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Abstract. We consider an interstage dependent stochastic process whose components follow an
autoregressive model with time varying order. At a given time, we give some recursive formulæ
linking future values of the process with past values and noises. We then consider multistage
stochastic linear programs with uncertain sets depending affinely on such processes. At each
stage, dealing with uncertainty using probabilistic constraints, the recursive relations can be
used to obtain explicit expressions for the feasible set.

Keywords: Stochastic processes, Generalized autoregressive models, Risk-averse optimization.

AMS subject classifications: 90C15, 91B30.

1. Introduction

In many real-life problems, the dynamics of uncertainty is modelled as a time series, reflecting
the fact that observations close together in time will be more closely related than observations
further apart. For instance, such is the case in mathematical finance for closing values of some
stock market index. If, in addition, observations relate to geographical locations, uncertainty also
exhibits some kind of spatial dependence. This situation arises when modelling the annual flow
volume of different rivers in a given hydrological basin. Autoregressive processes with Gaussian
noises are popular models to forecast uncertainty that is time and spatial dependent. Essentially,
these models correspond to a multivariate discrete time stochastic process depending in an affine
manner on previous values, and with nondiagonal covariance matrices. When controlling the
evolution of a system with dynamics depending on this type of uncertainty, it is often desirable to
limit the effects of bad outcomes, by means of some risk measure. Because of the time dependence,
statistical moments (used to control risk) need to be conditioned to the past history of realizations.
For this reason, it is crucial to have expressions relating future values with past ones, by means
of a recursive application of the autoregressive model.

In this work, which is a companion paper of [1], we give explicit or recursive expressions for
expressing uncertainty at a given time t+i as a function of information available at time t. We then
recall from [1] how these expressions can be used to make tractable a multistage stochastic program
with random variables that are stagewise dependent, by means of a rolling-horizon implementation.

Our paper is organized as follows. The multistage stochastic program constraints are detailed
in Section 2. In Section 3, we provide algorithms to decompose future values of the underlying
stochastic process as a function of past realizations and noises. Finally, in Section 4, we explain
how to use these results to build risk-averse policies using a rolling-horizon approach.

We adopt the following notation and conventions. For t2 ≥ t1, the short form v(t1,t2] (resp.,
v[t1,t2]) stands for the concatenation (vt1+1, . . . , vt2) (resp., (vt1 , . . . , vt2)), with v(t,t] vacuous and
knowing that the concatenated objects vj can be vectors or matrices, depending on the context.

For sums and products,
∑i1

i=i0
xi = 0 and

∏i1
i=i0

xi = 1 whenever i0 > i1, knowing that for

matrices Xi, if i0 > i1 then
∏i1

i=i0
Xi = I, the identity matrix. For a random variable ξ, ξ̃ denotes

a particular realization, whereas E(ξ) and σ(ξ) are the expected value and the standard deviation,

respectively. Conditional expectations and probabilities are denoted by E(ξ1|ξ̃2) := E(ξ1|ξ2 = ξ̃2)

and P(ξ1 ∈ A|ξ̃2) := P(ξ1 ∈ A|ξ2 = ξ̃2). The cumulative distribution function of the Gaussian
random variable with mean 0 and standard deviation one is denoted by F (·). For process ξ, Ft
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is the sigma-algebra Ft := σ(ξj , j ≤ t) and Ω is a sample space equipped with sigma algebras
F1 ⊂ F2 ⊂ . . . ⊂ FT where T is given. Finally, for a continuous random variable X for which
higher values are preferred, the Conditional Value-at-Risk of level εp ∈ (0, 1) of X is defined by

CV aRεp(X) = −E[X |X ≤ F−1
X (εp)] while the Value-at-Risk of level εp of X is V aRεp(X) =

−F−1
X (εp).

2. Motivation and general setting

Suppose we want to control over T stages the evolution of a dynamic system with state vari-
able xt and transition equation depending affinely on an interstage dependent stochastic process.
Specifically, consider that

– uncertainty ξt is anM -dimensional random process. Each process component ξt(m) follows
a generalized autoregressive model with time varying order (each value of the process is
an affine function of previous values plus a Gaussian noise); see Section 3 below. The

realization ξ̃t becomes known at the beginning of time step t;
– for some p ≥ 2, xt ∈ Lp(Ω,Ft,P;ℜ

Nx) is the state of the system at the end of time step t

given a known x0, with dynamics given by (1); and
– ut ∈ Lp(Ω,Ft,P;ℜ

Nu) is the control variable, applied to the system at time step t.

Then, given a vector dt ∈ ℜNx , and matrices At, Bt, Ct, of respective orders Nx ×Nx, Nx ×Nu,
Nx ×M , the state transition equation has the form

(1) xt = At−1xt−1 +Btut + Ctξt + dt .

The feasible controls satisfy the scalar inequality

(2) Etxt + F̊tut ≥ Gtξt + ht ,

where ht ∈ ℜ, and the matrices Et, F̊t, and Gt have orders 1×Nx, 1×Nu, and 1×M , respectively.
An example of a dynamic system governed by relation (1) is given by a reservoir endowed with

a power plant. In this case, the state of the system is the volume of the reservoir while uncertainty
corresponds to the incoming streamflow. Controls are the spilled and turbined water used to
generate power to satisfy the demand of electricity, represented by ht in (2). For this application,
some constraints involve only the state xt or only the control ut. In this case, when certain rows in
Et are nonzero, the corresponding rows in F̊t are null, and reciprocally. To ease the presentation,
we consider here only one scalar relation (2), knowing that the approach can be generalized to
vectorial constraints, as in [1].

In order to handle uncertainty with some degree of risk aversion, at time step t some future
constraints can be required to be satisfied in a probabilistic manner. For example, for some future
time τ ∈ {t+ 1, . . . , T }, one could impose satisfaction of (2), written with t replaced by τ , with a
sufficiently high probability, say 1− εp:

(3) P

(

Eτxτ (xt, u(t:τ ], ξ(t:τ ]) + F̊τuτ ≥ Gτ ξτ + hτ

)

≥ 1− εp ,

noting that controls are considered as variables of “here-and-now” type.
In the above constraint in variables xt, u(t:τ ], the term xτ (xt, u(t:τ ], ξ(t:τ ]) represents the ex-

pression of xτ as a function of variables xt, u(t:τ ], and of random vectors ξ(t:τ ]. This expression
is obtained by applying recursively transition equation (1), between time steps t + 1 and τ , as
explained below.

For the hydro-reservoir example, control constraints such as ut ≥ 0, stating that the turbined
outflow cannot be negative, need to be satisfied almost surely. By contrast, some operational
lower bounds on the state, called “min-zone” and having the form xt ≥ xmin

t for some parameter
xmin
t ≥ 0, need to be satisfied with high probability only. In general, if in (2) there is more than

one random constraint, we set individual chance constraints for each one of them (for joint chance
constraints we refer to [6]).

Since the chance constraint is set at time step t, it is natural to condition it to all the information
available at time t. That is, not only the history of realizations ξ̃1, . . . , ξ̃t is known, but also the
fact that the state variable evolves according to (1) until time τ .
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The amount of available information is made explicit by writing each future state xτ as a
function of

- the current state xt, and
- future controls and random vectors, from time step t + 1 to time step τ , denoted by
u(t,τ ] := (ut+1, . . . , uτ ) and ξ(t,τ ] := (ξt+1, . . . , ξτ ), respectively.

This is done by applying recursively (1), yielding the affine relation xτ = xτ (xt, u(t,τ ], ξ(t,τ ])
appearing in the probabilistic constraint above. In turn, this affine expression for xτ is used to
define the Gaussian random variable X = X(xt, u(t,τ ], ξ(t,τ ]), appearing in the chance constraint:

(4) X := Eτxτ + F̊τuτ −Gτξτ .

Therefore, since X is a Gaussian random variable, we obtain (see for instance [4])

(5) P

(

X ≥ hτ

∣

∣

∣ξ̃[t]

)

≥ 1− εp ⇐⇒ E[X |ξ̃[t]] ≥ hτ + F−1(1 − εp)σ(X |ξ̃[t]) ,

and the chance constraint can be rewritten in terms of the conditional mean and standard deviation
of the random variable X .

In [1, Sec. 4] it is shown that the conditional random variable X |ξ̃[t] is an affine function of
the relevant future uncertainty, ξ(t,τ ]. It is also shown that the parameters in the combination
depend affinely on (xt, u(t,τ ]). So in (4) the dependence of X on (xt, u(t,τ ], ξ(t,τ ]) is also affine. In a
manner similar, both the conditional mean and standard deviation ofX involve affine combinations
of the expectations of random variables E[ξt+j |ξ̃[t]], for j = 1, . . . , τ − t. As a result, an explicit

reformulation of chance constraint (5) depends on the ability to express random variables ξt+j |ξ̃[t]
as a function of ξ̃[t] and future noises, for j = 1, . . . , τ − t.

The next section shows how such calculations can be done in an explicit or recursive manner,
depending on the parameters defining the autoregressive process.

3. Recursive relations for the statistical model

We consider a multivariate discrete time stochastic process depending in an affine manner on
previous values. More precisely, for m = 1, . . . ,M, each component ξt(m) is represented by a
generalized autoregressive model, with varying orders pt(m) ≥ 0. Accordingly, for every integer t,

there exist coefficients Φi
t(m) for i = 1, . . . , pt(m), with non-null Φ

pt(m)
t (m), such that

(6) ξt(m) =

pt(m)
∑

i=1

Φi
t(m)ξt−i(m) + ηt(m).

We use the terminology generalized autoregressive, instead of autoregressive, to emphasize the fact
that orders pt(m) depend on time and could be null. Indeed, autoregressive processes (see [3] for
instance) correspond to the particular case of a nonzero order, constant in time.

In the expression above, noises (η1, . . . , ηT ), are independent Gaussian vectors with each com-
ponent having a mean µt := E[ηt] and an M ×M covariance matrix Γt := Cov(ηt).

Let t = 1, . . . , T − 1 and j = 1, . . . , T − t. In order to express a given value of the process, say
ξt+j(m), as a function of its past history, it is convenient to introduce integers

(7) pmax
t,j (m) = max

1≤k≤j
{pt+k(m)− k},

as well as the corresponding past history of the process:

(8) ξ̃[t] =
{

ξ̃t−i(m), m = 1, . . . ,M, i = 0, . . . ,max(pmax
t,T−t(m), t− 1)

}

.

The index pmax
t,j (m) specifies the minimal amount of past information needed at time step t to

express ξt+j(m) as a function of ξ̃[t], for a process ξt modelled by (6).

Recursive expressions for ξt+j as a function of ξ̃[t] can be derived from the model data in
(6), using two alternative algorithms described in the next lemmas. In these developments, a
component m is fixed and ξt(m) is denoted by ξt to alleviate notation (the dependence with
respect to the m-component is suppressed).
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Lemma 3.1. [First recursive formula] Consider a process ξt modeled by (6). Then, for t =
1, . . . , T − 1, and j = 1, . . . , T − t, the relation

(9) ξt+j =

pmax
t,j
∑

ℓ=0

αℓ
t,jξt−ℓ +

j
∑

ℓ=1

βℓ
t+j ηt+j−ℓ+1

holds. The coefficients in this expression can be computed with the following algorithm:
For t = 1, . . . , T − 1,

For m = 1, . . . ,M,

αℓ
t,1 = Φℓ+1

t+1 , ℓ = 0, . . . , pmax
t,1 ; β1

t+1 = 1;
For j = 2, . . . , t,

β
j
t+1 = α0

t+2−j,j−1;
For ℓ = 0, . . . ,min(pmax

t+2−j,j−1, pt+2−j)− 1,

αℓ
t+1−j,j = αℓ+1

t+2−j,j−1 + α0
t+2−j,j−1Φ

ℓ+1
t+2−j ,

End For

For ℓ = pt+2−j , . . . , p
max
t+2−j,j−1 − 1,

αℓ
t+1−j,j = αℓ+1

t+2−j,j−1,

End For

For ℓ = pmax
t+2−j,j−1, . . . , pt+2−j − 1,

αℓ
t+1−j,j = α0

t+2−j,j−1Φ
ℓ+1
t+2−j ,

End For

End For

End For

End For

Proof. Take fixed t ∈ {1, . . . , T −1}. In these recursive formulæ, calculations are done in a manner
that ξt+1 can progressively be written as a function of ξ[t], of ξ[t−1], . . . , ξ[t−j−1] and, finally, of ξ[1].
To prove the statement, we check the validity of coefficient expressions for all possible values of j.

For j = 0, (6) gives the following relation between ξt+1 and ξ[t]: ξt+1 =
∑pt+1−1

ℓ=0 Φℓ+1
t+1ξt−ℓ + ηt+1.

Since, by (7), the identity pt+1 − 1 = pmax
t,1 holds, the initial values αℓ

t,1 = Φℓ+1
t+1 for ℓ = 0, . . . , pmax

t,1

and β1
t+1 = 1 coincide with those starting the recursion.

Now suppose that the expression for ξt+1 as a function of ξ[t+2−j] for some j ∈ {2, . . . , t} is

available. That is to say, there are known coefficients αℓ
t+2−j,j−1, ℓ = 0, . . . , pmax

t+2−j,j−1 and

βℓ
t+1, ℓ = 1, . . . , j − 1, satisfying the identity

(10) ξt+1 =

pmax
t+2−j,j−1
∑

ℓ=0

αℓ
t+2−j,j−1 ξt+2−j−ℓ +

j−1
∑

ℓ=1

βℓ
t+1 ηt+2−ℓ.

We want to express ξt+1 as a function of ξ[t+1−j]. We start by replacing ξt+2−j in (10) with

its corresponding expression from (6):
∑pt+2−j−1

ℓ=0 Φℓ+1
t+2−jξt+1−j−ℓ + ηt+2−j . Then, we consider

separately the right-hand side terms with ξ and η and write ξt+1 = ξat+1 + ξbt+1, for

ξat+1 :=

pmax
t+2−j,j−1−1
∑

ℓ=0

αℓ+1
t+2−j,j−1 ξt+1−j−ℓ +

pt+2−j−1
∑

ℓ=0

α0
t+2−j,j−1 Φ

ℓ+1
t+2−jξt+1−j−ℓ,

ξbt+1 :=

j−1
∑

ℓ=1

βℓ
t+1 ηt+2−ℓ + α0

t+2−j,j−1ηt+2−j .

The desired formulæ for computing βj
t+1 and αℓ

t+1−j,j for ℓ = 0, . . . , pmax
t+1−j,j follow from identifying

the terms above with the corresponding ones in (9). �
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The affine relation in (9) can be expressed in a matrix-vector form, thus simplifying the proof
of Lemma 3.1. However, in this case the involved matrices and vectors would have many null
elements carrying no information at all. This is an important matter for practitioners, since from
an implementation point of view, the matrix formulation considerably increases the computational
bulk, especially regarding use of memory. This is the reason why we chose the more involved form
(9), which is the most economical one because it uses the minimal amount of past information,
via the integers pmax

t,j from (7). The explicit knowledge of coefficients α and β in (9) can be

plugged in the formulas for E[X |ξ̃[t]] and σ(X |ξ̃[t]) given in Lemmas 4.1 and 4.2 of [1]. The chance
constraint (5) can then be rewritten as a deterministic linear constraint. At step t, the algorithm
in Lemma 3.1 computes coefficients αℓ

t,1(m), αℓ
t−1,2(m), . . ., αℓ

1,t(m) as well as coefficients βℓ
t+1(m)

for all possible values of m, ℓ. These coefficients give decompositions of ξt+1 on ξ[t], then on ξ[t−1],
. . ., and finally on ξ[1]. For some calculations, for instance those in Lemma 3.3 or to implement
the rolling-horizon approach from Section 4, it may be preferable instead to compute at once all
the coefficients for each time step. These calculations can be done by the alternative recursive
algorithm below.

Lemma 3.2. [Alternative recursive formula] Consider a process ξt modeled by (6). The coefficients
in (9) can be computed with the following algorithm:
For t = 1, . . . , T − 1,
set the initial conditions β1

t+1 = 1 and αℓ
t,1 = Φℓ+1

t+1 , for ℓ = 0, . . . , pmax
t,1 .

If t ≥ 2, for ℓ = 2, . . . , t,

(11) βℓ
t+1 =

min(ℓ−2,pt+1−1)
∑

k=0

Φk+1
t+1 β

ℓ−k−1
t−k .

End If

If t ≤ T − 2, for j = 1, . . . , T − t− 1,
Let Lt,j = min(pmax

t,j , pt+j+1 − (j + 1)) and let Iℓt,j be the set

Iℓt,j = {k : 0 ≤ k ≤ min(pt+j+1, j)− 1 and ℓ ≤ pmax
t,j−k} .

Let J1(t) ∪ J2(t) ∪ J3(t) be the partition of the set {1, . . . , T − t− 1} given by

J1(t) =
{

j ∈ {1, . . . , T − t− 1} : pt+j+1 ≤ j
}

,

J2(t) =
{

j ∈ {1, . . . , T − t− 1} : j + 1 ≤ pt+j+1 ≤ j + 1 + pmax
t,j

}

, and

J3(t) =
{

j ∈ {1, . . . , T − t− 1} : pt+j+1 > j + 1 + pmax
t,j

}

.

Then for all j ∈ J2(t) ∪ J3(t),

(12) αℓ
t,j+1 = Φj+ℓ+1

t+j+1 +
∑

k∈Iℓ
t,j

Φk+1
t+j+1α

ℓ
t,j−k for ℓ = 0, . . . , Lt,j,

whereas

(13) αℓ
t,j+1 =

∑

k∈Iℓ
t,j

Φk+1
t+j+1α

ℓ
t,j−k if

(j ∈ J1(t) and ℓ = 0, . . . , pmax
t,j+1) or

(j ∈ J2(t) and ℓ = Lt,j + 1, . . . , pmax
t,j+1).

Finally, if j ∈ J3(t) and ℓ = Lt,j + 1, . . . , pmax
t,j+1, then

(14) αℓ
t,j+1 = Φj+ℓ+1

t+j+1 if j ∈ J3(t) and ℓ = Lt,j + 1, . . . , pmax
t,j+1.

End If

End For

Proof. We first check the computation of α-coefficients by fixing t such that t ∈ {1, . . . , T − 1}.
The initial conditions provide coefficients α in the decomposition of ξt+1 on ξ[t]. We claim that
the inner loop on j ∈ {1, . . . , T − t − 1} provides successively the α-values that appear in the
decomposition of ξt+2 on ξ[t], then of ξt+3 on ξ[t], . . ., and finally of ξT on ξ[t]. To prove our claim,
we proceed by induction on j, assuming that for some j ∈ {1, . . . , T − t − 1}, the coefficients α
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in the decompositions of ξt+k on ξ[t] for k = 1, . . . , j, are available. These coefficients are αℓ
t,k for

k = 1, . . . , j, ℓ = 0, . . . , pmax
t,k . To show that at iteration j of the loop in j, the algorithm computes

the coefficients α necessary for writing the decomposition of ξt+j+1 on ξ[t], we first write, using
model (6),

ξt+j+1 =

pt+j+1−1
∑

k=0

Φk+1
t+j+1ξt+j−k + ηt+j+1

=

min(pt+j+1−1,j−1)
∑

k=0

Φk+1
t+j+1ξt+j−k +

pt+j+1−1
∑

k=min(pt+j+1,j)

Φk+1
t+j+1ξt+j−k + ηt+j+1.(15)

Next, observe that for 0 ≤ k ≤ min(pt+j+1−1, j−1) we have t+1 ≤ t+ j−k ≤ t+ j. As a result,
in relation (15), we have, for each ξt+j−k appearing in the first sum, a decomposition of the form
(9). Therefore

ξt+j+1 =

min(pt+j+1−1,j−1)
∑

k=0

Φk+1
t+j+1





pmax
t,j−k
∑

ℓ=0

αℓ
t,j−kξt−ℓ +

j−k
∑

ℓ=1

βℓ
t+j−k ηt+j−k−ℓ+1



(16)

+

pt+j+1−1
∑

k=min(pt+j+1,j)

Φk+1
t+j+1ξt+j−k + ηt+j+1.

Since pmax
t,j+1 = max(pmax

t,j , pt+j+1 − (j + 1)), the sequence (pmax
t,j )j≥1 is non-decreasing and, hence,

max
(

pmax
t,j−k, k = 0, . . . ,min(pt+j+1 − 1, j − 1)

)

= pmax
t,j . It follows that the terms depending on ξ

in the right-hand side of (16) can be written

pmax
t,j
∑

ℓ=0





∑

k∈Iℓ
t,j

Φk+1
t+j+1α

ℓ
t,j−k



 ξt−ℓ +

pt+j+1−j−1
∑

ℓ=min(pt+j+1−j,0)

Φj+ℓ+1
t+j+1ξt−ℓ.(17)

We now consider three cases, depending on whether j belongs to J1(t), J2(t), or J3(t).

a) If j ∈ J1(t), then pmax
t,j+1 = pmax

t,j and the second summation in (17) vanishes. Therefore,
by identifying the above expression with (9), we obtain the first part in (13).

b) If j ∈ J2(t), then the second part in (13) and (12) follow from (17) and the fact that
pmax
t,j+1 = pmax

t,j .

c) If j ∈ J3(t), then (12) and (14) follow from (17) and the fact that pmax
t,j+1 = pt+j+1 − j − 1.

We now check the computation of coefficients β. For fixed t ∈ {1, . . . , T−1}, we show by induction
that the algorithm computes β1

t+1, . . . , β
t
t+1, i.e., the coefficients appearing in the decomposition

of ξt+1 on ξ[1]. For t = 1, due to (6), we have β1
2 = 1, as given by the initial conditions of

the algorithm. For some t ∈ {2, . . . , T − 1}, suppose that the algorithm has correctly computed
β1
2 , β

1
3 , β

2
3 , . . . , β

1
t , . . . , β

t−1
t . To see that the formulæ giving βℓ

t+1 for ℓ = 1, . . . , t hold, first note
that for t ∈ {2, . . . , T − 1}, relation (9) with t and j respectively replaced by 1 and t − 1, gives
that

(18) ξt =

pmax
1,t−1
∑

i=0

αi
1,t−1ξ1−i +

t−1
∑

i=1

βi
tηt−i+1,

where all coefficients β in the expression above have already been computed. Using once again
(6), we see that

(19) ξt+1 =

min(t−2,pt+1−1)
∑

k=0

Φk+1
t+1 ξt−k +

pt+1−1
∑

k=min(t−1,pt+1)

Φk+1
t+1 ξt−k + ηt+1.

The second sum above is an affine combination of terms in ξ[t]. As for the first sum, note that
t− k ≥ 2, because k ∈ {0, . . . ,min(t− 2, pt+1 − 1)}. Therefore, a decomposition of the form (18)
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with t substituted by t− k is available for ξt−k. Plugging this decomposition into (19), the terms
in the right-hand side of (19) that depend on η are

min(t−2,pt+1−1)
∑

k=0

Φk+1
t+1

(

t−k−1
∑

i=1

βi
t−kηt−k−i+1

)

+ ηt+1.

The change of variable ℓ = i + k + 1 then yields the expression

t
∑

ℓ=2





min(ℓ−2,pt+1−1)
∑

k=0

Φk+1
t+1 β

ℓ−k−1
t−k



 ηt−ℓ+2 + ηt+1.

Comparing the terms in η in the above expression with those in (18), written with t replaced by
t + 1, we obtain for βℓ

t+1 the expression given in the algorithm, i.e., (11) for ℓ ∈ {2, . . . , t} and
β1
t+1 = 1 as initial condition. �

Some particular instances yielding explicit expressions for the coefficients are given below with-
out proof.

Lemma 3.3. Consider a stochastic process as in (6). There are closed-form expressions for
coefficients α and β in (9) in the following cases.

(i) If, for every t, the order pt is null, then ξt+j = ηt+j.
(ii) If, for every t, the order pt = 1, then

ξt+j =

(

j
∏

i=1

Φ1
t+i

)

ξt +

j
∑

ℓ=1





j−1
∏

i=j−ℓ+1

Φ1
t+i+1



 ηt+j−ℓ+1 .

(iii) If, for every m, the orders pt = p are constant, then α and β are explicit functions of the
roots of the characteristic polynomial P (X) = Xp −

∑p

k=1 Φ
kXp−k. �

4. Using the autoregressive structure in an optimization setting

We now show how the developments of the previous sections can be used to build risk-averse
policies for multistage stochastic linear programs.

Suppose that at any given time stage t, knowing

- the trajectory ξ̃[t] = (ξ̃1, . . . , ξ̃t), of process ξ up to this stage, and

- the state xt−1(ξ̃[t−1]) of the system at the beginning of this stage,

the system volatility is controlled by requiring that future constraints, that is constraints for
τ = t + 1, . . . , T , are satisfied with certain probability, as in (3). This chance constraint (3)
involves the variable X from (4), that we now write Xt,τ instead of X , to put in evidence the

dependence on both t and τ : Xt,τ := Eτxτ (xt, u(t,τ ], ξ(t,τ ]) + F̊τuτ − Gτ ξτ . With this notation,
and using (5), the probabilistic constraint writes down as

P

(

Xt,τ ≥ hτ

∣

∣

∣ξ̃[t]

)

≥ 1− εp ⇐⇒ E[Xt,τ |ξ̃[t]] ≥ ht
τ

where we defined

(20) ht
τ := hτ + F−1(1− εp)σ(Xt,τ |ξ̃[t]) .

Since controls uτ appearing in chance constraint (3) are of the here-and-now type, in view of the
definition of Xt,τ , its conditional expected value equals

EτxτE[(xt, u(t,τ ], ξ(t,τ ])] + F̊τuτ −GτE[ξτ |ξ̃[t]].

Therefore, using the transition equation (1), we see that we can obtain the identity x̄τ :=
E[(xt, u(t,τ ], ξ(t,τ ])] through the recursion

x̄k = Ak−1x̄k−1 +Bkuk + CkE[ξk|ξ̃[t]] + dk, k = t, t+ 1, . . . , τ, with

x̄t−1 := xt−1(ξ̃[t−1]) known at time step t.
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As a result, controls (ut, ut+1, . . . , uT ) are feasible if and only if there exists a state (x̄t, x̄t+1, . . . , x̄T )
such that







x̄t = At−1xt−1(ξ̃[t−1]) +Btut + Ctξ̃t + dt

Etx̄t + F̊tut ≥ Gtξ̃t + ht,

and for τ = t+ 1, . . . , T, (x̄τ , uτ ) ∈ St
τ (x̄τ−1),

where

St
τ (x̄τ−1) =

{

(x̄τ , uτ ) :
x̄τ = Aτ−1x̄τ−1 +Bτuτ + CτE[ξτ |ξ̃[t]] + dτ

Eτ x̄τ + F̊τuτ ≥ GτE[ξτ |ξ̃[t]] + ht
τ

}

.

The interest of Lemma 3.1 (or Lemma 3.2), lies precisely on the fact that, combined with Lemmas
4.1 and 4.2 in [1], the calculations therein provide an explicit representation for the constraints
above.

If controlling the dynamic system defined by (1)-(2) involves a linear cost of the form c⊤t ut at
time step t, then the corresponding chance-constrained optimization problem has the form

(21)



























min
x̄[t:T ],u[t,T ]

T
∑

τ=t

c⊤τ uτ

x̄t = At−1xt−1(ξ̃[t−1]) +Btut + Ctξ̃t + dt,

Etx̄t + F̊tut ≥ Gtξ̃t + ht,

(x̄τ , uτ ) ∈ St
τ (x̄τ−1), for τ = t+ 1, . . . , T ,

which is a deterministic linear programming problem. As such, (21) can be solved directly if the
number of stages is not too high. By contrast, when T is large, it may be preferable to apply
a decomposition method. Decomposition may be achieved in a stagewise manner, by writing
Dynamic Programming equations for (21), as explained below.

More precisely, because the objective function is separable by time steps, problem (21) is solvable
by Dual Dynamic Programming, by introducing cost-to-go functions Qt

T+1 ≡ 0 and for τ =
t+ 1, . . . , T ,

(22) Qt
τ (x̄τ−1, ξ̃[t]) = min

{

c⊤τ uτ +Qt
τ+1(x̄τ , ξ̃[t]) : (x̄τ , uτ ) ∈ St

τ (x̄τ−1)
}

.

As a result, problem (21) is equivalent to the following linear program:

(23)











min
x̄t,ut

c⊤t ut +Qt
t+1(x̄t, ξ̃[t])

x̄t = At−1xt−1(ξ̃[t−1]) +Btut + Ctξ̃t + dt
Etx̄t + F̊tut ≥ Gtξ̃t + ht.

In this problem, the feasible set depends on the initial state xt−1, while the cost-to-go function
Qt

t+1 depends on both the state of the system at the end of the stage t and the history of realizations
of the process, because ξ is interstage dependent, by (6).

After solving for t = 1, . . . , T all the chance-constrained problems (21), in a rolling-horizon
mode, a risk-averse policy can be built as follows. Having a solution (x̄t

[t:T ], ū
t
[t,T ]) to (21), the con-

trols uRob := (ū1
1, . . . , ū

t
t, . . . , ū

T
T ) , define such risk-averse policy (the remaining optimal controls

ut+1, . . . , uT of problem (21) are not used). This policy is implementable under the assumption
of relatively complete recourse, because, by construction, a solution to the tth chance-constrained
optimization problem (21) satisfies the constraints for time step t. The policy is also time con-
sistent, [5]. Finally, nonanticipativity of the policy results from the fact that in (21) the solution

depends on ξ̃[t], but not on future realizations ξ̃(t,T ].
We refer the reader to [2] for a numerical assessment of a related rolling-horizon risk-averse

policy for a large-scale stochastic linear program, arising in energy optimization.
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