural estimators (2) and has two parameters (λ, µ) instead of just one parameter λ in

Guigues (2008). This additional degree of freedom allows us to improve the algorithm performance

(see the numerical simulations in Section 5).
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In the rest of this section, we focus on the adaptive algorithm from Guigues (2008) and bound

the type I and type II errors obtained when applying it to a change-point model.

3.3.1. Quality of the estimation. Denoting by svec(Q) the symmetric vectorization of matrix Q,

we start recalling (from Guigues (2008)) the quality of the estimation θ̂I = (ρ̂⊤

I
, svec(Q̂I)

⊤)⊤ that

would be used for the parameter θ = (ρ⊤

N+1, svec(QN+1)
⊤)⊤ if the ideal interval I of local time

homogeneity was known.

Theorem 3.5. Guigues (2008) Let Assumption (A2) hold. If λ > 0 is such that lnn(n + 1) +

λ ln |I| ≤ |I|, then there is a constant k(D) depending affinely on D such that

(16) P

(

‖θ̂I − θ‖∞ ≥ k(D)max(σ, σ2)

√

lnn(n+ 1) + λ ln |I|
|I|

)

≤ 3

|I|λ .

The following theorem then gives the accuracy of the adaptive estimations.

Theorem 3.6. Guigues (2008) Let Assumption (A2) hold. Let Î be the interval selected by the

adaptive algorithm and λ be the parameter involved in the definition of K0. We suppose that

lnn(n+ 1) + λ lnm0 ≤ m0 where m0 is the length of the smallest testing subinterval. Then there

is a constant k(D) depending affinely on D such that if θ̂
Î
= (ρ̂⊤

Î
, svec(Q̂

Î
)⊤)⊤ we get

P

(

‖θ̂
Î
− θ‖∞ ≥ k(D)max(σ, σ2)

√

lnn(n+ 1) + λ ln |I|
|I|

)

≤
∑

I∈I |I⊆I

∑

J∈I+(I)

3

|J |λ .(17)

Observe that the right-hand side of the above inequality depends on the number and lengths

of the testing subintervals. It goes to 0 when λ goes to infinity. However, when λ increases we

naturally obtain confidence areas of greater volume. For implementation purposes, we address the

calibration of λ (of (λ, µ) with the version of the adaptive algorithm introduced in the previous

section) in Section 5, which is dedicated to numerical simulations. Also observe that, as with the

version of the adaptive algorithm from Section 3.1, the volume of these confidence areas naturally

decreases when D and σ decrease, decreases when |I| increases, and slowly increases with the

number n of components of the process. Finally, comparing Theorems 3.5 and 3.6, we see that the

quality of the adaptive estimators is close to the quality of estimators ρ̂I and Q̂I that would be used

if the ideal interval I for parameter estimation was known in advance. The adaptive algorithm

can be viewed as an oracle that provides estimations of ρN+1 and QN+1 with controlled accuracy,

on the basis of past observations rt, t = 1, . . . , N .

3.3.2. Type I and type II errors for a change-point model. The type I and type II errors are now

controlled as follows:

Theorem 3.7. Let (rt) be a discrete time stochastic process generated by (1). Let Assumption

(A2) hold and let I be an ILTH with right endpoint N such that for all t, t′ ∈ I, ρt = ρt′ and

Qt = Qt′ . If λ > 0 is the parameter of the adaptive algorithm from Guigues (2008), then

(18) P(I is rejected) ≤ 6Card(I(I))
mλ

0

.
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The type I error is all the smaller as λ is large. More precisely, the upper bound given by

Theorem 3.7 provides a way to choose λ, i.e.,

λ ≥ ln(6 Card(I(I))
α

)

lnm0
,

such that the type I error is at most α > 0.

The following theorem states that if on a given interval I, there is an important breakpoint in

the mean and the covariance matrix at Tbp ∈ I, then for large enough values of λ and if we have

a sufficient number of observations after the breakpoint, there is little chance that the adaptive

algorithm from Guigues (2008) accepts this interval as an ILTH (that is to say that the algorithm

makes a type II error).

Theorem 3.8. Let (rt) be a discrete time stochastic process generated by (1). Let Assumption

(A2) hold, let m ∈ N
∗ be a multiple of m0, and let I = {Tbp − m, . . . , N} be an interval with

a breakpoint in the means, variances, and covariances at Tbp: on J = {Tbp − m, . . . , Tbp − 1},
ρt = m1, Qt = Q1, and on {Tbp, . . . , N}, ρt = m2, Qt = Q2. Let λ > 0 be the parameter of the

adaptive algorithm. We assume that lnn(n + 1) + λ lnm0 ≤ m0. If the breakpoint is sufficiently

important, i.e., if ‖m2 −m1‖∞ is greater than

m+m′

m′ σ

(

(
14

3
+ 2

√
2) (f(m+m′, λ) + f(m,λ)) + 4

√

2

ln 2
D(

√

lnn

m+m′ +

√

lnn

m
)

)

(19)

and

‖Q2 −Q1‖∞ ≥ m+m′

m′ (2k′Q + kQD)σ2 (f(m+m′, λ) + f(m,λ)) ,(20)

where m′ = N + 1− Tbp ≥ m0,

(21) f(|I|, λ) =
√

lnn(n+ 1) + λ ln |I|
|I|

and where kQ and k′Q are constants given in the Appendix, then

P(I accepted) ≤ 3

(

1

mλ
+

1

(m+m′)λ

)

.

The type II error naturally decreases whenm andm′ increase. When λ increases, the magnitude

of the jump in the mean and covariance matrix increases and the type II error decreases.

4. Breakpoint detection using a sliding window

We study a nonparametric breakpoint detection method Müller (1992) for time series (rt)

generated by (1) and satisfying Assumption (A1) or Assumption (A2). The method makes use

of a sliding window. We bound from below the probability of correctly detecting the breakpoint

when considering a change-point model with a breakpoint in the means or the covariance matrix.

More precisely, we study two particular change-point models. In the first of these models the

covariance matrix Qt = Q is constant and the mean changes at Tbp: for t = 1, . . . , Tbp−1, ρt = m1

and for t = Tbp, . . . , N , ρt = m2. The second model corresponds to the symmetric case where the

mean ρt is constant and the covariance matrix Qt changes at Tbp: for t = 1, . . . , Tbp − 1, Qt = Q1

and for t = Tbp, . . . , N , Qt = Q2.
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4.1. Algorithm description. Let h ∈ N
∗ be a positive parameter called the bandwidth corre-

sponding to the length of the left and right sliding windows. For h ≤ t ≤ N − h + 1, if there is

a breakpoint in the covariance matrix at t, the mean being constant, then the estimation of the

covariance matrix on a window of length h whose right endpoint is t (thus using the observations

rk, k = t−h+1, . . . , t) and the estimation of the covariance matrix on a window of length h whose

left endpoint is t (thus using the observations rk, k = t, . . . , t+ h− 1) should be quite different (if

the breakpoint is sufficiently important). Besides, if for k = t − h + 1, . . . , t + h − 1, Qk = Q is

constant then the left and right estimations at t should be close. This simple observation allows us

to consider a simple nonparametric breakpoint detection method that looks for the instant where

the difference between the left and right estimations is the most important. To define formally

the breakpoint we need some more notation. For every t = h, . . . , N − h + 1, we define the left

and right estimations Qt
ℓ(h) and Qt

r(h) of the covariance matrix at t with

(22) Qt
ℓ(h) =

1

h

t
∑

k=t−h+1

(rk − ρtℓ(h))(rk − ρtℓ(h))
⊤, Qt

r(h) =
1

h

t+h−1
∑

k=t

(rk − ρtr(h))(rk − ρtr(h))
⊤,

where ρtℓ(h) and ρtr(h) are the left and right estimations of the mean:

(23) ρtℓ(h) =
1

h

t
∑

k=t−h+1

rk, ρtr(h) =
1

h

t+h−1
∑

k=t

rk.

In this context, if the mean is constant, the estimation Tbp(h) of the breakpoint in the covariance

matrix when we use a window of length h is the time when the distance between the left and right

estimations of the covariance matrix is maximized:

(24) Tbp(h) = Argmax

h ≤ t ≤ N − h+ 1

‖Qt
ℓ(h)−Qt

r(h)‖∞.

Similarly, we use the following estimator to detect the most important breakpoint in the mean in

the case when the variances and covariances are constant:

(25) Tbp(h) = Argmax

h ≤ t ≤ N − h+ 1

‖ρtℓ(h)− ρtr(h)‖∞.

4.2. Quality of breakpoint detection. We recall that K1(λ) and K2(λ) are defined by (4) in

the previous section.

4.2.1. Case where the covariance matrix is constant. If the change in the mean is sufficiently

important, we can bound from below as follows the probability for the estimator of Tbp to be in

an interval of length 2h− 2 containing Tbp:

Theorem 4.1. Let (rt) be a discrete time stochastic process generated by (1). We assume that

for t = 1, . . . , Tbp − 1, ρt = m1, Qt = Q and for t = Tbp, . . . , N, ρt = m2, Qt = Q. Let Assumption

(A1) hold, let λ > 0 and h ∈ N
∗\{1} be such that 10(lnn + λ lnh) ≤ 3h and p > 2(1 + λ). If

‖m2 −m1‖∞ > 4h
h−1 f1(h, λ) where f1 is defined by (13) then

(26) P (Tbp(h) ∈ {Tbp − h+ 1, . . . , Tbp + h− 2}) ≥ 1− 2(N − 4h+ 5)K1(λ)

hλ
.
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Using a more restrictive condition on the magnitude of the change in the means, we can also

bound from below the probability that Tbp(h) equals Tbp − 1 or Tbp.

Theorem 4.2. Let (rt) be a discrete time stochastic process satisfying Assumption (A1). We

assume that for t = 1, . . . , Tbp − 1, ρt = m1, Qt = Q and for t = Tbp, . . . , N, ρt = m2, Qt = Q.

Let λ > 0 and h ∈ N
∗\{1} such that 10(lnn+ λ lnh) ≤ 3h and p > 2(1 + λ). If ‖m2 −m1‖∞ >

4h f1(h, λ) with f1 defined by (13) then

(27) P ({Tbp(h) = Tbp − 1} ∪ {Tbp(h) = Tbp}) ≥ 1− 2(N − 2h+ 2)K1(λ)

hλ
.

In what follows, for h ≤ t ≤ N−h+1, we denote by Itℓ = {t−h+1, . . . , t} the interval of length

h with right endpoint t and by Itr = {t, . . . , t+h− 1} the interval of length h with left endpoint t.

Assume now that for the algorithm of Section 4.1, we use the left (resp. right) estimations of the

covariance matrix and of the mean obtained replacing rk by α
It
ℓ

k (resp. α
It
r

k ) in the expressions of

Qt
ℓ(h) and ρtℓ(h) (resp. Qt

r(h) and ρtr(h)) given by (22) and (23). In this case, the probability of

detecting the breakpoint can be made arbitrarily large by choosing sufficiently large values of λ,

i.e., if the magnitude of the breakpoint is sufficiently large. In this context, Theorems 4.3 and 4.4

which follow are analogous to Theorems 4.1 and 4.2:

Theorem 4.3. Let (rt) be a discrete time stochastic process satisfying Assumption (A2). Suppose

we use the left (resp. right) estimations of the covariance matrix and of the mean obtained replacing

rk by α
It
ℓ

k (resp. α
It
r

k ) in the expressions of Qt
ℓ(h) and ρtℓ(h) (resp. Qt

r(h) and ρtr(h)) given by (22)

and (23). We assume that for t = 1, . . . , Tbp − 1, ρt = m1, Qt = Q and for t = Tbp, . . . , N,

ρt = m2, Qt = Q. Let λ > 0 and h ∈ N
∗\{1}. If ‖m2 −m1‖∞ > 4h

h−1 f
′
1(h, λ) with

(28) f ′
1(h, λ) = σ

(

7

3

(

lnn(n+ 1) + λ lnh

h

)
3
4

+
√
2

√

lnn(n+ 1) + λ lnh

h

)

,

then

(29) P (Tbp(h) ∈ {Tbp − h+ 1, . . . , Tbp + h− 2}) ≥ 1− 2(N − 4h+ 5)

hλ
.

If lnn(n + 1) + λ ln h ≤ h, the above inequality holds replacing in (28) f ′
1(h, λ) by f ′

1(h, λ) =

(73 +
√
2)σ
√

lnn(n+1)+λ lnh

h
.

Notice that f ′
1 increases with n (the number of components), λ and σ, and decreases with h,

as expected. Also, when h tends to infinity, then f ′
1(h, λ) tends to 0. If h is not too large and λ

sufficiently large, then this theorem shows that the estimator Tbp(h) is of good quality. But when

λ increases, so does f ′
1. This means that the estimator will of course be all the more accurate

as the change in the mean is important. Regarding the condition lnn(n + 1) + λ ln h ≤ h, if the

number of components n = 30, and if we choose λ = 0.5, then the above condition implies h ≥ 16.

This condition is not too restrictive since the numerical simulations of the next section tend to

show that “good” values of h are rather large.

Theorem 4.4. Let Assumption (A2) hold and suppose we use the left (resp. right) estimations of

the covariance matrix and of the mean obtained replacing rk by α
It
ℓ

k (resp. α
It
r

k ) in the expressions

of Qt
ℓ(h) and ρtℓ(h) (resp. Qt

r(h) and ρtr(h)) given by (22) and (23). We assume that for t =

1, . . . , Tbp − 1, ρt = m1, Qt = Q and for t = Tbp, . . . , N, ρt = m2, Qt = Q. Let λ > 0 and
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h ∈ N
∗\{1}. If ‖m2 −m1‖∞ > 4h f ′

1(h, λ), with f ′
1 given by (28) then

(30) P ({Tbp(h) = Tbp − 1} ∪ {Tbp(h) = Tbp}) ≥ 1− 2(N − 2h+ 2)

hλ
.

4.2.2. Case where the mean is constant. When the mean is constant, the following theorem pro-

vides a lower bound for the probability that the estimator of Tbp belongs to an interval of length

2h− 2 containing Tbp:

Theorem 4.5. Let (rt) be a discrete time stochastic process satisfying Assumption (A1). Let

λ > 0 and h ∈ N
∗\{1} such that 10(lnn(n + 1) + λ lnh) ≤ 3h and E[p2 ] > 2(1 + λ). We assume

that for t = 1, . . . , Tbp − 1, ρt = m,Qt = Q1 and for t = Tbp, . . . , N, ρt = m,Qt = Q2. If

‖Q2 −Q1‖∞ > 4h
h−1 f2(h, λ) where

(31) f2(h, λ) = 2

√

10

3
(2σ2 + σ′′)

√

lnn(n+ 1) + λ lnh

h
,

and σ′′ = σ2 + (2σ′ + σ)2, then

(32) P (Tbp(h) ∈ {Tbp − h+ 1, . . . , Tbp + h− 2}) ≥ 1− 2(N − 4h+ 5)(K1(λ) +K2(λ))

hλ
.

Using a more restrictive condition on the magnitude of the change in the covariance matrix, we

can bound from below the probability that the estimator of Tbp equals Tbp or Tbp − 1:

Theorem 4.6. Let (rt) be a discrete time stochastic process satisfying Assumption (A1). Let

λ > 0 and h ∈ N
∗\{1} such that 10(lnn(n + 1) + λ lnh) ≤ 3h and E[p2 ] > 2(1 + λ). We assume

that for t = 1, . . . , Tbp − 1, ρt = m,Qt = Q1 and for t = Tbp, . . . , N, ρt = m,Qt = Q2. If

‖Q2 −Q1‖∞ > 4 h f2(h, λ) where f2 is defined by (31) then

(33) P ({Tbp(h) = Tbp − 1} ∪ {Tbp(h) = Tbp}) ≥ 1− 2(N − 2h+ 2)(K1(λ) +K2(λ))

hλ
.

Finally, the quality of covariance matrix breakpoint detection using α
It
ℓ

k or α
It
r

k instead of rk is

given in the following theorem:

Theorem 4.7. Let Assumption (A2) hold and suppose that we use the left (resp. right) estima-

tions of the covariance matrix and of the mean obtained replacing rk by α
It
ℓ

k (resp. α
It
r

k ) in the

expressions of Qt
ℓ(h) and ρtℓ(h) (resp. Qt

r(h) and ρtr(h)) given by (22) and (23). Let λ > 0 and

h ∈ N
∗\{1} such that lnn(n+ 1) + λ ln h ≤ h. If

‖Q2 −Q1‖∞ >
4k′Q
h− 1

σ2
√

h (lnn(n+ 1) + λ lnh)

(where k′Q from Theorem 3.8 is defined in the Appendix), then the probability that Tbp(h) belongs

to {Tbp − h+ 1, . . . , Tbp + h− 2} is greater than 1− 4(N−4h+5)
hλ and if

‖Q2 −Q1‖∞ > 4k′Q σ2
√

h (lnn(n+ 1) + λ lnh),

then the probability that the estimator Tbp(h) equals Tbp − 1 or Tbp is greater than 1− 4(N−2h+2)
hλ .

5. Numerical simulations

In this section, we test the performance of the breakpoint detection methods studied in this

paper using Gaussian change-point models with one or two breakpoints in the mean and/or the
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covariance matrix. Random vectors have n = 30 components and the tests are grouped in three

sections:

• In Section 5.1, we test various implementations of the adaptive algorithm introduced in

this paper.

• In Section 5.2, simulations are performed with the algorithm from Section 4.1.

• In the last Section 5.3, the adaptive algorithm of the present paper is compared with the

adaptive algorithm from Guigues (2008) and with the algorithm from Section 4.1.

5.1. Adaptive method. We consider a Gaussian change-point model where the first T1 obser-

vations are drawn from the Gaussian N (β1ρ, β2Q) density and the last T2 observations from the

Gaussian N (β′
1ρ, β

′
2Q) density for some positive parameters T1, T2 and different values for param-

eters (β1, β2, β
′
1, β

′
2). We take for ρ and Q, the empirical mean and covariance matrix of the 3

month returns of the assets of the Dow Jones 30, computed on January 2, 2002, using 3 years of

historical data, and assuming stationarity of the returns. The maximal mean return is 1.1 and

the maximal variance 0.1. Such choice is motivated by the fact that the adaptive algorithm in the

multivariate case Guigues (2008) was first applied to estimate the one step ahead mean return ρ

and the one step ahead covariance matrixQ between the returns for a portfolio management model.

Intervals in I with length proportional to m0. We first consider a change in the mean:

β′
1 = 1.5, β1 = β2 = β′

2 = 1, T1 = 120, T2 = 240 and we choose for the set I at time step t

intervals of the form {t− km0, . . . , t− 1} where m0 = 15 and k ∈ N
∗. Our goal is to simulate such

model and for each trajectory of the process to apply the adaptive algorithm as time goes by to

determine estimations of the ILTH and of the one step ahead mean and covariance matrix.

Before reporting the results, it remains to explain how the parameters of the adaptive algorithm

are chosen. Recall that the adaptive algorithm from Section 3.1 depends on two positive parameters

λ and µ. Using Theorem 3.1, we accept I as an ILTH if for every J ∈ I(I), ‖ρ̂I − ρ̂J‖∞ ≤
k1(σ + σ′)(

√

lnn+λ ln |I|
|I| +

√

lnn+λ ln |J|
|J| ) and ‖Q̂I − Q̂J‖∞ ≤ k2(σ + σ′)2(

√

lnn(n+1)+µ ln |I|
|I| +

√

lnn(n+1)+µ ln |J|
|J| ) where (λ, µ, k1, k2) are positive constants. Parameter σ + σ′ will be estimated

by the largest available realization rt(i) among all time steps t and components i. Theorem 3.1

provides constants k1 and k2 (independent on λ and µ) such that lower bounds are known for the

probabilities that the corresponding above inequalities are satisfied. Of course, such inequalities

will be satisfied with at least the same probability for larger values of k1 and k2. However, the

choice of constants k1 and k2 provided by Theorem 3.1 may be conservative. The larger these

constants, the more we will consider that an interval where the mean and covariance matrix are

slowly varying is an ILTH but the least we will detect breakpoints. In the particular case of a

constant one-dimensional process, for all I, J , ρ̂I = ρ̂J and Q̂I = Q̂J , which means the above

inequalities hold in this situation with probability one with k1 = k2 = 0. To prevent too large

values for k1 and k2 while detecting the absence of breakpoints with a high probability, we should

consider k1 and k2 as parameters of our algorithm (thus introducing two additional degrees of

freedom).

We propose 4 error criteria to calibrate the parameters (λ, µ, k1, k2) of the adaptive algorithm.

We take a discrete set of candidate values for parameters (λ, µ, k1, k2): {0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.07, 0.08, 0.09, 0.1} for λ and µ and {0.01, 0.012, 0.014, 0.016, 0.018, 0.02, 0.03, 0.04, 0.05, 0.06,
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Figure 1. From left to right, estimation error of the mean, estimation error of the
covariance matrix, and comparison between the optimal and estimated maximal
intervals of homogeneity for a Gaussian process having a breakpoint in the mean.

0.07, 0.08, 0.09, 0.1} for k1 and k2. Considering this grid of values for (λ, µ, k1, k2), for each com-

bination of the parameters, we make 100 simulations of the change-point model. For each com-

bination, each simulation, and each time t = t0, . . . , T1 + T2, with t0 = 60, on the basis of

the past observations for time steps 1, . . . , t − 1, we compute the adaptive one step ahead mean

ρ̂t and the adaptive one step ahead covariance matrix Q̂t (as explained in Section 3). Setting

T = T1 + T2 − t0 + 1, we then define the 4 following error criteria:

MSE = E[ 1
T

T1+T2
∑

t=t0

‖ρ̂t − ρt‖2∞ +
1

T

T1+T2
∑

t=t0

‖Q̂t −Qt‖2∞], MSFE = E[
1

T

T1+T2
∑

t=t0

‖ρ̂t − rt‖2∞],

MAE = E[ 1
T

T1+T2
∑

t=t0

‖ρ̂t − ρt‖∞ +
1

T

T1+T2
∑

t=t0

‖Q̂t −Qt‖∞], MAFE = E[
1

T

T1+T2
∑

t=t0

‖ρ̂t − rt‖∞].

The chosen values of (λ, µ, k1, k2) are those providing the best (smallest) empirical MSE, MSFE,

MAE, or MAFE.

Using the parameters minimizing the (estimated) MAE, we then make 100 new simulations of

the change-point model. For each simulation and each time t = t0, . . . , T1 + T2, with t0 = 60, on

the basis of the past observations for time steps 1, . . . , t − 1, we compute the adaptive one step

ahead mean ρ̂t and the adaptive one step ahead covariance matrix Q̂t. For this experiment, we

report in Figure 1 the following results:

(i) an estimation of the mean and of the first and third quartiles (denoted here and in what

follows by q1 and q3) of ‖ρ̂t − ρt‖∞ for each instant t;

(ii) an estimation of the mean and of the first and third quartiles of ‖Q̂t − Qt‖∞ for each

instant t;

(iii) the mean length of the estimated maximal interval of local time homogeneity together

with the maximal (optimal) interval of local time homogeneity.

The estimation error of the mean and of the covariance matrix rapidly decreases after the break-

point to re-find the error level before the breakpoint. The change in the mean is rapidly detected.

Indeed, the mean value of the first instant t for which the homogeneity interval is not {1, . . . , t}
is t = 122, i.e., two time steps after the breakpoint. Also, in mean, 15 time steps are necessary to

obtain an ILTH whose left endpoint is t = 121. By definition of I, the length of the homogeneity

interval is at least m0 = 15. With this implementation of the adaptive algorithm, t = 135 is the

first time step for which our algorithm can provide the (optimal) maximal interval of local time
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homogeneity.

Intervals in I with length greater than or equal to m0. In order to decrease the

detection time, we now (and in the sequel) take for the set I at time step t intervals of form

{t−m0 − k + 1, . . . , t− 1} with k ∈ N
∗ (we recall that m0 = 15).

We study 3 change-point models. For the first of these models, we choose T1 = 120, T2 = 240,

t0 = 60, β′
1 = 1.3, and β1 = β2 = β′

2 = 1 (change in the mean). The second model considers

a change in the covariance matrix and is described by the following values of the parameters:

T1 = 300, T2 = 250, t0 = 201, β1 = β′
1 = 1, and β2 = 0.5, β′

2 = 2. We finally consider a breakpoint

in both the mean and the covariance matrix taking T1 = 120, T2 = 240, t0 = 60, β1 = 1, β′
1 = 1.3,

β2 = 0.5, and β2 = 2. The parameters chosen to implement the adaptive algorithm are those

minimizing the MAE in a preliminary simulation phase as explained above. For these models, the

items (i), (ii), and (iii) defined above, i.e., the estimation error of the mean (mean and quartiles),

the estimation error of the covariance matrix (mean and quartiles), as well as the the length of

the estimated maximal interval of homogeneity (mean and quartiles) are represented in Figure 2.

We observe that breakpoints in the mean are more quickly detected. However, in all cases, when

the last breakpoint occurred at a sufficiently remote time instant, the ILTH is well estimated, i.e.,

the empirical mean of the breakpoint estimator is close to the breakpoint instant and the empirical

quartiles of this estimator are close to the empirical mean.

Test with two breakpoints. The algorithm can select different maximal intervals of homo-

geneity for the mean and for the covariances if the last important breakpoint in the mean occurred

before the last important breakpoint in the covariance matrix. We illustrate this using a change-

point Gaussian model. The first T1 = 140 observations are drawn from a Gaussian N (ρ, 0.2Q)

density (recall that ρ and Q are defined at the beginning of Section 5.1), the next T2 = 200

observations from a Gaussian N (1.3ρ, 0.2Q) density, and the last T3 = 300 observations from a

Gaussian N (1.3ρ, 2Q) density. Choosing the same grid of values as before for the parameters of

the adaptive algorithm, we simulate for each combination of these values 100 realizations of this

process. The adaptive intervals are estimated for each instant t ≥ 80. The values of the parame-

ters providing the best MAE are (λ, µ, k1, k2) = (0.09, 0.08, 0.08, 0.014) and gave the quartiles of

the adaptive interval length represented in Figure 3. Once again, we see that our algorithm more

easily detects breakpoints in the mean than in the covariance matrix, the mean detection time

being reasonable.

We refer to Guigues (2005) for additional numerical simulations that illustrate the calibration

of the parameters when noises ζt are Gaussian with, in particular, the variances of the components

in a given range. In these simulations, the following was naturally observed: First, the probability

to reject an ILTH increases with the length of this interval. Second, this probability is a decreasing

function of the grid step m0. Indeed, for small values of the grid step, the homogeneity tests are

more numerous. Finally, the mean detection time decreases with the magnitude of the change and

for fixed m0, k1, k2, and λ (resp. µ), the probability to reject an ILTH is a decreasing function of

µ (resp. λ).

5.2. Breakpoint detection using a sliding window. We test the algorithm from Section

4.1 with the following change-point model. The observations rt, t = 1, . . . , Tbp − 1 = 250 are
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Figure 2. From top to bottom, breakpoint in the mean, in the covariance matrix,
and in both. From left to right, estimation error of the mean, estimation error
of the covariance matrix, and comparison between the lengths of the optimal and
estimated maximal intervals of homogeneity.
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mean, the covariance matrix and for both, compared with the optimal interval
length.
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drawn from a Gaussian N (mi, Qj) density and the remaining observations rt, t = 251, . . . , 750

from a Gaussian N (mi′ , Qj′) density for different combinations of the pairs (mi, Qj) where mi

and Qj are means and covariance matrices defined as follows. If δ = 0.05
n

with n = 30 (the

number of components of the random vectors), the means mj are given for i = 1, . . . , n, by:

m1(i) = 1.15 + iδ, m2(i) = 1.2 + iδ, m3(i) = 1.4 + iδ, and m4(i) = 1.7 + iδ. The covariance

matrices Qj are diagonal matrices such that for i = 1, . . . , n: Q1(i, i) = in(n+1)
18 δ2, Q2(i, i) =

5in(n+1)
36 δ2, Q3(i, i) =

2in(n+1)
9 δ2, and Q4(i, i) =

in(n+1)
2 δ2. We obtain the matrices Q2, Q3, and

Q4 multiplying the standard deviations given in matrix Q1 by 1.5, 2, and 3 respectively. This data

are close to those used in the numerical simulations of Ben-Tal and Nemirovski (1999).

We consider six change-point models and we measure the quality of breakpoint detection when

the magnitude of the change increases. For the first three (resp. the last three) models, the covari-

ance matrix (resp. the mean) is constant, set to Q1 (resp. set to m1), and the mean is set to m1

(resp. the covariance matrix is set toQ1) before Tbp while it is respectivelym2,m3, andm4 (Q2, Q3,

and Q4) after Tbp−1 for the first, second, and third models (resp. for the last three models). These

models will be respectively denoted by (m1,m2, Q1), (m1,m3, Q1), (m1,m4, Q1), (m1, Q1, Q2), (m1,

Q1, Q3), and (m1, Q1, Q4).

For each bandwidth h = 2, 3, . . . , 200, we generate 400 simulations of each of these change-

point models and we apply the algorithm from Section 4.1 to obtain estimations of the breakpoint

for these simulations. We are interested in the evolution of the mean and standard deviation

of the estimator of the breakpoint when h increases. The probability of correctly detecting the

breakpoint, i.e., that Tbp(h) = Tbp or that Tbp(h) = Tbp − 1 is also considered. The results are

represented in Figures 4 and 5.

Breakpoints in the mean are very well detected. More precisely, for model (m1,m2, Q1), for

values of the bandwidth sufficiently large, say above 40, the empirical mean of the estimator of

the breakpoint is close to Tbp−1 (small bias) and the standard deviation of this estimator is small.

When the magnitude of the breakpoint in the mean increases, i.e., for models (m1,m3, Q1) and

(m1,m4, Q1), the instant of the breakpoint is correctly detected for nearly all values of h and all

realizations of the process.

The breakpoints in the variances and covariances have to be important to obtain a good es-

timator of the breakpoint. However, for large values of the bandwidth h, say above 100, the

corresponding estimator Tbp(h) of the instant of the breakpoint has both a small bias and a small

variance.

5.3. Comparative study. We consider the 3 change point models in the mean of the previ-

ous section and generate 400 trajectories of these processes. For each realization, the adap-

tive algorithm from Guigues (2008), the adaptive algorithm from Section 3.1, and the algo-

rithm from Section 4.1 are used to estimate the instant of the breakpoint (Tbp − 1 = 250 or

Tbp = 251). We are interested in the empirical mean and standard deviation of the estimator

of the breakpoint. For the algorithm from Section 4.1, we choose a value of the bandwidth h

yielding the smallest MAE given the data rt, t = 1, . . . , 750. For the other two algorithms,

the parameters providing the smallest MAE given the data rt, t = 1, . . . , 750, are chosen. For

this experiment, the empirical mean and standard deviation of the estimator of the breakpoint
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Figure 4. From left to right, the empirical mean and standard deviation of
the estimator of the breakpoint as well as the empirical probability of correctly
detecting the breakpoint are represented for values of h going from 2 to 200 using
400 realizations of Gaussian change-point models. From top to bottom, models
(m1,m2, Q1), (m1,m3, Q1), (m1,m4, Q1), and (m1, Q1, Q2).
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Figure 5. From left to right, the empirical mean and standard deviation of
the estimator of the breakpoint as well as the empirical probability of correctly
detecting the breakpoint are represented for values of h going from 2 to 200 using
400 realizations of Gaussian change-point models. From top to bottom, models
(m1, Q1, Q3) and (m1, Q1, Q4).

are reported in Table 1. In this table, we also report the values of the parameters of the al-

gorithm that were selected. We recall that the algorithm from Guigues (2008) has three pa-

rameters λ, k1, and k2 and that with this algorithm an interval I is accepted as an ILTH if

for every J ∈ I(I), we have ‖ρ̂I − ρ̂J‖∞ ≤ k1σ(
√

lnn(n+1)+λ ln |I|
|I| +

√

lnn(n+1)+λ ln |J|
|J| ) and

‖Q̂I − Q̂J‖∞ ≤ k2σ
2(
√

lnn(n+1)+λ ln |I|
|I| +

√

lnn(n+1)+λ ln |J|
|J| ). Parameter σ is estimated by the

largest available realization rt(i) among all time steps t and components i. The values tested for

λ, µ are {0.01, 0.04, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} while the candidate values for k1

and k2 are {0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1}. Two values are tested

for m0: m0 = 15 and m0 = 30. Moreover, we consider two implementations of the adaptive

algorithms corresponding to two different choices of I(I). For the first implementation (referred

to as implementation choice 1 in Table 1), we take for I(I) all the intervals of length proportional

to m0 strictly embedded in I with either the same left endpoint or the same right endpoint as I.

For the second implementation (referred to as implementation choice 2 in Table 1), we take two

intervals in I(I) of length m0: the first one has the same right endpoint as I and the second one

has the same left endpoint as I.

We observe that the bias and standard deviation (s.d) of the estimator of the breakpoint are

small for the algorithm from Section 4.1. This is in accordance with the results of the previous

section and confirms the efficiency of this method when we know there is only one breakpoint in

the time series. The adaptive algorithms perform less well on this example but still provide a

small bias and a reasonably small s.d., especially when the magnitude of the change is important.

We see that the adaptive algorithm from Section 3.1 which has one additional degree of freedom

provides a better estimator of the breakpoint than Guigues (2008) for models (m1,m3, Q1) and
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Method Model m1,m2, Q1 m1,m3, Q1 m1,m4, Q1

S
li
d
in
g

w
in
d
ow

h 37 3 150
Mean 250.17 250.47 250.43

s.d 4.27 0.50 0.49

A
d
a
p
ti
v
e

k1 0.08 0.055 0.05
k2 0.08 0.04 0.05
λ 0.04 0.5 0.8
µ 0.04 0.6 0.1
m0 15 30 15

Imp.
choice

1 2 1

Mean 240.62 244.60 249.10
s.d 17.84 0.94 0.28

G
u
ig
u
es

(2
0
0
8
)

k1 0.06 0.05 0.05
k2 0.06 0.05 0.05
λ 0.04 0.5 0.8
m0 15 15 15

Imp.
choice

1 1 1

Mean 236.83 246.60 248.81
s.d 7.69 1.58 0.44

Table 1. Empirical mean and standard deviation (s.d.) of the estimator of the
breakpoint for three nonparametric multivariate breakpoint detection methods.

(m1,m4, Q1). If the method based on a sliding window was the best in this example, one should

recall that the hypotheses required to use it are more restrictive. Moreover, the adaptive methods

allow us to determine successive breakpoints in the time series, which the sliding window-based

algorithm is not able to do.

Finally, we also observed that the adaptive algorithm is very sensitive to the choice of its

parameters. The quality of breakpoint detection could be improved testing for a larger number

of candidate values for these parameters. This would however increase the computational time of

the simulation phase aiming at calibrating these parameters.

6. Conclusion

We studied two nonparametric breakpoint detection methods in the means, variances, and

covariances of a multivariate discrete time stochastic process in a nonparametric setting. We

provided the theoretical and practical efficiency of these methods for a change-point time series.

The method using a sliding window allows us to detect the most important breakpoint in the

mean, variances, and covariances on a given period. For this method to be efficient, it should be

used when there is only one breakpoint and at least a few data come from the two distributions.

The adaptive algorithm needs no assumption on the number of breakpoints. It aims to determine

the breakpoints delimiting intervals of homogeneity. The performances of both algorithms depend

on the choice of their parameters (the pair (λ, µ) for the adaptive algorithm and the bandwidth h

for the other). They proved to be very efficient in detecting breakpoints in the mean. Breakpoints

in the variances and covariances are less well detected though the simulations exhibited a small
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bias and a relatively small standard deviation for the estimators of breakpoints in the covariance

matrix.
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Appendix: proof of the theorems

To show Theorem 3.1, we first need to show the following lemma which gives for the stationary

case the (non-asymptotic) accuracy of the following estimators ρ̂N , Q̂b
N , and Q̂N :

(34) ρ̂N =
1

N

N
∑

k=1

rk, Q̂b
N =

1

N

N
∑

k=1

(rk − ρk)(rk − ρk)
⊤, Q̂N =

1

N

N
∑

k=1

(rk − ρ̂N )(rk − ρ̂N )⊤.

Q̂b
N is introduced to provide the accuracy of Q̂N .

Lemma 6.1. Let rt, t = 1, . . . , N , be N independent observations generated from model (1) such

that for every t, ρt = ρ, Qt = Q. Let λ > 0 and let Assumption (A1) hold with E[p2 ] > 2 + 2λ.

We define

K1(λ) = 2 +

(

10 p(γ + λ)

3e(p− 2− 2λ)

)
p
2

, K2(λ) = 1 +

(

10E[p2 ](2γ + λ)

3 e(E[p2 ]− 2− 2λ)

)

E[
p
2
]

2

where γ is chosen such that n ≤ Nγ . If N is sufficiently large, i.e., 3N ≥ 10(lnn(n+1)+λ lnN),

then the estimators ρ̂N , Q̂b
N , and Q̂N defined in (34) satisfy

P

(

‖ρ̂N − ρ‖∞ ≥ 2

√

10

3
σ

√

lnn+ λ lnN

N

)

≤ K1(λ)

Nλ
,(35)

P

(

‖Q̂b
N −Q‖∞ ≥ 4

√

10

3
σ2

√

lnn(n+ 1) + λ lnN

N

)

≤ K2(λ)

Nλ
,(36)

P

(

‖Q̂N −Q‖∞ ≥ 8

√

10

3
σ2

√

lnn(n+ 1) + λ lnN

N

)

≤ K1(λ) +K2(λ)

Nλ
.(37)

In what follows, to alleviate notation, the left-hand sides of inequalities of form (35), (36), and

(37) will be written P(‖ρ̂N − ρ‖∞ ≥ η1), P(‖Q̂b
N −Q‖∞ ≥ η′2), and P(‖Q̂N −Q‖∞ ≥ η2).

Proof. Since 3N ≥ 10(lnn+ λ lnN) and p ≥ 2,

η1 = 2

√

10

3
σ

√

lnn+ λ lnN

N
≥ η̃1 +

σp

Ap−1
,

with

η̃1 = σ

√

10

3

√

lnn+ λ lnN

N
and A = σ

√

3

10

√

N

lnn+ λ lnN
.

We then define ζ̄t = ζt1(‖ζt‖∞ ≤ A). We have

P

(

‖ 1

N

N
∑

t=1

ζt‖∞ ≥ η1

)

≤ P

(

‖ 1

N

N
∑

t=1

ζ̄t‖∞ ≥ η1

)

+ P

(

max
1≤t≤N

‖ζt‖∞ > A

)

= p1 + p2.(38)

We then have for p2

p2 ≤
N
∑

t=1

P(‖ζt‖∞ > A) ≤
N
∑

t=1

E[‖ζt‖p∞]

Ap
≤ Nσp

Ap
≤
(

10(γ + λ)

3

)
p
2 (lnN)

p
2

N
p
2−1

.
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Since N ≥ 2, λ > 0, and p > 2(1 + λ), we obtain

(39) p2 ≤
(

10 p(γ + λ)

3e(p− 2− 2λ)

)
p
2 1

Nλ
.

Let us now estimate p1. First notice that

‖E[ζ̄t]‖∞ = ‖E[ζt1(‖ζt‖∞ > A)]‖∞ ≤ σp

Ap−1
,

and

p1 ≤ P

(

‖ 1

N

N
∑

t=1

ζ̄t‖∞ ≥ η̃1 +
σp

Ap−1

)

≤ P

(

‖
N
∑

t=1

ζ̄t − E[ζ̄t]‖∞ ≥ Nη̃1

)

.(40)

Next note that the random variables ξ̃t(i) = ζ̄t(i)− E[ζ̄t(i)] satisfy

E[ξ̃t(i)] = 0, E[ξ̃t(i)
2
] ≤ σ2 and |ξ̃t(i)| ≤ 2A.

Since for every i = 1, . . . , n, the variables (ξ̃t(i))1≤t≤N are independent, using Bernstein inequality

we obtain

P

(

‖
N
∑

t=1

ξ̃t‖∞ ≥ Nη̃1

)

≤ 2n exp

(

−1

2

Nη̃21

σ2 + 2
3Aη̃1

)

=
2

Nλ
.(41)

It then suffices to plug (41) into (40) and (40) and (39) into (38) to achieve the proof of (35). We

now prove (36). We have

‖Q̂b
N −Q‖∞ = ‖svec(Q̂b

N )− svec(Q)‖∞ = ‖ 1

N

N
∑

t=1

ξt‖∞

where ξt ∈ R
n(n+1)

2 is defined by

(42) ξt(j+
k(2n− k + 1)

2
) = ζt(k+1) ζt(j+ k)−Q(k+1, j+ k), 0 ≤ k ≤ n− 1, 1 ≤ j ≤ n− k.

For every i = 1, . . . , n(n+1)
2 , the variables (ξt(i))1≤t≤N are independent and for k = 1, . . . , E[p2 ]

E[‖ξt‖k∞] ≤ E[
(

‖ζt‖2∞ + σ2
)k
] ≤

k
∑

i=0

Ci
k σ

2iσ2(k−i) = (2σ2)
k
.

It then suffices to follow the proof of (35) to prove (36). Finally, to show (37), we note that

P(‖Q̂N −Q‖∞ ≥ η2) ≤ P(‖ρ̂N − ρ‖∞ ≥ η1) + P(‖Q̂b
N −Q‖∞ ≥ η′2).(43)

�

Remark 6.2. The condition 3N ≥ 10(lnn(n+1)+λ lnN) in the above lemma can be suppressed

but it would lead to more complicated right-hand sides.

To proceed further, we need to recall the following lemma from Guigues (2008):
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Lemma 6.3. Guigues (2008) Let Xt, t = 1, . . . , N, be N independent observations of a zero mean

random vector in R
n with n ≥ 2. If in addition we have E[‖Xt‖2∞] ≤ σ2 for every t, then

(44) E[‖ 1

N

N
∑

t=1

Xt‖2∞] ≤ 8σ2

ln 2

lnn

N
.

Proof of Theorems 3.1 and 3.2. We first prove Theorem 3.1. Using Lemmas 6.1 and 6.3, we have,

for every nonempty interval I, and for every λ > 0 such that 10(lnn + λ ln |I|) ≤ 3|I| and

p > 2(1 + λ):

P

(

‖ρ̂I − ρ̄I‖∞ ≥ f1(|I|, λ) := 2

√

10

3
σ

√

lnn+ λ ln |I|
|I|

)

≤ K1(λ)

|I|λ ,(45)

E[‖ρ̂I − E[ρ̂I ]‖2∞] ≤ 8σ2

ln 2

(

lnn

|I|

)

,(46)

where ρ̄I = 1
|I|
∑

k∈I

ρk. Moreover, we have

(47) ‖Q̂I − Q̄I‖∞ ≤ ‖ρ̂I − ρ̄I‖2∞ + ‖Q̃b
I − Q̄I‖∞

with Q̃b
I = 1

|I|
∑

t∈I

(rt− ρ̄I)(rt− ρ̄I)
⊤ and Q̄I = 1

|I|
∑

k∈I

Qk. We can write ‖Q̃b
I−Q̄I‖∞ as ‖ 1

|I|
∑

t∈I

ξt‖∞

with ξt = (rt − ρ̄I)(rt − ρ̄I)
⊤ − Qt. Observing that for k = 1, . . . , E[p2 ], E[‖ξt‖k∞] ≤ σ′′k with

σ′′ = σ2+(σ+2σ′)2, we can, setting A = σ′′
√

3|I|
10(lnn(n+1)+λ ln |I|) , follow the proof of (35) to show

that if 10(lnn(n+ 1) + λ ln |I|) ≤ 3|I| and E[p2 ] > 2(1 + λ)

(48) P

(

‖Q̃b
I − Q̄I‖∞ ≥ 2

√

10

3
σ′′

√

lnn(n+ 1) + λ ln |I|
|I|

)

≤ K2(λ)

|I|λ

with K2(λ) = 1 +
(

10E[ p2 ](2γ+λ)

3 e(E[ p2 ]−2−2λ)

)

E[
p
2
]

2

. Using (45), (47) and (48), it follows that if 10(lnn(n +

1) + λ ln |I|) ≤ 3|I| and E[p2 ] > 2(1 + λ) we have

(49)

P

(

‖Q̂I − Q̄I‖∞ ≥ f2(|I|, λ) := 2

√

10

3
(2σ2 + σ′′)

√

lnn(n+ 1) + λ ln |I|
|I|

)

≤ K1(λ) +K2(λ)

|I|λ .

Finally

E[‖Q̂I − E[Q̂I ]‖∞] ≤ 2E[‖Q̂I − Q̃b
I‖∞] + E[‖Q̃b

I − E[Q̃b
I ]‖∞],

≤ 2E[‖ρ̂I − ρ̄I‖2∞] + E[‖ 1

|I|
∑

t∈I

ξ̃t‖∞],(50)

setting ξ̃t = (rt−ρ̄I)(rt−ρ̄I)
⊤−E[(rt−ρ̄I)(rt−ρ̄I)

⊤]. Since E[‖ξ̃t‖2∞] ≤ σ′′′2 with σ′′′ = 2(σ+2σ′)2,

following the proof of Lemma 6.3 (in Guigues (2008)), we show that

(51) E[‖Q̃b
I − E[Q̃b

I ]‖∞] ≤ 4σ′′′
√
ln 2

√

lnn

|I| .

Using (46), (50), and (51) we get

(52) E[‖Q̂I − E[Q̂I ]‖∞] ≤ (
16σ2

ln 2
+

4σ′′′
√
ln 2

)

√

lnn

|I| .



NONPARAMETRIC MULTIVARIATE BREAKPOINT DETECTION FOR THE MEANS AND COVARIANCES 25

We now show (5). First note that

(53) ‖ρ̂I − ρ̂J‖∞ ≤ ‖ρ̂I − ρ̄I‖∞ + ‖ρ̄I − ρN+1‖∞ + ‖ρ̄J − ρN+1‖∞ + ‖ρ̂J − ρ̄J‖∞.

Also ‖ρ̄I − ρN+1‖∞ ≤ ∆ρ
I , ‖ρ̄J − ρN+1‖∞ ≤ ∆ρ

J and since I is an ILTH and J ∈ I(I), using (46),

we have

(54) ‖ρ̄I − ρN+1‖∞ ≤ 2

√

2

ln 2
Dσ

√

lnn

|I| , ‖ρ̄J − ρN+1‖∞ ≤ 2

√

2

ln 2
Dσ

√

lnn

|J | .

We end the proof of (5) plugging (54) into (53) and using (45). Inequality (6) can be shown in

the same way using (49) and (52). This achieves the proof of Theorem 3.1.

Theorem 3.2 is then shown following the proof of Theorem 3.6 in Guigues (2008). Let us show

for instance (9)((10) can be shown in the same way). We show that the event

‖ρ̂
Îρ

− ρN+1‖∞ > 3f1(|Iρ|, λ) + 4

√

2

ln 2
Dσ

√

lnn

|Iρ|
+∆ρ

Iρ

implies the event
⋃

I∈I|I⊆Iρ

⋃

J∈I+(I)

{‖ρ̂J − ρ̄J‖∞ > f1(|J |, λ)} ,

which will prove (9). Let us suppose that for all I in I such that I ⊆ Iρ and for J ∈ I+(I), ‖ρ̂J −
ρ̄J‖∞ ≤ f1(|J |, λ). We intend to prove that ‖ρ̂

Îρ
−ρN+1‖∞ ≤ 3f1(|Iρ|, λ)+4

√

2
ln 2Dσ

√

lnn
|Iρ| +∆ρ

Iρ
.

First, note that Iρ is not rejected. Indeed, for all I ∈ I such that I ⊆ Iρ and for all J ∈ I(I):

‖ρ̂I − ρ̂J‖∞ ≤ ‖ρ̂I − ρ̄I‖∞ + ‖ρ̄I − ρN+1‖∞ + ‖ρN+1 − ρ̄J‖∞ + ‖ρ̄J − ρ̂J‖∞
≤ f1(|I|, λ) + f1(|J |, λ) + ∆ρ

I +∆ρ
J .

Now due to the definition of Iρ, ∆
ρ
I ≤ DV

ρ
I , ∆

ρ
J ≤ DV

ρ
J and using (46) gives

‖ρ̂I − ρ̂J‖∞ ≤ f1(|I|, λ) + f1(|J |, λ) + 2

√

2

ln 2
Dσ

(
√

lnn

|I| +

√

lnn

|J |

)

.

Remember that I is accepted as an ILTH if (7) holds. It follows that for all I ∈ I such that

I ⊆ Iρ, I is accepted and Iρ is accepted so Iρ ⊆ Îρ. This implies

‖ρ̂Iρ − ρ̂
Îρ
‖∞ ≤ f1(|Iρ|, λ) + f1(|Îρ|, λ) + 2

√

2

ln 2
Dσ

(√

lnn

|Iρ|
+

√

lnn

|Îρ|

)

≤ 2f1(|Iρ|, λ) + 4

√

2

ln 2
Dσ

√

lnn

|Iρ|
,

since f1(|I|, λ) is a decreasing function of |I|. Next

‖ρ̂
Îρ

− ρN+1‖∞ ≤ ‖ρ̂
Îρ

− ρ̂Iρ‖∞ + ‖ρ̂Iρ − ρ̄Iρ‖∞ + ‖ρ̄Iρ − ρN+1‖∞

≤ 3f1(|Iρ|, λ) + 4

√

2

ln 2
Dσ

√

lnn

|Iρ|
+∆ρ

Iρ
.

�

Proof of Theorem 3.3. Using the notation introduced in Section 3, we want to bound from above

p = P

(

∃ J ∈ I(I) | {‖ρ̂J − ρ̂I‖∞ > γρ(|I|, |J |, λ)}
⋃

{

‖Q̂J − Q̂I‖∞ > γQ(|I|, |J |, µ)
})

.
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We have

p ≤
∑

J∈I(I)
P(‖ρ̂J − ρ̂I‖∞ > γρ(|I|, |J |, λ)) + P(‖Q̂J − Q̂I‖∞ > γQ(|I|, |J |, µ)),

≤
∑

J∈I(I)
K1(λ)

(

1

|I|λ +
1

|J |λ
)

+ (K1(µ) +K2(µ))

(

1

|I|µ +
1

|J |µ
)

, (from Theorem 3.1),

≤ 2 Card(I(I))
m

min(λ,µ)
0

(K1(λ) +K1(µ) +K2(µ)) .

�

Proof of Theorem 3.4. If interval I is accepted as an ILTH, we can consider the means, variances

and covariances are close on J = {Tbp −m, . . . , Tbp − 1} and I. Thus, the probability p that I is

accepted is bounded from above by P (‖ρ̂J − ρ̂I‖∞ ≤ γρ(|I|, |J |, λ)) . Besides,

(55) ‖ρ̂J − ρ̂I‖∞ ≥ ‖ρ̄I − ρ̄J‖∞ − ‖ρ̂J − ρ̄J + ρ̄I − ρ̂I‖∞.

Since ‖ρ̄I − ρ̄J‖∞ = m′

m+m′ ‖ρ2 − ρ1‖∞, using (55) and (12) yields

p ≤ P(‖ρ̂J − ρ̄J + ρ̄I − ρ̂I‖∞ ≥ f1(|J |, λ) + f1(|I|, λ)),
≤ P(‖ρ̂J − ρ̄J‖∞ ≥ f1(|J |, λ)) + P(‖ρ̂I − ρ̄I‖∞ ≥ f1(|I|, λ))

≤ K1(λ)

(

1

mλ
+

1

(m+m′)λ

)

(using (45)).

�

Proof of Theorems 3.7 and 3.8. In Guigues (2008), expressions of γρ(|I|, |J |, λ) and γQ(|I|, |J |, λ)
are given such that if we use the modified version of the adaptive algorithm introduced in Section

3.3, an interval I ∈ I is accepted as an ILTH if for every J ∈ I(I) : ‖ρ̂I− ρ̂J‖∞ ≤ γρ(|I|, |J |, λ) and
‖Q̂I − Q̂J‖∞ ≤ γQ(|I|, |J |, λ), where λ > 0 is now the only parameter of the adaptive algorithm.

It is also shown in Guigues (2008) that if I is an ILTH and J ∈ I(I)

P (‖ρ̂I − ρ̂J‖∞ > γρ(|I|, |J |, λ)) ≤ 1
|I|λ + 1

|J|λ ,

P

(

‖Q̂I − Q̂J‖∞ > γQ(|I|, |J |, λ)
)

≤ 2( 1
|I|λ + 1

|J|λ ).

Theorem 3.7 is then shown following the proof of Theorem 3.3. Further, if lnn(n+1)+λ lnm0 ≤
m0, then we can implement the adaptive algorithm choosing

γρ(|I|, |J |, λ) = 4

√

2

ln 2
Dσ

(
√

lnn

|I| +

√

lnn

|J |

)

+ (
7

3
+
√
2)σ (f(|I|, λ) + f(|J |, λ)) ,

γQ(|I|, |J |, λ) = (kQD + k′Q)σ
2(f(|I|, λ) + f(|J |, λ)),

where f(|I|, λ) =
√

lnn(n+1)+λ ln |I|
|I| , kQ = 2+ 64

ln 2 +
16√
ln 2

(2+
√
2), and k′Q = 160

9 + 26
3

√
2+8

√

2
ln 2D

(see Guigues (2008)). In this case (if lnn(n+1)+λ lnm0 ≤ m0) then for every nonempty interval

I, we have

P (‖ρ̂I − ρ̄I‖∞ > f ′
1(|I|, λ)) ≤

1

|I|λ ,(56)

P

(

‖Q̂I − Q̄I‖∞ > f ′
2(|I|, λ)

)

≤ 2

|I|λ ,(57)
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with f ′
1(|I|, λ) = (73 +

√
2)σf(|I|, λ) and f ′

2(|I|, λ) = k′Qσ
2f(|I|, λ). Now let us show Theorem 3.8.

The probability p that I is accepted is bounded from above by

P

(

‖ρ̂J − ρ̂I‖∞ ≤ γρ(|I|, |J |, λ)
⋂

‖Q̂J − Q̂I‖∞ ≤ γQ(|I|, |J |, λ)
)

which is bounded above by the sum of the probabilities. Besides,

(58)
‖ρ̂J − ρ̂I‖∞ ≥ ‖ρ̄I − ρ̄J‖∞ − ‖ρ̂J − ρ̄J + ρ̄I − ρ̂I‖∞,

‖Q̂J − Q̂I‖∞ ≥ ‖Q̄I − Q̄J‖∞ − ‖Q̂J − Q̄J + Q̄I − Q̂I‖∞.

Next, we have ‖ρ̄I − ρ̄J‖∞ = m′

m+m′ ‖ρ2 − ρ1‖∞ and ‖Q̄I − Q̄J‖∞ = m′

m+m′ ‖Q2 − Q1‖∞. Finally,

using (58) and (12) yields

p ≤ P(‖ρ̂J − ρ̄J + ρ̄I − ρ̂I‖∞ ≥ f ′
1(|J |, λ) + f ′

1(|I|, λ))
+P(‖Q̂J − Q̄J + Q̄I − Q̂I‖∞ ≥ f ′

2(|J |, λ) + f ′
2(|I|, λ)),

≤ P(‖ρ̂J − ρ̄J‖∞ ≥ f ′
1(|J |, λ)) + P(‖ρ̂I − ρ̄I‖∞ ≥ f ′

1(|I|, λ))
+ P(‖Q̂J − Q̄J‖∞ ≥ f ′

2(|J |, λ)) + P(‖Q̂I − Q̄I‖∞ ≥ f ′
2(|I|, λ)),

≤ 3

(

1

mλ
+

1

(m+m′)λ

)

.

�

Proof of Theorem 4.1. Let ρ̄tℓ(h) = 1
h

∑t

k=t−h+1 ρk and ρ̄tr(h) =
1
h

∑t+h−1
k=t ρk. We consider four

cases.

• If h ≤ t ≤ Tbp − h, ρ̄tℓ(h) = ρ̄tr(h) = m1 and

P(‖ρtℓ(h)− ρ
t

r(h)‖∞ > 2f1(h, λ)) ≤ P(‖ρtℓ(h)− ρ̄
t

ℓ(h)‖∞ + ‖ρtr(h) − ρ̄
t

r(h)‖∞ > 2f1(h, λ))

≤ P(‖ρtℓ(h)− ρ̄
t

ℓ(h)‖∞ > f1(h, λ))

+P(‖ρtr(h)− ρ̄
t

r(h)‖∞ > f1(h, λ))

≤
2K1(λ)

hλ
, using (45).

Thus, there is a set St ⊂ Ω of probability at least 1 − 2K1(λ)
hλ such that for ω ∈ St,

‖ρtℓ(h)− ρtr(h)‖∞ ≤ 2f1(h, λ).

• Similarly, for Tbp + h − 1 ≤ t ≤ N − h + 1 there is a set St ⊂ Ω of probability at least

1− 2K1(λ)
hλ such that for ω ∈ St, ‖ρtℓ(h)− ρtr(h)‖∞ ≤ 2f1(h, λ).

• For Tbp ≤ t ≤ Tbp + h− 2, we have

ρ̄tr(h) = m2 and ρ̄tℓ(h) =
(t− Tbp + 1)m2 + (h− t+ Tbp − 1)m1

h
.

Note that

‖ρtℓ(h)− ρtr(h)‖∞ ≥ −‖ρtℓ(h)− ρ̄tℓ(h)− ρtr(h) + ρ̄tr(h)‖∞ +

(

h− t+ Tbp − 1

h

)

‖m2 −m1‖∞,

and that P(‖ρtℓ(h) − ρ̄tℓ(h)− ρtr(h) + ρ̄tr(h)‖∞ > 2f1(h, λ)) ≤ 2K1(λ)
hλ . Thus, there is a set

St ⊂ Ω of probability at least 1− 2K1(λ)
hλ such that for ω ∈ St,

‖ρtℓ(h)− ρtr(h)‖∞ ≥ −2f1(h, λ) +

(

h− t+ Tbp − 1

h

)

‖m2 −m1‖∞.
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• Similarly, for Tbp − h + 1 ≤ t ≤ Tbp − 1, we can find a set St ⊂ Ω of probability at least

1− 2K1(λ)
hλ such that for ω ∈ St,

‖ρtℓ(h)− ρtr(h)‖∞ ≥ −2f1(h, λ) +

(

h+ t− Tbp

h

)

‖m2 −m1‖∞.

Thus, if ω ∈ STbp−1 and ‖m2 −m1‖∞ > 4h
h−1f1(h, λ) then ‖ρTbp−1

ℓ (h) − ρ
Tbp−1
r (h)‖∞ > 2f1(h, λ).

Finally, if ω ∈
(

⋂Tbp−h

t=h St

)

⋂

(

⋂N−h+1
t=Tbp+h−1 St

)

⋂

STbp−1 then Tbp(h) ∈ {Tbp − h + 1, . . . , Tbp +

h− 2}. We thus get

P(Tbp(h) ∈ {Tbp − h+ 1, Tbp + h− 2}) ≥ P



ω ∈





Tbp−h
⋂

t=h

St





⋂





N−h+1
⋂

t=Tbp+h−1

St





⋂

STbp−1





≥ 1− 2K1(λ)(N − 4h+ 5)

hλ
.

�

Proof of Theorem 4.2. Following the proof of Theorem 4.1, we can find sets St such that P(ω ∈
St) ≥ 1− 2K1(λ)

hλ and

• If h ≤ t ≤ Tbp − h or Tbp + h− 1 ≤ t ≤ N − h + 1 and ω ∈ St, then ‖ρtℓ(h)− ρtr(h)‖∞ ≤
2f1(h, λ).

• If Tbp+1 ≤ t ≤ Tbp+h−2 or Tbp−h+1 ≤ t ≤ Tbp−2 and ω ∈ St, then ‖ρtℓ(h)−ρtr(h)‖∞ ≤
2f1(h, λ) +

h−2
h

‖m2 −m1‖∞.

• If (t = Tbp − 1 or t = Tbp) and ω ∈ St,

‖ρtℓ(h)− ρtr(h)‖∞ ≥ −2f1(h, λ) +
h− 1

h
‖m2 −m1‖∞ > 2f1(h, λ) +

h− 2

h
‖m2 −m1‖∞.

Thus, if ω ∈ ⋂N−h+1
t=h St and ‖m2 −m1‖∞ > 4hf1(h, λ) then Tbp(h) ∈ {Tbp − 1} ∪ {Tbp}. �

Proof of Theorems 4.3 and 4.4. If Assumption (A2) holds, it is shown in Guigues (2008) that for

any nonempty interval I then P(‖ρ̂I − ρ̄I‖∞ > f ′
1(|I|, λ)) ≤ 1

|I|λ , where f ′
1(|I|, λ) is given in (28).

It then suffices to follow the proof of Theorem 4.1 to show Theorem 4.3 and to follow the proof of

Theorem 4.2 to show Theorem 4.4. �

Proof of Theorems 4.5, 4.6, and 4.7. Theorems 4.5 and 4.6 are shown using (49) and following

respectively the proofs of Theorems 4.1 and 4.2. Finally, we show Theorem 4.7 using (57) and

following the proofs of Theorems 4.1 and 4.2. �
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de Botafogo, Rio de Janeiro, Brazil, Department of Statistics, LJK, BP 53, 38 041 Grenoble Cedex 9,

France, vincent.guigues@imag.fr


