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Abstract. We consider risk-averse formulations of multistage stochastic linear programs. For
these formulations, based on convex combinations of spectral risk measures, risk-averse dynamic
programming equations can be written. As a result, the Stochastic Dual Dynamic Programming
(SDDP) algorithm can be used to obtain approximations of the corresponding risk-averse recourse
functions. This allows us to define a risk-averse nonanticipative feasible policy for the stochastic
linear program. Formulas for the cuts that approximate the recourse functions are given. In
particular, we show that some of the cut coefficients have analytic formulas.

AMS subject classifications: 90C15, 91B30.

1. Introduction

Multistage stochastic programs play a central role when developing optimization models under
stochastic uncertainty in engineering, transportation, finance and energy. Furthermore, since mea-
suring, bounding or minimizing the risk of decisions becomes more and more important in applica-
tions, risk-averse formulations of such optimization models are needed and have to be solved. Several
risk-averse model variants allow for a reformulation as a classical multistage model as in [6, 8] and
the present paper. From a mathematical point of view multistage stochastic optimization methods
represent infinite-dimensional models in spaces of random vectors satisfying certain moment condi-
tions and contain high-dimensional integrals. Hence, their numerical solution is a challenging task.
Each solution approach consists at least of two ingredients: (i) numerical integration methods for
computing the expectation functionals and (ii) algorithms for solving the resulting finite-dimensional
optimization models.

The favorite approach for (i) is to generate possible scenarios (i.e., realizations) of the random
vector involved and to use them as ’grid points’ for the numerical integration. Scenario generation
can be done by Monte Carlo, Quasi-Monte Carlo or optimal quantization methods (see [5, 18] for
overviews and [3, Part III] for further information). Scenarios for multistage stochastic programs
have to be tree structured to model the increasing chain of σ-fields. Existing stability and conver-
gence results like [11, 10], [12], and [21] provide approaches and conditions implying convergence of
such schemes, in particular, for the deterministic first-stage solutions. Hence, they justify rolling
horizon approaches based on repeated solving of multistage models, see [9] for instance.

The algorithms employed for (ii) depend on structural properties of the basic optimization model
and on the inherent structure induced by the scenario tree approximation (see the survey [19] on
decomposition methods).

Some algorithmic approaches incorporate the scenario generation method (i) as an algorithmic
step of the solution method. Such approaches are, for example, stochastic decomposition methods
for multistage models (see [20]), approximate dynamic programming (see [17]) and Stochastic Dual
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Dynamic Programming (SDDP) initiated in [13], revisited in [16, 22] and also studied in the present
paper.

We consider risk-averse formulations of multistage stochastic linear programs of the form

(1)
inf

x1,...,xT

d⊤

1 x1 + θ1E[

T
∑

t=2

d⊤

t xt] +

T
∑

t=2

θtρφ(−
t
∑

k=2

d⊤

kxk)

Ctxt = ξt −Dtxt−1, xt ≥ 0, xt is Ft-measurable, t = 1, . . . , T,

where x0 is given, parameters dt, Ct, Dt are deterministic, (ξt)
T
t=1 is a stochastic process, Ft is

the sigma-algebra Ft := σ(ξj , j ≤ t), (θt)
T
t=1 are nonnegative weights summing to one, and ρφ is

a spectral risk measure [1] or distortion risk measure [14, 15] depending on a risk spectrum φ ∈
L1([0, 1]). In the above formulation, we have assumed that the (one-period) spectral risk measure
takes as argument a random income and that the trajectory of the process is known until the first
stage. We assume relatively complete recourse for (1), which means that for any feasible sequence
of decisions (x1, . . . , xt) to any t-stage scenario (ξ1, ξ2, . . . , ξt), there exists a sequence of feasible de-
cisions (xt+1, . . . , xT ) with probability one. A non-risk-averse model amounts to taking θ1 = 1 and
θt = 0 for t = 2, . . . , T . A more general risk-averse formulation for multistage stochastic programs
is considered in [8]. For these models, dynamic programming (DP) equations are written in [8] and
an SDDP algorithm is detailed to obtain approximations of the corresponding recourse functions in
the form of cuts. The main contribution of this paper is to provide analytic formulas for some cut
coefficients, independent of the sampled scenarios and that can be useful for implementation. We
also specialize the SDDP algorithm and especially the computation of the cuts for the particular
risk-averse model (1).

We start by setting down some notation:

• e will denote a column vector of all ones;
• for x, y ∈ R

n, the vector x ◦ y ∈ R
n is defined by (x ◦ y)(i) = x(i)y(i), i = 1, . . . , n;

• for x ∈ R
n, the vector x+ ∈ R

n is defined by x+(i) = max(x(i), 0), i = 1, . . . , n;
• the available history of the process at stage t is denoted by ξ[t] := (ξj , j ≤ t);
• for vectors x1, . . . , xn, the notation xn1:n2 stands for the concatenation (xn1 , xn1+1, . . . , xn2)
for 1 ≤ n1 ≤ n2 ≤ n;
• δij is the Kronecker delta defined for i, j integers by δij = 1 if i = j and 0 otherwise.

2. Risk-averse dynamic programming

Let FZ(x) = P(Z ≤ x) be the cumulative distribution function of an essentially bounded random
variable Z and let F←Z (p) = inf{x : FZ(x) ≥ p} be the generalized inverse of FZ . Given a risk
spectrum φ ∈ L1([0, 1]) the spectral risk measure ρφ generated by φ is given by Acerbi [1]

ρφ(Z) = −
∫ 1

0

F←Z (p)φ(p)dp.

Spectral risk measures have been used in various applications (portfolio selection Acerbi and Simon-
etti [2], insurance Cotter and Kevin [4]). The Conditional Value-at-Risk (CVaR) of level 0 < ε < 1,
denoted by CV aRε, is a particular spectral risk measure obtained taking φ(u) = 1

ε
10≤u<ε (Acerbi

[1]).
In what follows, we consider more generally a piecewise constant risk function φ(·) with J jumps

at 0 < p1 < p2 < . . . < pJ < 1. We set ∆φk = φ(p+k )− φ(p−k ) = φ(pk)− φ(pk−1), for k = 1, . . . , J ,
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with p0 = 0, and we assume that

(i) φ(·) is positive, (ii) ∆φk < 0, k = 1, . . . , J, (iii)

∫ 1

0

φ(u)du = 1.

In this context, ρφ can be expressed as a linear combination of Conditional Value-at-Risk measures.
With this choice of risk function φ, the spectral risk measure ρφ(Z) can be expressed as the optimal
value of a linear program, Acerbi and Simonetti [2]:

(2) ρφ(Z) = inf
w∈RJ

J
∑

k=1

∆φk[pkwk − E [wk − Z]+]− φ(1)E[Z].

Using this formulation for ρφ, dynamic programming equations are written in [8] for risk-averse
formulation (1). More precisely, problem (1) can be expressed as

(3)
inf

x1, w2:T

d⊤

1 x1 +

T
∑

t=2

θtc
⊤

1wt +Q2(x1, ξ[1], z1, w2, . . . , wT ),

C1x1 = ξ1 −D1x0, x1 ≥ 0, wt ∈ R
J , t = 2, . . . , T,

with z1 = 0, vector c1 = ∆φ ◦ p, and where for t = 2, . . . , T,

(4) Qt(xt−1, ξ[t−1], zt−1, wt:T ) = Eξt|ξ[t−1]

(

inf
xt,zt

ft(zt, wt) +Qt+1(xt, ξ[t], zt, wt+1:T )

zt = zt−1 − d⊤

t xt, Ctxt = ξt −Dtxt−1, xt ≥ 0

)

with

(5) ft(zt, wt) = −(δtT θ1 + φ(1)θt)zt − θt ∆φ⊤(wt − zte)
+,

and QT+1 ≡ 0. Function Qt+1 represents at stage t a cost-to-go or recourse function which is risk-
averse. As shown in the next section, it can be approximated by cutting planes by some polyhedral
function Qt+1. These approximate recourse functions are useful for defining a feasible approximate
policy obtained solving

(6)
inf
xt,zt

ft(zt, wt) +Qt+1(xt, ξ[t], zt, wt+1:T )

Ctxt = ξt −Dtxt−1, xt ≥ 0, zt = zt−1 − d⊤

t xt,

at stage t = 2, . . . , T , knowing xt−1, zt−1, first stage decision variables wt:T , and ξt. First stage
decision variables x1 and w2:T are solution to (3) with Q2 replaced by the approximation Q2.

3. Algorithmic issues

Dynamic programming equations (3)-(4) make possible the use of decomposition algorithms such
as SDDP to obtain approximations of the corresponding recourse functions. When applied to DP
equations (3)-(4), the convergence of this algorithm is proved in [8] under the following assumptions:

(A1) The supports of the distributions of ξ1, . . . , ξT , are discrete and finite.
(A2) Process (ξt) is interstage independent.

(A3) For t = 1, . . . , T , for any feasible xt−1 and for any realization ξ̃t of ξt, the set

{xt : xt ≥ 0, Ctxt = ξ̃t −Dtxt−1}
is bounded and nonempty.

In the sequel, we assume that Assumptions (A1), (A2), and (A3) hold. In particular, we denote the
realizations of ξt by ξit , i = 1, . . . , qt < +∞ and set p(t, i) = P(ξt = ξit).

Since the supports of the distributions of the random vectors ξ2, . . . , ξT are discrete and finite,
optimization problem (1) is finite dimensional and the evolution of the uncertain parameters over
the optimization period can be represented by a scenario tree having a finite number of scenarios
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that can happen in the future for ξ2, . . . , ξT . The root node of the scenario tree corresponds to the
first time step with ξ1 deterministic.

For a given stage t, to each node of the scenario tree corresponds an history ξ[t]. The children
nodes of a node at stage t ≥ 1 are the nodes that can happen at stage t+ 1 if we are at this node
at t. A sampled scenario (ξ1, . . . , ξT ) corresponds to a particular succession of nodes such that ξt is
a possible value for the process at t and ξt+1 is a child of ξt. A given node in the tree at stage t is
identified with a scenario (ξ1, . . . , ξt) going from the root node to this node.

In this context, the SDDP algorithm builds polyhedral lower bounding approximations Qt of
Qt for t = 2, . . . , T + 1. Each iteration of this algorithm is made of a forward pass followed by a
backward pass. Approximation Qi

t for Qt available at the end of iteration i can be expressed as a
maximum of cuts (hyperplanes lying below the recourse functions) built in the backward passes:

(7) Q
i
t(xt−1, zt−1, wt:T ) = max

j=0,1,...,iH
[−Ej

t−1xt−1 − Zj
t−1zt−1 +

T−t+1
∑

τ=1

W j,τ
t−1wt+τ−1 + ejt−1],

knowing that the algorithm starts taking for Q0
t a known lower bounding affine approximation of

Qt while Qi
T+1 ≡ 0. In the above expression, we have assumed that H cuts are built at each

iteration. If the algorithm runs for K iterations, we end up with approximate recourse functions
Qt = QK

t , t = 2, . . . , T + 1.
At iteration i, cuts for Qt, t = 2, . . . , T , are built at some points xk

t−1, z
k
t−1, w

i
t:T , k = (i− 1)H +

1, . . . , iH , computed in the forward pass replacing the recourse functions Qt+1 by Q
i−1
t+1 (note that

since variables w2:T are first stage decision variables, they just depend on the iteration).
More precisely, the cuts are computed for time step T + 1 down to time step 2. For time step

T + 1, since Qi
T+1 = QT+1 = 0, the cuts for QT+1 are obtained taking null vectors for Ek

T , Z
k
T ,

W k,τ
T , ekT for k = (i − 1)H + 1, . . . , iH . For t = 2, . . . , T , using lower bounding approximation

Qi
t+1 of Qt+1, we can bound from below Qt(xt−1, zt−1, wt:T ) by Eξt [Q

i
t(xt−1, zt−1, wt:T , ξt)] with

Qi
t(xt−1, zt−1, wt:T , ξt) given as the optimal value of the following linear program:

(8)

inf
xt,zt,vt,θ̃t

− (δtT θ1 + φ(1)θt)zt − θt∆φ⊤vt + θ̃t

vt ≥ 0, vt ≥ wt − zte, xt ≥ 0,
zt + d⊤

t xt = zt−1 (a)
Ctxt = ξt −Dtxt−1 (b)−→
E i

txt +
−→
Z i

tzt + θ̃te ≥
∑T−t

τ=1

−→
W i,τ

t wt+τ +−→e i
t (c)

where
−→
E i

t (resp.
−→
Z i

t,
−→
W i,τ

t , and −→e i
t) is the matrix whose (j + 1)th line is Ej

t (resp. Zj
t , W

j,τ
t ,

and ejt) for j = 0, . . . , iH . In the backward pass of iteration i, the above problem is solved with

(xt−1, zt−1, wt:T , ξt) respectively replaced by (xk
t−1, z

k
t−1, w

i
t:T , ξ

j
t ) for k = (i − 1)H + 1, . . . , iH and

j = 1, . . . , qt. Let σk,j
t , σ̃k,j

t , µk,j
t , πk,j

t , and ρk,jt , be the (row vectors) optimal Lagrange multipliers
respectively for the constraints vt ≥ wi

t − zte, vt ≥ 0, (8)-(a), (8)-(b), and (8)-(c) for the problem

defining Qi
t(x

k
t−1, z

k
t−1, w

i
t:T , ξ

j
t ) for k = (i − 1)H + 1, . . . , iH and j = 1, . . . , qt. The following

proposition provides the cuts computed for Qt, t = 2, . . . , T , at iteration i:

Proposition 3.1. [Optimality cuts] Let Qt, t = 2, . . . , T + 1, be the risk-averse recourse functions
given by (4). In the backward pass of iteration i of the SDDP algorithm, the following cuts are

computed for these recourse functions. For t = T + 1, Ek
t−1, Zk

t−1, W k,τ
t−1, and ekt−1 are null for

k = (i − 1)H + 1, . . . , iH. For t = 2, . . . , T and k = (i − 1)H + 1, . . . , iH, Ek
t−1 is given by
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∑qt
j=1 p(t, j)πk,j

t Dt, and

Zk
t−1 = −

qt
∑

j=1

p(t, j)µk,j
t , W k,1

t−1 =

qt
∑

j=1

p(t, j)σk,j
t ,(9)

W k,τ
t−1 =

qt
∑

j=1

p(t, j)ρk,jt

−→
W i,τ−1

t , τ = 2, . . . , T − t+ 1.(10)

Further, ekt−1 is given by

qt
∑

j=1

p(t, j)

[

Qi
t(x

k
t−1, z

k
t−1, w

i
t:T , ξ

j
t )− µk,j

t zkt−1 − σk,j
t wi

t −
T−t
∑

τ=1

ρk,jt

−→
W i,τ

t wi
t+τ + πk,j

t Dtx
k
t−1

]

.

Proof. Since a dual solution of the problem defining Qi
t(x

k
t−1, z

k
t−1, w

i
t:T , ξ

j
t ) is a subgradient of the

value function for problem (8), we obtain that Qi
t(xt−1, zt−1, wt:T , ξ

j
t ) is bounded from below by

Qi
t(x

k
t−1, z

k
t−1, w

i
t:T , ξ

j
t ) + µk,j

t (zt−1 − zkt−1) + σk,j
t (wt − wi

t)

+
∑T−t+1

τ=2 ρk,jt

−→
W i,τ−1

t (wt+τ−1 − wi
t+τ−1)− πk,j

t Dt(xt−1 − xk
t−1).

Using the above lower bound and the fact that Qt(xt−1, zt−1, wt:T ) is bounded from below by
∑qt

j=1 p(t, j)Qi
t(xt−1, zt−1, wt:T , ξ

j
t ), we obtain the announced cuts. �

The stopping criterion is discussed in [22] for a non-risk-averse model. The definition of a sound
stopping criterion for the risk-averse model from [22] (based on a nested formulation of the problem
defined in terms of conditional risk mappings) is a more delicate issue and still open for discussion.
However, since problem (1) can be expressed as a non-risk-averse problem with modified objective,
variables, and constraints, in our risk-averse context the stopping criterion is a simple adaptation of
the stopping criterion for the non-risk-averse case.

More specifically, in the backward pass of iteration i, for the first time step, first stage problem
(3) is solved replacing recourse function Q2 by Qi

2 ≤ Q2. As a result, the optimal value of this
problem gives a lower bound zinf on the optimal value of (1).

In the forward pass of iteration i, we can compute the total cost Ck on each scenario k = (i −
1)H + 1, . . . , iH :

(11) Ck = d⊤

1 x
k
1 +

T
∑

t=2

θtc
⊤

1w
i
t +

T
∑

t=2

ft(z
k
t , w

i
t).

If these H scenarios were representing all possible evolutions of (ξ1, . . . , ξT ), then

C̄ = 1

H

iH
∑

k=(i−1)H+1

Ck

would be an upper bound on the optimal value of (1) (recall that the approximate policy is feasible
and that the objective function of (1) can be written as an expectation). Since we only have a
sample of all the possible scenarios, C̄ is an estimation of an upper bound on this optimal value.
Introducing the empirical standard deviation σ̄ of the sample (C1, . . . , CH):

σ̄ =

√

√

√

√

1

H − 1

iH
∑

k=(i−1)H+1

(C̄ − Ck)2,
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we can compute the (1− α)-confidence upper bound

(12) C̄ + t1−α,H−1
σ̄√
H

on the approximate policy mean value where t1−α,H−1 is the (1 − α)-quantile of the Student’s t-
distribution with H − 1 degrees of freedom. Since the optimal value of (1) is less than or equal to
the approximate policy mean value, (12) gives an upper bound for the optimal value of (1) with
confidence at least 1−α. Consequently, we can stop the algorithm when C̄+ t1−α,H−1

σ̄√
H
− zinf ≤ ε

for some ε > 0.
Using the previous developments, the SDDP algorithm for solving (1) can be formulated as in

Figure 1.

We now give for some particular choices of the first stage variables w1
2:T , the exact expressions

(independent of the sampled scenarios) of Zk
t−1 and W k,τ

t−1 for every t = 2, . . . , T , k = 1, . . . , H , and
τ = 1, . . . , T − t + 1. Though the first stage feasible set for (3) is not bounded, it can be easily
shown that the optimal values of w2:T are bounded (see [8] for instance). As a result, well-chosen
box constraints on wt, t = 2, . . . , T can be added (at the first stage, and that do not modify the
optimal value of (3)) without changing the cut calculations (since these latter are performed for
stages t = 2, . . . , T , where wt are state variables).

Let us define for t = 1, . . . , T, xt = (x1, . . . , xt), ξ
t = (ξ1, . . . , ξt), and let us introduce the set χt

of admissible decisions up to time step t:

χt = {xt : ∃ ξ̃t realization of ξt : xτ ≥ 0 and Cτxτ = ξ̃τ −Dτxτ−1, τ = 1, . . . , t}.

Since (A3) holds, the sets χt are compact and since gt(xt) =
∑t

τ=2 d
⊤

τ xτ is continuous, we can
introduce the pairs (Cu

t , C
ℓ
t ) ∈ R

2 defined by

Cu
t =

{

max gt(xt)
xt ∈ χt,

Cℓ
t =

{

min gt(xt)
xt ∈ χt.

The objective of the forward pass is to build states where cuts are computed in the backward pass.
At the first iteration, instead of building these states using the approximate recourse functions Q0

t ,
we can choose arbitrary feasible states xk

t−1, z
k
t−1, w

1
t , t = 2, . . . , T , (which is a simple task since

relatively complete recourse holds). With this variant of the first iteration, we have iH cuts for
Qi

t at the end of iteration i. If we choose first stage variables w1
2:T such that (i) w1

t > −Cℓ
t e for

t = 2, . . . , T (resp. such that (ii) w1
t < −Cu

t e for t = 2, . . . , T ) then Zk
t−1 and W k,τ

t−1 for k = 1, . . . , H ,
can be computed using Proposition 3.2-(i) (resp. Proposition 3.2-(ii)) which follows. For instance, if
the costs are positive then item (i) is fulfilled with w1

t = 0 and item (ii) taking for each component
of w1

t the opposite of a strict upper bound on the worst cost.

Proposition 3.2. [Cuts calculation at the first iteration] Let us consider the risk-averse recourse
functions Qt given by (4). Valid cuts for Qt are given by Proposition 3.1. Moreover, in the fol-

lowing two cases, we have closed-form expressions for Zk
t−1 and W k,τ

t−1 (independent of the sampled
scenarios):

(i) If for t = 2, . . . , T, w1
t > −Cℓ

t e, then for t = 2, . . . , T , P(t) holds where

P(t) :
{

∀ k = 1, . . . , H, Zk
t−1 = θ1 + φ(0)

∑T

ℓ=t θℓ,

∀ k = 1, . . . , H,W k,τ
t−1 = −θt+τ−1∆φ⊤, τ = 1, . . . , T − t+ 1.
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Step 0: INITIALIZATION. Set i = 1 (iteration number) and select confidence levels

α ∈ (1/2, 1) and ε > 0. Take null values for E0
t−1, Z

0
t−1, W

0,τ
t−1, t = 2, . . . , T + 1.

Take e0T = 0 and for e0t−1 a lower bound on Qt for t = 2, . . . , T . Go to Step 1.

Step 1: FORWARD PASS.

Sample H scenarios (ξ1, ξ
k
2 , . . . , ξ

k
T ), k = (i− 1)H + 1, . . . , iH .

Ct=0, Ct Sq=0.
Solve the first stage problem

inf
x1, w2:T

d⊤

1 x1 +

T
∑

t=2

θtc
⊤

1wt +Q
i−1
2 (x1, z1, w2, . . . , wT ),

C1x1 = ξ1 −D1x0, x1 ≥ 0, wt ∈ R
J , t = 2, . . . , T,

and store an optimal solution (x∗1, w
i
2:T ).

For k = (i − 1)H + 1, . . . , iH ,
Set xk

1 = x∗1.
For t = 2, . . . , T ,

Solve

inf
xt,zt

ft(zt, w
i
t) +Q

i−1
t+1(xt, zt, w

i
t+1:T )

Ctxt = ξkt −Dtx
k
t−1, xt ≥ 0, zt = zkt−1 − d⊤

t xt,

and store an optimal solution (xk
t , z

k
t ).

End For

Compute Ck given by (11),
Ct=Ct+Ck, Ct Sq=Ct Sq+C2k.

End For

C̄ = Ct
H

, σ̄ =
√

1
H−1 (Ct Sq−H C̄2), zsup = C̄ + t1−α,H−1

σ̄√
H
. Go to Step 2.

Step 2: BACKWARD PASS.

For t = T + 1 down to 2,
For k = (i− 1)H + 1, . . . , iH ,

If (t = T + 1) then set Ek
t−1, Z

k
t−1, W

k,τ
t−1, and ekt−1 to 0.

Else

For j = 1, . . . , qt,

Compute Qi
t(x

k
t−1, z

k
t−1, w

i
t:T , ξ

j
t ), i.e., solve (8) replacing

(xt−1, zt−1, wt:T , ξt) by (xk
t−1, z

k
t−1, w

i
t:T , ξ

j
t ) and

store a dual solution.
End For

Build a cut for Qt, i.e., compute Ek
t−1, Z

k
t−1,W

k,τ
t−1, and ekt−1

using the formulas from Proposition 3.1.
End If

End For

End For

Set zinf to the optimal value of the first stage problem.
Go to Step 3.

Step 3: STOPPING RULE.

If zsup − zinf ≤ ε then stop.
Else i← i+ 1 and go to Step 1. End If

Figure 1. SDDP algorithm with relatively complete recourse for risk-averse inter-
stage independent stochastic linear program (1).
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(ii) If for t = 2, . . . , T, w1
t < −Cu

t e, then for t = 2, . . . , T , P̃(t) holds where

P̃(t) :
{

∀ k = 1, . . . , H, Zk
t−1 = θ1 + φ(1)

∑T

ℓ=t θℓ,

∀ k = 1, . . . , H,W k,τ
t−1 = 0, τ = 1, . . . , T − t+ 1.

Proof. Let us fix t ∈ {2, . . . , T }, k ∈ {1, . . . , H}, and j ∈ {1, . . . , qt}. We denote by xt, zt, vt, θ̃t an

optimal solution to the problem defining Q1
t (x

k
t−1, z

k
t−1, w

1
t:T , ξ

j
t ), i.e., problem (8) written for i = 1

and with (xt−1, zt−1, wt:T , ξt) replaced by (xk
t−1, z

k
t−1, w

i
t:T , ξ

j
t ) (the dependence of the solution with

respect to k, j is suppressed to alleviate notation).
The KKT conditions for this problem imply

−δtT θ1 − φ(1)θt − µk,j
t − σk,j

t e− ρk,jt

−→
Z 1

t = 0,(13)

−θt∆φ⊤ − σ̃k,j
t − σk,j

t = 0,(14)

σk,j
t ◦ (−zte+ w1

t − vt)
⊤ = 0,(15)

σ̃k,j
t ◦ v⊤

t = 0,(16)

where for t = T we have set ρk,jt = 0. Next, since zt can be written as zt = −gt(xt) for some xt ∈ χt,
in case (i), we have zte ≤ −Cℓ

t e < w1
t . Further vt = max(0, w1

t − zte) = w1
t − zte > 0. Using (14)

and (16) we then get

(17) σ̃k,j
t = 0 and σk,j

t = −θt∆φ⊤.

Let us now first show (i) by backward induction on t. Plugging the value of σk,j
T given in (17) into

(13) we obtain

µk,j
T = −θ1 − φ(1)θT + θT e

⊤∆φ = −θ1 + θT (−φ(1) +
J
∑

ℓ=1

[φ(pℓ)− φ(pℓ−1)]) = −θ1 − θTφ(0).

Using the above relation and (9) yields Zk
T−1 = −∑qT

j=1 p(T, j)µk,j
T = θTφ(0) + θ1. Further, using

once again (9), we obtain

(18) W k,1
T−1 =

qT
∑

j=1

p(T, j)σk,j
T = −

qT
∑

j=1

p(T, j)θT∆φ⊤ = −θT∆φ⊤.

This shows P(T ). Let us now assume that P(t+1) holds for some t ∈ {2, . . . , T −1} and let us show

that P(t) holds. First notice that (18) still holds with T substituted with t, i.e., W k,1
t−1 = −θt∆φ⊤.

Further, for τ = 2, . . . , T − t+ 1,

W k,τ
t−1 =

∑qt
j=1 p(t, j)ρk,jt

−→
W 1,τ−1

t , from (10),

= −∑qt
j=1 p(t, j)ρk,jt θt+τ−1e∆φ⊤, using P(t+ 1),

= −∑qt
j=1 p(t, j)θt+τ−1∆φ⊤ = −θt+τ−1∆φ⊤, since ρk,jt e = 1.

Also

Zk
t−1 = −∑qt

j=1 p(t, j)µk,j
t , from (9),

= −
∑qt

j=1 p(t, j)(−φ(1)θt + θt∆φ⊤e− ρk,jt

−→
Z 1

t ), using (13) and (17),

= −∑qt
j=1 p(t, j)(−φ(0)θt − ρk,jt

−→
Z 1

t ), using the definition of ∆φ,

= φ(0)θt +
∑qt

j=1 p(t, j)ρk,jt (θ1 + φ(0)
∑T

ℓ=t+1 θℓ)e, using P(t+ 1),

= θ1 + φ(0)
∑T

ℓ=t θℓ since ρk,jt e = 1.

We have thus shown P(t) which achieves the proof of (i).
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Let us now assume that w1
t < −Cu

t e for t = 2, . . . , T and let us show (ii). Let us fix t ∈ {2, . . . , T },
k ∈ {1, . . . , H}, and j ∈ {1, . . . , qt}. As before, we denote by xt, zt, vt, θ̃t an optimal solution to the

problem defining Q1
t (x

k
t−1, z

k
t−1, w

1
t:T , ξ

j
t ). In this case, zte ≥ −Cu

t e > w1
t and vt = max(0, w1

t−zte) =
0. Using (14) and (15), we see that

(19) σ̃k,j
t = −θt∆φ⊤ and σk,j

t = 0.

Using (9), we get W k,1
t−1 = 0. We show (ii) by backward induction. For t = T , plugging the value

of σk,j
T into (13) gives µk,j

T = −θ1 − φ(1)θT , which, together with (9), gives Zk
T−1 = θ1 + φ(1)θT .

We have already proved that W k,1
T−1 = 0 and thus P̃(T ) holds. Let us now assume that P(t + 1)

holds for some t ∈ {2, . . . , T − 1} and let us show that P(t) holds. Since
−→
W 1,τ−1

t = 0, we obtain

W k,τ
t−1 =

∑qt
j=1 p(t, j)ρk,jt

−→
W 1,τ−1

t = 0 for τ = 2, . . . , T − t+ 1. Plugging σk,j
t = 0 into (13) and using

(9) gives

Zk
t−1 =

∑qt
j=1 p(t, j)(φ(1)θt + ρk,jt

−→
Z 1

t ),

=
∑qt

j=1 p(t, j)(θ1 + φ(1)
∑T

ℓ=t θℓ), using P̃(t+ 1) and ρk,jt e = 1,

= θ1 + φ(1)
∑T

ℓ=t θℓ.

This shows P̃(t) and achieves the proof of (ii). �

Proposition 3.2 can be used as a debugging tool to check the implementation of SDDP for risk-
averse problem (1). More precisely, we can check that in cases (i) and (ii), implementing the formulas

for Zk
t−1 and W k,τ

t−1 given in Proposition 3.1 will give the same results as implementing the formulas
from Proposition 3.2.

At stage t, if instead of ρφ in (1) we use CV aRεt , problem (1) becomes

(20)
inf

x1,...,xT

d⊤

1 x1 + θ1E[

T
∑

t=2

d⊤

t xt] +

T
∑

t=2

θtCV aRεt(−
t
∑

k=2

d⊤

k xk)

Ctxt = ξt −Dtxt−1, xt ≥ 0, xt is Ft-measurable, t = 1, . . . , T.

For this model, we obtain a result analogous to Proposition 3.2:

Proposition 3.3. Let us consider the risk-averse recourse functions Qt for model (20) and their
approximations Qi

t of form (7), obtained applying SDDP to the corresponding DP equations. In

the following two cases, we obtain closed-form expressions for Zk
t−1 and W k,τ

t−1 (independent of the
sampled scenarios):

(i) If for t = 2, . . . , T, w1
t > −Cℓ

t , then for t = 2, . . . , T , P(t) holds where

P(t) :
{

∀ k = 1, . . . , H, Zk
t−1 = θ1 +

∑T

ℓ=t
θℓ
εℓ
,

∀ k = 1, . . . , H,W k,τ
t−1 = θt+τ−1

εt+τ−1
, τ = 1, . . . , T − t+ 1.

(ii) If for t = 2, . . . , T, w1
t < −Cu

t , then for t = 2, . . . , T , P̃(t) holds where

P̃(t) : ∀ k = 1, . . . , H, Zk
t−1 = θ1, and W k,τ

t−1 = 0, τ = 1, . . . , T − t+ 1.

Proof. The proof is similar to the proof of Proposition 3.2. �

Remark 3.4. In the particular case when the CVaR levels εt = ε ∈ (0, 1) are the same at each
time step, Proposition 3.3 is a particular case of Proposition 3.2 with φ(1) = 0, φ(0) = 1

ε
, and

∆φ = −1/ε ∈ R.
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Numerical simulations for a real-life application modeled as (20) are reported in [7].
When Assumption (A1) does not hold, as stated in [22], a feasible nonanticipative policy can still

be proposed using approximate recourse functions Qt obtained applying SDDP on a Sample Average
Approximation (SAA) of the original problem (1).
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