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Abstract. We define a risk-averse nonanticipative feasible policy for multistage stochastic pro-
grams and propose a methodology to implement it. The approach is based on dynamic program-

ming equations written for a risk-averse formulation of the problem.
This formulation relies on a new class of multiperiod risk functionals called extended polyhedral

risk measures. Dual representations of such risk functionals are given and used to derive conditions

of coherence. In the one-period case, conditions for convexity and consistency with second order
stochastic dominance are also provided. The risk-averse dynamic programming equations are

specialized considering convex combinations of one-period extended polyhedral risk measures such

as spectral risk measures.
To implement the proposed policy, the approximation of the risk-averse recourse functions

for stochastic linear programs is discussed. In this context, we detail a stochastic dual dynamic

programming algorithm which converges to the optimal value of the risk-averse problem.

AMS subject classifications: 90C15, 91B30.

1. Introduction

Let us consider a T -stage optimization problem of the form

(1)
inf E[

T∑
t=1

ft(xt, ξt)]

xt ∈ χt(xt−1, ξt) a.s., xt Ft-measurable, t = 1, . . . , T,

where (ξt)
T
t=1 is a stochastic process, Ft is the sigma-algebra Ft := σ(ξj , j ≤ t), and χt : RNt−1,x ×

RMt ⇒ RNt,x are given multifunctions. In this setting, multistage stochastic optimization problems
set two challenging questions. The first question refers to modeling: how does one deal with uncer-
tainty in this context? Once a model is chosen, the second question is, how does one design suitable
solution methods?

For the first of these questions, we are interested in defining nonanticipative policies. This means
that the decision we make at any time step should be a function of the available history ξ[t] of the
process at this time step. This is a necessary condition for a policy to be implementable since a
decision has to be made on the basis of the available information. We will focus on models with
recourse. More precisely, introducing a recourse function Qt+1 for time step t and given xt−1, the
decision xt is found by solving the problem

(2)
inf
xt
ft(xt, ξt) +Qt+1(xt, ξ[t])

xt ∈ χt(xt−1, ξt)

at time step t. In this problem, we have assumed that ξt is available at time step t and thus ξ[t]
gathers all the realizations of ξj up to time step t. The policy depends crucially on the choice of the
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recourse function Qt+1 used in (2). Given x0 and the information ξ[1], a non-risk-averse model uses
the recourse functions defined by

(3) Qt(xt−1, ξ[t−1]) = Eξt|ξ[t−1]

(
inf
xt
ft(xt, ξt) +Qt+1(xt, ξ[t])

xt ∈ χt(xt−1, ξt)

)

for t = 1, . . . , T , with QT+1 ≡ 0. These dynamic programming (DP) equations are associated to the
non-risk-averse model

(4)
inf E[

T∑
t=1

ft(xt(ξ[t]), ξt)]

xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T.

For the second of these questions, most of the efforts so far have been placed on solution methods
that approximate the recourse functions (3) in the case of multistage stochastic linear programs. In
this paper, we contribute to these two questions as follows.

From the modeling point of view, we define risk-averse recourse functions. For this purpose,
a common approach (Ruszczyński and Shapiro [RS06a], [RS06b]) is based on a risk-averse nested
formulation of the problem using conditional (coherent) risk measures. In this situation, it is in
general difficult, even for simple risk measures such as the conditional value-at-risk (CVaR) (Rock-
afellar and Uryasev [RU02]), to determine a risk-averse problem (using a risk measure that has a
physical interpretation) whose stagewise decomposition is given by these DP equations. However,
such an interpretation is important. This is why we define instead a risk-averse problem for (1) that
is then decomposed by stages to obtain DP equations. A similar idea appears in the recent book
by Shapiro, Dentcheva, and Ruszczyński, [SDR09, Chapter 6, p. 326], where a convex combination
of the expectation and of the CVaR of the final wealth is used for a portfolio selection problem.
Instead, we control partial costs (the sum of the costs up to the current time step) and use a new
class of risk measures that is suitable for decomposing the risk-averse problem by stages. This class
of multiperiod risk measures called extended polyhedral risk measures has three appealing properties.
First, the class is large: it contains the polyhedral risk measures (Eichhorn and Römisch [ER05]);
in the one-period case some special cases include the optimized certainty equivalent (Ben-Tal and
Teboulle [BTT07]), some spectral risk measures (Acerbi [Ace02]), and the CVaR. More generally,
conditions for such functionals to be coherent or convex are provided. Second, as stated above, it
allows us to define DP equations for our risk-averse problem. Finally, these equations are suitable
for proposing convergent solution methods for a class of stochastic linear programs.

Regarding algorithmic issues, exact decomposition algorithms such as the nested decomposition
(ND) algorithm have shown their superiority to direct solution methods for obtaining approximations
of the recourse functions. Each iteration of these algorithms compute upper and lower bounds on
the optimal mean cost. If an optimal solution to the problem exists, the algorithm finds an optimal
solution after a finite number of iterations. These exact algorithms build at each iteration and each
node of the scenario tree a cut for the recourse functions. These cuts form an outer linearization of
these recourse functions.

There are two important variants of the ND algorithm: a variant that adds quadratic prox-
imal terms in the objective functions of the master problems and a variant that uses multicuts
(Ruszczyński [Rus86]).

The purpose of the first variant is to discourage the solution from moving too far from the best
solution found so far, and this can significantly accelerate the convergence of the method even if
the master problems are quadratic programs with this approach. The proximal term penalties are
positive and can be dynamically modified in the course of the algorithm.
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In the ND algorithm, for a given node in the scenario tree and a given input state xt−1 at t,
the subproblems associated to all the realizations in stage t + 1 are solved to obtain their optimal
simplex multipliers. These multipliers are then aggregated to obtain a single cut for each node in
each iteration. In the multicut variant, there are as many cuts as descendant realizations that are
built at each iteration. More information is thus passed from the children nodes to their immediate
ancestor by sending disaggregate cuts. The size of the master programs increases but we expect
fewer iterations (see Birge and Louveaux [BL88]).

However, in some applications, the number of scenarios may become so large that even these
improved variants are difficult to apply since they entail prohibitive computational efforts.

Monte Carlo sampling-based algorithms constitute an interesting alternative in such situations.
Higle and Sen [HS96] introduced a stochastic cutting plane method for two-stage stochastic programs
and showed its convergence with probability one. Recently, Higle, Rayco, and Sen [HRS10] extended
this idea to multistage models by applying a stochastic cutting plane method to the dual problem
resulting when dualizing nonanticipativity constraints. Their method is, hence, based on scenario
decomposition. A different approach for two-stage problems based on Monte Carlo (importance)
sampling within the L-shaped method was introduced by Dantzig and Glynn [DG90] and Infanger
[Inf92]. For multistage stochastic linear programs whose number of immediate descendant nodes is
small but with many stages, Pereira and Pinto [PP91] propose to sample in the forward pass of the
ND. This sampling-based variant of the ND is the so-called stochastic dual dynamic programming
algorithm on which we focus our attention. More precisely, we detail a stochastic dual dynamic
programming (SDDP) algorithm (Pereira and Pinto [PP91]) to approximate our risk-averse recourse
functions, to be used in (2) in place of Qt+1. The computation of the cuts in the backward pass of
SDDP are detailed in this risk-averse setting.

Our developments can be easily extended to other sampling-based decomposition methods such
as AND and DOASA.

The abridged nested decomposition (AND) algorithm proposed by Birge and Donohue [BD06] is
a variant of SDDP that also involves sampling in the forward pass. This algorithm determines in a
different manner the sequence of states and scenarios in the forward pass. The numerical simulations
in Birge and Donohue [BD06] report lower computational time on average for the AND algorithm
in comparison with SDDP.

When the number of immediate descendant nodes is large (possibly infinite) and when the problem
has many stages, we also can (or even must) sample in the backward pass. In this case, for a given
node on a forward path k, not all the optimal simplex multipliers associated to the descendant
subproblems are computed. Only the descendant subproblems associated with some realizations are
solved. As explained in the cut calculation algorithm (CCA) in Philpott and Guan [PG08], it is,
however, possible in this situation to replace the “missing” multipliers by some coefficients so that
the cuts built still lie below the corresponding recourse functions. This gives rise to dynamic outer
approximation sampling algorithms (DOASA) described in Philpott and Guan [PG08].

The paper is organized as follows. In the second section, we introduce the class of multiperiod
extended polyhedral risk measures and study their properties: dual representations are derived and
used to provide criteria for convexity and coherence and, in the one-period case, for convexity and
consistency with second order stochastic dominance. In Section 3, we derive DP equations for a risk-
averse problem defined in terms of extended polyhedral risk measures. We also provide conditions
that guarantee the convergence of SDDP in this risk-averse setting. Finally, in Section 4, we propose
to use SDDP to approximate the risk-averse recourse functions from Section 3 for some stochastic
linear programs. In particular, formulas for the cuts in the backward pass are given.

We mention that after writing our paper we became aware of two recent and closely related papers:
Collado, Papp, and Ruszczyński [CPR] based on scenario decomposition, and Shapiro [Sha11], which
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suggests using SDDP to approximate risk-averse recourse functions defined from a nested risk-averse
formulation of a multistage stochastic program.

We start by setting down some notation:

• For x ∈ Rn, the vectors x+ and x− are defined by x+(i) = max(x(i), 0) and x−(i) =
max(−x(i), 0) for i = 1, . . . , n.

• For a nonempty setX ⊆ Rn, the polar coneX∗ is defined byX∗ = {x∗ : 〈x, x∗〉 ≤ 0 ∀x ∈ X},
where 〈·, ·〉 is the standard scalar product on Rn.

• e is a column vector of all ones.
• If A is an m1×n matrix and B an m2×n matrix, (A;B) denotes the (m1 +m2)×n matrix

(
A
B

).

• For vectors x1, . . . , xT ∈ Rn and 1 ≤ t1 ≤ t2 ≤ T, we denote (xt1 , . . . , xt2) ∈ Rn × . . .× Rn
by xt1:t2 .

• For x, y ∈ Rn, the vector x ◦ y ∈ Rn is defined by (x ◦ y)(i) = x(i)y(i), i = 1, . . . , n.
• In is the n× n identity matrix and 0m,n is an m× n matrix of zeros.
• δij is the Kronecker delta defined for i, j integers by δij = 1 if i = j and 0 otherwise.
• Qt+1 denotes a (generic) recourse function used at time step t = 1, . . . , T , i.e., QT+1 ≡ 0,

and if t < T then Qt+1(xt, ξ[t]) represents a cost over the period t+1, . . . , T . Various recourse
functions at t will be defined using the same notation Qt+1. Which Qt+1 is relevant will be
clear from the context.

As is usually done in the stochastic programming literature and to alleviate notation, we use the
same notation for a random variable and for a particular realization of this random variable, the
context allowing us to know which concept is being referred to.

2. Extended polyhedral risk measures

We consider multiperiod risk functionals ρ whose arguments are sequences of random variables.
We confine ourselves to discrete-time processes with a finite time horizon as in Ruszczyński and
Shapiro [RS06a]. Such risk functionals have to assess the riskiness of a finite sequence z1, . . . , zT of
random variables for some integer T ≥ 2. To reflect the evolution of information as time goes by, we
assume that zt is measurable with respect to some σ-field Ft, where F1, . . . ,FT form a filtration, i.e.,
F1 ⊆ F2 ⊆ . . . ⊆ FT = F , with F1 = {∅,Ω}. In this setting, z1 is deterministic, and a multiperiod
risk functional ρ will be seen as a mapping ρ : ×Tt=1 Lp(Ω,Ft,P)→ R̄ for some p ∈ [1,+∞).

Remark 2.1. Throughout the paper, the arguments (z1, . . . , zT ) of the risk functionals will be in-
terpreted as accumulated revenues (for which higher values are preferred). More precisely, if z̃t is

the revenue for time step t, we consider the accumulated revenues zt =
∑t
τ=1 z̃τ , t = 1, . . . , T .

For future use, we recall the definition of multiperiod convex risk measures (from Artzner et al.
[ADE+], [ADE+07], Föllmer and Schied [FS04]) which are multiperiod risk functionals of special
interest when the random variables zt represent revenues (accumulated or not).

Definition 2.2. A functional ρ on ×Tt=1 Lp(Ω,Ft,P) is called a multiperiod convex risk measure if
conditions (i)–(iii) below hold:

(i) Monotonicity: if zt ≤ z̃t a.s, t = 1, . . . , T , then ρ(z1, . . . , zT ) ≥ ρ(z̃1, . . . , z̃T ).
(ii) Translation invariance: for each r ∈ R we have ρ(z1 + r, . . . , zT + r) = ρ(z1, . . . , zT )− r.
(iii) Convexity: for each λ ∈ [0, 1] and z, z̃ ∈ ×Tt=1 Lp(Ω,Ft,P) we have ρ(λz + (1 − λ)z̃) ≤

λρ(z) + (1− λ)ρ(z̃).

It is called a multiperiod coherent risk measure if in addition condition (iv) holds:

(iv) Positive homogeneity: for each λ ≥ 0 we have ρ(λz1, . . . , λzT ) = λρ(z1, . . . , zT ).
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In the literature, there appear different requirements instead of the translation invariance (ii)
above, e.g., Fritelli and Scandalo [FS05] and Pflug and Römisch [PR07].
Convex duality can be used to obtain dual representations of multiperiod convex risk measures.
Next, we cite such a representation that uses the set DT of generalized density functions where

DT := {λ ∈ ×Tt=1 L1(Ω,Ft,P) : λt ≥ 0 a.s., t = 1, . . . , T,

T∑
t=1

E[λt] = 1}.

Theorem 2.3. Let ρ : ×Tt=1 Lp(Ω,Ft,P) → R̄ and assume that ρ is proper (i.e., ρ is finite on the
nonempty set dom ρ = {z : ρ(z) < ∞}) and lower semicontinuous. Then ρ is a multiperiod convex
risk measure if and only if it admits the representation

(5) ρ(z) = sup
{
E
(
−

T∑
t=1

λtzt

)
− ρ∗(λ) : λ ∈ Pρ

}
for some convex closed subset Pρ ⊆ DT of the space ×Tt=1 Lq(Ω,Ft,P) ( 1

p + 1
q = 1) on which the

conjugate ρ∗ of ρ is given too. The functional ρ is coherent if and only if the conjugate ρ∗ in (5) is
the indicator function of Pρ.

A proof of the above theorem can be found in, e.g., Ruszczyński and Shapiro [RS06b]. We are
now in a position to define the class of multiperiod extended polyhedral risk measures.

Definition 2.4. A risk measure ρ on ×Tt=1Lp(Ω,Ft,P) is called multiperiod extended polyhedral if
there exist matrices At, Bt,τ , vectors at, ct, and functions ht(z) = (ht,1(z), . . ., ht,nt,2(z))> for given
functions ht,1, . . . , ht,nt,2 : Lp(Ω,Ft,P)→ Lp′(Ω,Ft,P) with 1 ≤ p′ ≤ p such that

(6) ρ(z1, . . . , zT ) =

 inf E[
∑T
t=1 c>t yt]

yt ∈ Lp(Ω,Ft,P;Rkt), t = 1, . . . , T,

Atyt ≤ at a.s., t = 1, . . . , T,
∑t−1
τ=0 Bt,τyt−τ = ht(zt) a.s., t = 2, . . . , T.

Another less general extension of polyhedral risk measures is due to Eichhorn [Eic07]. Like
a multiperiod polyhedral risk measure (Eichhorn and Römisch [ER05]), a multiperiod extended
polyhedral risk measure is given as the optimal value of a T -stage linear stochastic program where the
arguments of the risk measure appear on the right-hand side of the dynamic constraints. Multiperiod
polyhedral risk measures constitute a particular case with at = 0, t = 2, . . . , T , Bt,τ row vectors,
and ht(zt) = ht,1(zt) = zt (i.e., nt,2 = 1).

We mention that multiperiod extended polyhedral risk measures satisfy two additional proper-
ties that were recently discussed in the literature: information monotonicity (see Kovacevic and
Pflug[KP09]) and time consistency, suggested in Shapiro [Sha09]. Information monotonicity means
that the risk ρ(z1, . . . , zT ) gets smaller if the available information expressed by the σ-fields Ft,
t = 1, . . . , T , increases. Since ρ(z1, . . . , zT ) is given by a risk-neutral multistage stochastic program,
it is time consistent as stated at the beginning of Shapiro [Sha09, section 3].

The need to consider the extended versions from Definition 2.4 is twofold:

(i) Modeling: some (popular) risk measures are extended polyhedral but not polyhedral in the
sense of Eichhorn and Römisch [ER05] (see examples at the end of this section).

(ii) Algorithmic issues: as announced in the introduction, DP equations can be written for
risk-averse versions of (1) defined in terms of extended polyhedral risk measures. Moreover,
the convergence of a class of decomposition algorithms applied to the corresponding nested
formulation of the risk-averse problem will be proved in Section 3 for a subclass of extended
polyhedral risk measures that contain some nonpolyhedral risk measures. For this subclass,
we have ht(zt) = ztbt + b̃t for some vectors bt, b̃t.
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In view of (ii) above, extended polyhedral risk measures with ht(zt) = ztbt + b̃t play a particular
role when algorithmic issues come into play. In the rest of this section, we study properties of such
risk functionals. In this context, the matrices At, Bt,τ and the vectors at, bt, b̃t, and ct are fixed and
deterministic. They have to be chosen such that ρ exhibits desirable risk measure properties. In
particular, conditions on these parameters for the corresponding extended polyhedral risk measure
to be coherent are given in the Corollary 2.6 of Theorem 2.5, which follows. This theorem gives dual
representations for stochastic program (6) when ht(zt) = ztbt + b̃t for some vectors bt, b̃t. In what
follows, the dimensions of at and bt are, respectively, denoted by nt,1 and nt,2.

Theorem 2.5. Let ρ be a functional of the form (6) on ×Tt=1Lp(Ω,Ft,P) with p ∈ [1,∞) and

ht(zt) = ztbt + b̃t for some vectors bt, b̃t. Assume

(i) complete recourse: {y1 : A1y1 ≤ a1} 6= ∅ and, for every t = 2, . . . , T , it holds that {Bt,0yt :
Atyt ≤ at} = Rnt,2 ;

(ii) dual feasibility: {(u, v) : u ∈ ×Tt=1Rnt,1 , v ∈ ×Tt=2Rnt,2 , ct+A>t ut+
∑T
τ=max(2,t) B

>
τ,τ−tvτ−1 =

0, t = 1, . . . , T} 6= ∅.
Then ρ is finite, convex, and continuous on ×Tt=1Lp(Ω,Ft,P) and with 1

p + 1
q = 1 the following dual

representation holds:
(7)

ρ(z) =


sup −E[

∑T
t=1 λ>1,tat +

∑T
t=2 λ

>
2,t−1(ztbt + b̃t)]

λ1 ∈ ×Tt=1 Lq(Ω,Ft,P;Rnt,1), λ2 ∈ ×Tt=2 Lq(Ω,Ft,P;Rnt,2), λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A>t λ1,t +
∑T
τ=max(2,t) B

>
τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T.

We also have

(8) ρ(z) = sup

{
E

[
T∑
t=1

z∗t zt

]
− ρ∗(z∗) : z∗ ∈ ×Tt=1 Lq(Ω,Ft,P)

}
where ρ∗ is the conjugate of ρ. Next, for every z∗ ∈ dom(ρ∗), ρ∗(z∗) is given by

(9) ρ∗(z∗) =


inf E[

∑T
t=1 λ>1,tat +

∑T
t=2 λ

>
2,t−1b̃t]

λ1 ∈ ×Tt=1 Lq(Ω,Ft,P;Rnt,1), λ2 ∈ ×Tt=2 Lq(Ω,Ft,P;Rnt,2),
z∗t = −λ>2,t−1bt a.s., t = 2, . . . , T, λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A>t λ1,t +
∑T
τ=max(2,t) B

>
τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T,

where
(10)

dom(ρ∗) =


z∗ ∈ ×Tt=1 Lq(Ω,Ft,P) such that
∃ λ1 ∈ ×Tt=1 Lq(Ω,Ft,P;Rnt,1), λ2 ∈ ×Tt=2 Lq(Ω,Ft,P;Rnt,2) satisfying
λ1,t ≥ 0 a.s., t = 1, . . . , T,

ct +A>t λ1,t +
∑T
τ=max(2,t) B

>
τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T, and

z∗1 = 0, z∗t = −λ>2,t−1bt a.s. t = 2, . . . , T

 .

Proof. We use results on Lagrangian and conjugate duality. Consider the following Banach spaces
and their duals:

E := ×Tt=1Lp(Ω,Ft,P;Rkt), E∗ = ×Tt=1Lq(Ω,Ft,P;Rkt),
Z := ×Tt=1Lp(Ω,Ft,P), Z∗ = ×Tt=1Lq(Ω,Ft,P),

with bilinear forms

〈e, e∗〉E/E∗ =

T∑
t=1

E[e>t e
∗
t ] and 〈z, z∗〉Z/Z∗ =

T∑
t=1

E[ztz
∗
t ].
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Let us introduce the Lagrange multipliers λ1 ∈ ×Tt=1Lq(Ω,Ft,P;Rnt,1) (with λ1 ≥ 0 a.s.) and
λ2 ∈ ×Tt=2Lq(Ω,Ft,P;Rnt,2) associated to the constraints of (6) and the Lagrangian

L(y, λ1, λ2) := E
[∑T

t=1 c
>
t yt + λ>1,t(Atyt − at) +

∑T
t=2 λ

>
2,t−1(

∑t−1
τ=0Bt,τyt−τ − ztbt − b̃t)

]
= E

[∑T
t=1(ct +A>t λ1,t +

∑T
τ=max(2,t)B

>
τ,τ−tλ2,τ−1)>yt

]
+E

[
−
∑T
t=1 λ

>
1,tat −

∑T
t=2 λ

>
2,t−1(ztbt + b̃t)

]
.

The dual functional is defined by

(11) θ(λ1, λ2) := inf
y∈E

L(y, λ1, λ2),

and the Lagrangian dual of (6) is the problem

(12) sup
λ1,λ2

{
θ(λ1, λ2) : λ1 ∈ ×Tt=1Lq(Ω,Ft,P;Rnt,1), λ2 ∈ ×Tt=2Lq(Ω,Ft,P;Rnt,2), λ1 ≥ 0 a.s.

}
.

Due to [Ruszczyński and Shapiro, [RS03], Proposition 5, Chapter 1] the conditional expectation
operator E[·|Ft] and the operation of minimization can be interchanged in (11), which gives for
θ(λ1, λ2) the expression

−E

[
T∑
t=1

λ>1,tat +

T∑
t=2

λ>2,t−1(ztbt + b̃t)

]
+E

 T∑
t=1

inf
yt∈Rkt

(ct +A>t λ1,t +

T∑
τ=max(2,t)

B>τ,τ−tE[λ2,τ−1|Ft])>yt

 .
Next, infyt∈Rkt (ct +A>t λ1,t +

∑T
τ=max(2,t)B

>
τ,τ−tE[λ2,τ−1|Ft])>yt is 0 if

ct +A>t λ1,t +

T∑
τ=max(2,t)

B>τ,τ−tE[λ2,τ−1|Ft] = 0

and −∞ otherwise. The Lagrangian dual (12) can thus be expressed as

(13)

sup −E[
∑T
t=1 λ>1,tat +

∑T
t=2 λ

>
2,t−1(ztbt + b̃t)]

λ1 ∈ ×Tt=1 Lq(Ω,Ft,P;Rnt,1), λ2 ∈ ×Tt=2 Lq(Ω,Ft,P;Rnt,2), λ1 ≥ 0 a.s.,

ct +A>t λ1,t +
∑T
τ=max(2,t) B

>
τ,τ−tE[λ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T.

From weak duality and dual feasibility, we obtain ρ(z) > −∞, and due to the complete recourse
assumption ρ(z) < +∞. It follows that ρ(z) is finite. More precisely, dual feasibility and complete
recourse imply that there is no duality gap: the optimal value of (6), i.e., ρ(z), is the optimal value
of (13). This shows (7).

Next, we use conjugate duality. Let us introduce the vectors c = (c1, . . . , cT )>, a = (a1, . . . , aT )>,

and b̃ = (b̃2, . . . , b̃T )> and the matrices A =

 A1

. . .

AT

 , B =

 0 b2
...

. . .

0 bT

 , and

B =


B2,1 B2,0 0 . . . 0

B3,2 B3,1 B3,0
. . .

...
...

...
...

. . . 0
BT,T−1 BT,T−2 BT,T−3 . . . BT,0

 .

Let also Y = {y ∈ E : Ay(ω) ≤ a for a.e. ω ∈ Ω} and

ϕ : E × Z → R̄
(y, z) → ϕ(y, z) = 〈y, c〉E/E∗ + δY (y) + δ{0}(By − Bz − b̃),
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where δ denotes the indicator function taking values 0 and +∞ only. Since Y is closed and convex, ϕ
is lower semicontinuous and convex. With this notation, we can express ρ(z) as ρ(z) = infy∈E ϕ(y, z)
and, due to Bonnans and Shapiro [BS00, Proposition 2.143], ρ is convex. Since ρ is finite valued,
[BS00, Proposition 2.152] guarantees the continuity of ρ. Since ρ is proper, convex, and lower
semicontinuous, by the Fenchel-Moreau theorem we have that ρ∗∗ = ρ, where ρ∗∗ is the biconjugate
of ρ, i.e.,

(14) ρ(z) = ρ∗∗(z) = sup {〈z, z∗〉Z/Z∗ − ρ
∗(z∗) : z∗ ∈ Z∗},

which is (8). Next, ρ∗(z∗) = ϕ∗(0, z∗), where the conjugate ϕ∗ of ϕ is given by

ϕ∗(y∗, z∗) = sup {〈y, y∗〉E/E∗ + 〈z, z∗〉Z/Z∗ − ϕ(y, z) : y ∈ E, z ∈ Z}
= sup {〈y, y∗ − c〉E/E∗ + 〈z, z∗〉Z/Z∗ : Ay ≤ a a.s., By = Bz + b̃ a.s.}.

It follows that

(15) ρ∗(z∗) =

 sup E[
∑T
t=1 (ztz

∗
t − c>t yt)]

yt ∈ Lp(Ω,Ft,P;Rkt), zt ∈ Lq(Ω,Ft,P), t = 1, . . . , T,

Atyt ≤ at a.s., t = 1, . . . , T,
∑t−1
τ=0 Bt,τyt−τ = ztbt + b̃t a.s., t = 2, . . . , T.

Due to (i) and (ii), complete recourse and dual feasibility also hold for (15) for every z∗ ∈ dom(ρ∗),
where dom(ρ∗) is given by (10). Using once again Lagrangian duality for problem (15), we obtain
for ρ∗(z∗) dual representation (9). �

Theorems 2.3 and 2.5 allow us to provide a criterion for an extended polyhedral risk measure to
be multiperiod coherent.

Corollary 2.6. Let ρ be a functional on ×Tt=1 Lp(Ω,Ft,P) of the form (6) with all at null and
ht(zt) = ztbt for some vector bt. Let the conditions of Theorem 2.5 be satisfied (complete recourse
and dual feasibility) and let

Mρ =


λ ∈ ×Tt=1Lq(Ω,Ft,P) such that there exist
µ1 ∈ ×Tt=1 Lq(Ω,Ft,P;Rnt,1), µ2 ∈ ×Tt=2 Lq(Ω,Ft,P;Rnt,2) satisfying
µ1,t ≥ 0 a.s. t = 1, . . . , T,

ct +A>t µ1,t +
∑T
τ=max(2,t) B

>
τ,τ−tE[µ2,τ−1|Ft] = 0 a.s., t = 1, . . . , T, and

λ1 = 0, λt = µ>2,t−1bt a.s., t = 2, . . . , T


be the (convex) set of dual multipliers. If Mρ ⊆ DT , then ρ is a multiperiod coherent risk measure.

Proof. Using representation (7) of Theorem 2.5, we can write ρ(z) = supλ∈Mρ
−
∑T
t=1 E[λtzt]. We

conclude using Theorem 2.3 with Pρ =Mρ. �

Using representation (8) of Theorem 2.5, the properties of ρ can also be characterized by properties
of dom(ρ∗), where dom(ρ∗) is given by (10).

Corollary 2.7. Let ρ be a functional on ×Tt=1 Lp(Ω,Ft,P) of the form (6) with ht(zt) = ztbt + b̃t
for some vectors bt, b̃t, and let the conditions of Theorem 2.5 be satisfied (complete recourse and dual
feasibility). The following hold:

(i) ρ is monotone ⇐⇒ for all z∗ ∈ dom(ρ∗) we have z∗t ≤ 0 a.s. for t = 1, . . . , T .

(ii) ρ is translation invariant ⇐⇒ for all z∗ ∈ dom(ρ∗) we have
∑T
t=1 E[z∗t ] = −1.

(iii) ρ is positively homogeneous ⇐⇒ for all z∗ ∈ dom(ρ∗) we have ρ∗(z∗) = 0.

When T = 2, since z1 is deterministic, Definition 2.4 corresponds to one-period extended poly-
hedral risk measures that assess the riskiness of one random variable z only. For later reference
we recall the definition of such risk measures which extend the class of one-period polyhedral risk
measures.
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Definition 2.8. Let (Ω,F ,P) be a probability space and let h(z) = (h1(z), . . . , hn2,2
(z))> for given

functions h1, . . . , hn2,2
: Lp(Ω,F ,P)→ Lp′(Ω,F ,P) with 1 ≤ p′ ≤ p. A risk measure ρ on Lp(Ω,F ,P)

with p ∈ [1,∞) is called extended polyhedral if there exist matrices A1, A2, B2,0, B2,1, and vectors
a1, a2, c1, c2 such that for every random variable z ∈ Lp(Ω,F ,P)

(16) ρ(z) =


inf c>1 y1 + E[c>2 y2]
y1 ∈ Rk1 , y2 ∈ Lp(Ω,F ,P;Rk2),
A1y1 ≤ a1, A2y2 ≤ a2 a.s.,
B2,1y1 +B2,0y2 = h(z) a.s.

For one-period risk measures, dual representations from Theorem 2.5 specialize as follows.

Corollary 2.9. Let ρ be a functional of the form (16) on Lp(Ω,F ,P) with some p ∈ [1,∞) and

h(z) = zb2 + b̃2 for some vectors b2, b̃2. Assume

(i) complete recourse: {y1 : A1y1 ≤ a1} 6= ∅ and {B2,0y2 : A2y2 ≤ a2} = Rn2,2 ;
(ii) dual feasibility: {(u, v) : u ∈ Rn1,1×Rn2,1 , v ∈ Rn2,2 , ct +A>t ut +B>2,2−tv = 0, t = 1, 2} 6= ∅.

Then ρ is finite, convex, continuous, and with 1
p + 1

q = 1, ρ admits the dual representation

ρ(z) =


sup −λ>1 a1 − E[λ>2 a2 + λ>3 (zb2 + b̃2)]
λ1 ∈ Rn1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2),
c1 +A>1 λ1 +B>2,1E[λ3] = 0,
c2 +A>2 λ2 +B>2,0λ3 = 0 a.s.,
λ1 ≥ 0, λ2 ≥ 0, a.s.

We also have

(17) ρ(z) = sup {E[z∗z]− ρ∗(z∗) : z∗ ∈ Lq(Ω,F ,P)} ,

where ρ∗ is the conjugate of ρ. Next, for every z∗ ∈ dom(ρ∗), ρ∗(z∗) is given by

(18) ρ∗(z∗) =


inf E[λ>1 a1 + λ>2 a2 + λ>3 b̃2]
λ1 ∈ Rn1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2),
z∗ = −λ>3 b2 a.s., λ1 ≥ 0, λ2 ≥ 0 a.s.,
c1 +A>1 λ1 +B>2,1E[λ3] = 0,
c2 +A>2 λ2 +B>2,0λ3 = 0 a.s.,

where

(19) dom(ρ∗) =


z∗ ∈ Lq(Ω,F ,P) such that there exist
λ1 ∈ Rn1,1 , λ2 ∈ Lq(Ω,F ,P;Rn2,1), λ3 ∈ Lq(Ω,F ,P;Rn2,2) satisfying
c1 +A>1 λ1 +B>2,1E[λ3] = 0, λ1 ≥ 0, λ2 ≥ 0 a.s.,
c2 +A>2 λ2 +B>2,0λ3 = 0 a.s., and z∗ = −λ>3 b2 a.s.

 .

Proof. It suffices to use Theorem 2.5 with T = 2. �

Definition 2.2 specializes as follows to the one-period case.

Definition 2.10. A functional ρ : Lp(Ω,F ,P)→ R̄ is called a convex risk measure if it satisfies the
following three conditions for all z, z̃ ∈ Lp(Ω,F ,P):

(i) Monotonicity: if z ≤ z̃ a.s., then ρ(z) ≥ ρ(z̃).
(ii) Translation invariance: for each r ∈ R we have ρ(z + r) = ρ(z)− r.
(iii) Convexity: for all µ ∈ [0, 1] we have ρ(µz + (1− µ)z̃) ≤ µρ(z) + (1− µ)ρ(z̃).

Such a functional ρ is said to be coherent if it is positively homogeneous, i.e., ρ(µz) = µρ(z) for all
µ ≥ 0 and z ∈ Lp(Ω,F ,P).
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Using Theorems 2.3 and Corollary 2.9, a sufficient criterion can be provided for a one-period
extended polyhedral risk measure to be coherent:

Corollary 2.11. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with a1, a2 null, p ∈ [1,∞),
and h(z) = zb2 for some vector b2. Let the conditions of Corollary 2.9 be satisfied (complete recourse
and dual feasibility), and let Mρ be the following (convex) set of dual multipliers:

(20) Mρ =


λ ∈ Lq(Ω,F ,P) such that there exist
(µ1, µ2, µ3) ∈ Rn1,1 × Lq(Ω,F ,P;Rn2,1)× Lq(Ω,F ,P;Rn2,2) satisfying
c1 +A>1 µ1 +B>2,1E[µ3] = 0,
c2 +A>2 µ2 +B>2,0µ3 = 0 a.s., µ1 ≥ 0, µ2 ≥ 0 a.s. with λ = µ>3 b2

 .

If Mρ ⊆ D1, then ρ is a (one-period) coherent risk measure.

Proof. From Corollary 2.9, we obtain ρ(z) = supλ∈Mρ
−E[λz], and the result follows taking Pρ =

Mρ in Theorem 2.3. �

A dual representation of the second-stage problem for (16) will prove useful for obtaining further
properties of one-period risk measures of the form (16):

Proposition 2.12. Let ρ be a functional of the form (16) on Lp(Ω,F ,P) with some p ∈ [1,∞) and

h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corollary 2.9 be satisfied (complete
recourse and dual feasibility). Assume the feasible set D of the dual of the second-stage problem is
nonempty where

(21) D = {λ = (λ1, λ2) ∈ Rn2,2×Rn2,1 : λ2 ≤ 0, B>2,0λ1 +A>2 λ2 = c2}.

Then ρ is finite, convex, continuous and is given by

ρ(z) = inf
A1y1≤a1

{
c>1 y1 + E[sup

λ∈D
λ>1 (zb2 + b̃2 −B2,1y1) + λ2a2]

}
.

Proof. Finiteness, convexity, and continuity follow from Corollary 2.9. Next, we write ρ(z) as

(22) ρ(z) = inf
y1
{c>1 y1 + E[Q2(y1, z)] : A1y1 ≤ a1},

where for each y1 such that A1y1 ≤ a1 and for each z ∈ R we have defined

Q2(y1, z) = inf
y2
{c>2 y2 : B2,0y2 = zb2 + b̃2 −B2,1y1, A2y2 ≤ a2}.

Finally, since D 6= ∅, by duality, we can express Q2(y1, z) as

(23) Q2(y1, z) = sup
(λ1,λ2)

{λ>1 (zb2 + b̃2 −B2,1y1) + λ>2 a2 : λ2 ≤ 0, B>2,0λ1 +A>2 λ2 = c2}.

�

The following proposition provides a sufficient criterion for some extended polyhedral risk mea-
sures to be convex risk measures when

(24) Y1 = {y1 : A1y1 ≤ a1}
is not necessarily a cone (a1 need not be 0).

Proposition 2.13. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with p ∈ [1,∞) and

h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corollary 2.9 be satisfied (complete
recourse and dual feasibility), and let D be defined as in Proposition 2.12. Assume

(i) D 6= ∅ with D ⊆ {b2}∗×Rn2,1 ;
(ii) c1 6= 0 and b2 is of the form b2 = −Bi2,1/c1(i) for at least one i ∈ I = {j : c1(j) 6= 0} with

y1(i) unconstrained and where Bi2,1 denotes the ith column of B2,1.
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Then ρ is a finite-valued convex risk measure.

Proof. Let Y1 be defined by (24). Finiteness and convexity of ρ follow from Corollary 2.9. The
monotonicity of ρ follows from (i). Indeed, if z, z̃ ∈ Lp(Ω,F ,P) satisfy z ≤ z̃ a.s., then for every
y1 ∈ Y1 and every (λ1, λ2) ∈ D we have

λ>1 (zb2 + b̃2 −B2,1y1) + λ>2 a2 ≥ λ>1 (z̃b2 + b̃2 −B2,1y1) + λ>2 a2.

With the notation of Proposition 2.12 and with ϕ(y1, z) = c>1 y1+E[Q2(y1, z)], it follows that for every
y1 ∈ Y1, we have E[Q2(y1, z)] ≥ E[Q2(y1, z̃)], ϕ(y1, z) ≥ ϕ(y1, z̃), and ρ(z) = infy1∈Y1

ϕ(y1, z) ≥
infy1∈Y1

ϕ(y1, z̃) = ρ(z̃). The translation invariance condition follows from (ii). Indeed, eventually
after reordering the components of y1, c1, and the columns of B2,1, we can always assume that the
index i satisfying (ii) is the last k1th index, i.e., that c1, B2,1, and Y1 are of the form c1 = (ĉ1, c̄1)>

with c̄1 ∈ R∗, B2,1 = [B̂2,1,−c̄1b2], and Y1 = {y1 = (ŷ1, ȳ1) : Â1ŷ1 ≤ a1, ȳ1 ∈ R}. We then have for
each r ∈ R, for each z ∈ Lp(Ω,F ,P), and setting ỹ1 = ȳ1 + r

c̄1
∈ R

ρ(z + r) = inf
Â1ŷ1≤a1, ȳ1∈R

{ĉ>1 ŷ1 + c̄1ȳ1 + E[ sup
(λ1,λ2)∈D

λ>1 ((z + r)b2 + b̃2 − B̂2,1ŷ1 + ȳ1c̄1b2) + λ>2 a2]}

= inf
Â1ŷ1≤a1, ỹ1∈R

{ĉ>1 ŷ1 + c̄1ỹ1 + E[ sup
(λ1,λ2)∈D

λ>1 (zb2 + b̃2 − B̂2,1ŷ1 + ỹ1c̄1b2) + λ>2 a2]} − r

= ρ(z)− r.

�

Proposition 2.13 extends the corresponding result in Eichhorn and Römisch [ER05]. Proposition
2.14 below shows that condition (i) in Proposition 2.13 ensures in fact a stronger type of monotonicity
than (i) in Definition 2.10. Such monotonicity is based on stochastic dominance rules (see Müller
and Stoyan [MS02]). For real-valued random variables z, z̃ ∈ L1(Ω,F ,P), stochastic dominance rules
are defined by classes of measurable real-valued functions on R. The stochastic dominance rule with
respect to class F is defined by

z �F z̃ :⇐⇒ ∀ f ∈ F : [ if E[f(z)] and E[f(z̃)] exist, then E[f(z)] ≤ E[f(z̃)]]

for each z, z̃ ∈ L1(Ω,F ,P). Important special cases are the classes Fnd of nondecreasing functions
and Fndc of nondecreasing concave functions which, respectively, characterize first and second order
stochastic dominance rules:

z �FSD z̃ :⇐⇒ z �Fnd z̃ ⇐⇒ P(z ≤ t) ≥ P(z̃ ≤ t) ∀ t ∈ R,
z �SSD z̃ :⇐⇒ z �Fndc z̃ ⇐⇒ E[min(z, t)] ≤ E[min(z̃, t)] ∀ t ∈ R.

In particular, it is said that a risk measure ρ is consistent with second order stochastic dominance
(see Ogryczak and Ruszczyński [OR02]) if z �SSD z̃ implies ρ(z) ≥ ρ(z̃).

Proposition 2.14. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with p ∈ [1,∞) and

h(z) = zb2 + b̃2 for some vectors b2, b̃2. Let the conditions of Corollary 2.9 be satisfied (complete
recourse and dual feasibility), and let D be defined as in Proposition 2.12. Assume D 6= ∅ with
D ⊆ {b2}∗×Rn2,1 . Then ρ is consistent with second order stochastic dominance.

Proof. With Y1 defined as in (24), let g be the function defined for every y1 ∈ Y1 and z ∈ R by

(25) g(y1, z) = c>1 y1 + sup
(λ1,λ2)∈D

{λ>1 (zb2 + b̃2 −B2,1y1) + λ>2 a2}.

For every y1 ∈ Y1, g(y1, ·) is convex and, since D ⊆ {b2}∗×Rn2,1 , it is also nonincreasing. Let z �SSD
z̃. For every y1 ∈ Y1, since −g(y1, ·) is concave and nondecreasing, E[−g(y1, z)] ≤ E[−g(y1, z̃)] and
ρ(z) = infy1∈Y1 E[g(y1, z)] ≥ infy1∈Y1 E[g(y1, z̃)] = ρ(z̃). �
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For a one-period risk measure of the form (16) with h(z) = zb2 + b̃2 for some vectors b2, b̃2, the
first-stage solution set S(ρ(z)) ⊆ Y1 is given by

(26) S(ρ(z)) = {y1 ∈ Y1 : ρ(z) = c>1 y1 + sup
(λ1,λ2)∈D

{λ>1 (zb2 + b̃2 −B2,1y1) + λ>2 a2}}.

For algorithmic issues considered in Sections 3 and 4, it can be useful to have at hand conditions
that guarantee the boundedness of S(ρ(z)). This question is addressed in the following proposition:

Proposition 2.15. Let ρ be a functional on Lp(Ω,F ,P) of the form (16) with p ∈ [1,∞), a2 null,
and h(z) = zb2 for some vector b2. Let the conditions of Corollary 2.9 be satisfied (complete recourse
and dual feasibility), and assume that S(ρ(0)) is nonempty and bounded. Then S(ρ(z)) is nonempty,
convex, and compact for any z ∈ Lp(Ω,F ,P).

Proof. The proof follows the proof of Proposition 2.9 in Eichhorn and Römisch [ER05], with, in our
case, g given by (25). �

We provide examples of extended polyhedral risk measures. The above criteria for coherence and
consistency with second order stochastic dominance are applied.

Example 2.16 (Spectral risk measures and CVaR). Let Fz(x) = P(z ≤ x) be the distribution
function of random variable z, and let F←z (p) = inf{x : Fz(x) ≥ p} be the usual generalized inverse
of Fz. Given a risk spectrum φ ∈ L1([0, 1]) the spectral risk measure ρφ generated by φ is given by
Acerbi [Ace02]:

ρφ(z) = −
∫ 1

0

F←z (p)φ(p)dp.

Spectral risk measures have been used in a number of applications (portfolio selection in Acerbi and
Simonetti [AS], and insurance in Cotter and Kevin [CD06]). The conditional value-at-risk (CVaR) of
level 0 < ε < 1, also called average value-at-risk (AVaR) in Föllmer and Schied [FS04], is a particular
spectral risk measure with a piecewise constant risk function φ having a jump at ε: φ(u) = 1

ε10≤u≤ε
(Acerbi [Ace02]). Let us consider more generally a piecewise constant risk function φ(·) with J jumps
at 0 < p1 < p2 < · · · < pJ < 1. Setting ∆φk = φ(p+

k )− φ(p−k ) = φ(pk)− φ(pk−1), for k = 1, . . . , J ,
with p0 = 0, we assume

(i) φ(·) is positive, (ii) ∆φk < 0, k = 1, . . . , J, (iii)

∫ 1

0

φ(u)du = 1.

With this choice of φ, we can express ρφ(z) as the optimal value of a linear programming problem
(see Acerbi and Simonetti [AS]):

(27) ρφ(z) = inf
x∈RJ

J∑
k=1

∆φk[pkxk − E [xk − z]+]− φ(1)E[z].

When J = 1,∆φ1 = −1/ε, p1 = ε, and φ(1) = 0, the above formula reduces to the formula for the
CVaR given by Rockafellar and Uryasev [RU02]:

(28) CV aRε[z] = inf
x∈R

[
x+

1

ε
E[z + x]−

]
.

A spectral risk measure with a piecewise constant risk function satisfying (i), (ii), and (iii) above
is a coherent extended polyhedral risk measure. Indeed, with respect to (16), we have c1 = ∆φ◦p with
∆φ = (∆φ1, . . . ,∆φJ)>, c2 = (−∆φ; 0J,1;−φ(1)), B2,1 = (IJ ; 01,J), B2,0 = (−IJ , IJ , 0J,1; 01,2J , 1),
A2 = (−I2J , 02J,1), and h(z) = ze. The matrix A1 and the vectors a1 and a2 are null, b2 is a (J+1)-

vector of ones, and b̃2 = 0. Notice that when J > 1 it is not polyhedral in the sense of Eichhorn
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and Römisch [ER05]. The complete recourse and dual feasibility assumptions from Corollary 2.9 are
easily checked. This theorem provides for ρφ the dual representation

(29) ρφ(z) =

 sup −E[λz]
λ = µ>e+ φ(1), µ ∈ Lq(Ω,F ,P;RJ),
E[µ] = −∆φ ◦ p, 0 ≤ µ ≤ −∆φ a.s.

Let Mρφ be the set of dual multipliers from Corollary 2.11 for ρφ. For every λ ∈ Mρφ , we have
λ ≥ 0 a.s. and

E[λ] = E[φ(1) + µ>e] = φ(1)−
J∑
i=1

∆φipi = φ(1)−
J∑
i=1

(φ(pi)− φ(pi−1))pi

= φ(0)p1 +

J−1∑
i=1

φ(pi)(pi+1 − pi) + (1− pJ)φ(1) =

∫ 1

0

φ(u)du = 1.

It follows that Mρφ ⊆ D1 and using Corollary 2.11, ρφ is a coherent one-period risk measure.

Next, the set D in Proposition 2.14 is given by D = {(λ1, λ2) ∈ RJ+1×R2J : λ2 ≤ 0, λ1,J+1 =
−φ(1), λ1,1:J = λ2,J+1:2J , λ1,1:J = −λ2,1:J +∆φ}. For every (λ1, λ2) ∈ D, we have λ>1 b2 = λ>1 e ≤ 0.
It follows that D ⊆ {b2}∗×Rn2,1 and due to Corollary 2.14, ρφ is consistent with second order
stochastic dominance. When J = 1,∆φ1 = −1/ε, p1 = ε, and φ(1) = 0, ρφ = CV aRε and we recover
results given in Eichhorn and Römisch [ER05]: the CVaR is consistent with second order stochastic
dominance and is an extended polyhedral risk measure of the form (16) with c1 = 1, c2 = ( 1

ε ; 0),
B2,1 = −1, B2,0 = (−1, 1), A2 = −I2, h(z) = z, and A1, a1, a2 null. The dual representation (29)
becomes

CV aRε(z) = sup{−E[λz] : λ ∈ Lq(Ω,F ,P), 0 ≤ λ ≤ 1

ε
a.s., E[λ] = 1}.

Example 2.17 (Optimized certainty equivalent (OCE) and expected utility). Given a concave
nondecreasing utility function u, the optimized certainty equivalent Su(z) of the random variable z is
defined in Ben-Tal and Teboulle [BTT07] by Su(z) = supy1∈R y1 +E[u(z−y1)]. Considering for u a
piecewise affine concave function, we can express the convex function −u as follows (see Rockafellar
and Wets, [RW98, Example 3.54]):

(30) −u(x) = inf{c>y : y ∈ Rk, y ≥ 0, e>y = 1, b>y = x}

for some vectors b, c ∈ Rk. It follows that if u is a piecewise affine concave function, ρ(z) = −Su(z)
is given by

(31) ρ(z) =

{
inf −y1 + E[c>y2]
y1 ∈ R, y2 ∈ Rk, y2 ≥ 0, e>y2 = 1, b>y2 = z − y1.

In this case, the opposite of the OCE is an extended one-period polyhedral risk measure with h affine:
c1 = −1, c2 = c, A2 = [−Ik; e>;−e>], a2 = [0k,1; 1;−1], B2,1 = 1, B2,0 = b>, b2 = 1, and A1, a1,

and b̃2 null. Notice that it is not polyhedral in the sense of Eichhorn and Römisch [ER05] and that
complete recourse does not hold. However, properties of the OCE, given in Ben-Tal and Teboulle
[BTT07], are easily checked: monotonicity follows from the definition of −Su and the fact that u is
nondecreasing; translation invariance follows from the change of variable ȳ1 = y1 − r in (31) (for
ρ(z + r)) or in the definition of −Su(z + r); convexity can be checked directly from the definition of
Su (or using representation (31) and [BS00, Proposition 2.143], as in the proof of Theorem 2.5).

Let us consider as a special case a piecewise linear utility function of the form

(32) u(x) = γ1(x)+ − γ2(−x)+, where 0 ≤ γ1 < 1 < γ2
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(note that u(x) < x for x 6= 0). The corresponding risk measure ρ(z) = −Su(z) is an extended
polyhedral risk measure with c1 = −1, c2 = (−γ1; γ2), B2,1 = 1, B2,0 = [1− 1], A2 = −I2, h(z) = z,
and A1, a2, a2 null. Since complete (and even simple) recourse and dual feasibility hold, Corollary
2.9 provides the following dual representation:

ρ(z) = −Su(z) = sup{−E[λz] : λ ∈ Lq(Ω,F ,P), E[λ] = 1, γ1 ≤ λ ≤ γ2 a.s.}.
Using Corollary 2.11, we deduce that when u is of the form (32), ρ(z) = −Su(z) is a coherent risk
measure. More generally, it is shown in Ben-Tal and Teboulle [BTT07] that if u is a strongly risk-
averse function (see Ben-Tal and Teboulle [BTT07]), ρ(z) = −Su(z) is coherent if and only if u is
of the form (32). For 0 < ε < 1, CV aRε constitutes a particular case with γ1 = 0 and γ2 = 1

ε . The
set D in Proposition 2.14 is given by D = {(λ1, λ2) : −γ2 ≤ λ1 ≤ −γ1, λ2 ≤ 0}. Since for every
(λ1, λ2) ∈ D we have λ>1 b2 = λ>1 e ≤ 0, using Proposition 2.14 we conclude that −Su(z) is consistent
with second order stochastic dominance.

For any concave utility function u, the risk measure ρ(z) = −E(u(z)) is an extended polyhedral
risk measure with h = u, B2,0 = c2 = 1, while the other parameters are null. In the particular
case when u is a piecewise affine concave function, representation (30) shows that −E(u(z)) can be
written as an extended polyhedral risk measure with h(z) = z and that complete recourse does not
hold. However, a dual representation of ρ can be derived from the dual representation

(33) −u(x) = sup{−λ1x− λ2 : λ ∈ R2, λ1b+ λ2e ≤ −c}
of −u. Applying the expectation operator to both sides of the above equation and using Rockafellar
and Wets [RW98, Theorem 14.60] (for switching the inf and expectation operators), we obtain for ρ
the dual representation

ρ(z) = sup{−E[λ1z + λ2] : λ ∈ Lq(Ω,F ,P;R2), λ1b+ λ2e ≤ −c a.s.}.
Since −u is nonincreasing, for every (λ1, λ2) in the feasible set of (33) we have λ1 ≥ 0 (otherwise,
there would be positive subgradients of −u at large enough points). It follows that in the above
representation of ρ, λ1 ≥ 0 a.s., which implies that ρ is monotone, convex, and consistent with
second order stochastic dominance. The expected regret or expected loss ρ(z) = E(z−β)− for some
target β is a special case (already considered in Eichhorn and Römisch [ER05]) with utility function
u(z) = −(z − β)−. Finally, notice that ρ(z) = E[(z − E[z])k] for some 1 ≤ k ≤ p− 1 is an extended
polyhedral risk measure with h(z) = (z − E[z])k.

Example 2.18 (Multiperiod extended polyhedral risk measures).
We consider functionals ρ on ×Tt=1Lp(Ω,Ft,P) (p ∈ [1,∞)) of the form ρ(z) = ρφ(Φ(z)), where ρφ
is a spectral risk measure of form (27) with φ(·) satisfying (i), (ii), (iii) in Example 2.16, and the
function Φ is defined on RT and maps to the extended real numbers.
Then ρ is a finite-valued coherent multiperiod risk measure if the function Φ (i) is concave, (ii) is
monotone with respect to the (canonical) partial ordering in RT , (iii) is positively homogeneous, (iv)
satisfies the property Φ(ζ1 + r, . . . , ζT + r) = Φ(ζ1, . . . , ζT ) + r for all r ∈ R and ζ ∈ RT , and (v) has

linear growth; i.e., for some constant L > 0 it holds |Φ(ζ)| ≤ L
∑T
t=1 |ζt| for every ζ ∈ RT .

There are three important special cases of the function Φ:

(a) Φ(ζ) =
∑T
t=1 γtζt with γt ≥ 0, t = 1, . . . , T , such that

∑T
t=1 γt = 1. Using (27), we have

ρ(z) = ρφ

( T∑
t=1

γtzt

)
= inf
x∈RJ

(∆φ ◦ p)>x+ E
(
−

J∑
k=1

∆φk

[
xk −

T∑
t=1

γtzt

]+
− φ(1)

T∑
t=1

γtzt

)

=


inf (∆φ ◦ p)>x+ E

(
−
∑J
k=1 ∆φkwk − φ(1)vT

)
x ∈ RJ , vt = vt−1 + γtzt, vt ∈ Lp(Ω,Ft,P), t = 1, . . . , T, v0 = 0,
wk ≥ 0, wk ≥ xk − vT , wk ∈ Lp(Ω,FT ,P), k = 1, . . . , J.
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The stochastic program above can be rewritten in the form (6) and ρ is a multiperiod extended
polyhedral coherent risk measure. In the case when ρφ = CV aRε, according to the dual representation
of CV aRε, we obtain

ρ(z) = sup
{
−

T∑
t=1

E(λtzt) : λt ∈ Lq(Ω,Ft,P), E(λt) = γt, 0 ≤ λt ≤
γt
ε
, t = 1, . . . , T,

γtE(λt+1|Ft) = γt+1λt a.s., t = 1, . . . , T − 1
}
,

where λt = γtE(λ|Ft), t = 1, . . . , T , and 1
p + 1

q = 1. Hence, ρ is a multiperiod extended polyhedral

coherent risk measure according to Theorems 2.3 and 2.5.

(b) Φ(ζ) = minγ∈S〈γ, ζ〉 = minγ∈S
∑T
t=1 γtζt, where S denotes the standard simplex S = {γ ∈ RT :

γt ≥ 0, t = 1, . . . , T,
∑T
t=1 γt = 1}, may be used instead of the function Φ in (a). This function

satisfies conditions (i)–(v), but avoids specifying the weights γt, t = 1, . . . , T .
(c) Φ(ζ) = mint=1,...,T ζt for ζ ∈ RT . Using representation (27), we obtain

ρ(z) = ρφ

(
min

t=1,...,T
zt

)
= inf
x∈RJ

(∆φ ◦ p)>x+ E
(
−

J∑
k=1

∆φk

[
xk − min

t=1,...,T
zt

]+
− φ(1) min

t=1,...,T
zt

)
= inf

x∈RJ
(∆φ ◦ p)>x+ E

(
−

J∑
k=1

∆φk max
t=1...,T

(0, xk − zt) + φ(1) max
t=1,...,T

−zt
)

=


inf (∆φ ◦ p)>x+ E

(
−
∑J
k=1 ∆φkvkT + φ(1)vT

)
x ∈ RJ , v1 ≥ −z1, vt ≥ vt−1, vt ≥ −zt, t = 2, . . . , T,
vkt ≥ vkt−1, vkt ≥ xk − zt, vt, vk,t ∈ Lp(Ω,Ft,P), k = 1, . . . , J, t = 1, . . . , T, vk0 = 0.

The latter linear stochastic program may be rewritten in the form (6), and ρ is a multiperiod extended
polyhedral coherent risk measure. In the case when ρφ = CV aRε, we obtain

(34) ρ(z)=inf
{
x+

1

ε
E(vT ) :vt ∈ Lp(Ω,Ft,P),−x− zt ≤ vt, vt−1 ≤ vt, t = 1, . . . , T, v0 = 0, x ∈ R

}
.

Example (34) was first studied by Eichhorn in [Eic07].

3. Risk-averse dynamic programming

3.1. General setting. When using a multiperiod extended polyhedral risk measure to deal with
uncertainty in the multistage stochastic programming framework (4), we consider accumulated rev-

enues zt = −
∑t
τ=1 fτ (xτ , ξτ ) and the sigma-algebras Ft = σ(ξj , j ≤ t) for t = 1, . . . , T . Recall that

x0 and χ1(x0, ξ1) are deterministic and that for any time step t = 1, . . . , T , we denote by ξ[t] the
available realizations of the process up to this time step, i.e., ξ[t] = (ξj , j ≤ t).

We also denote by Zt the space of Ft-measurable functions (these sets are embedded: Z1 ⊂ . . . ⊂
ZT ). Next, for t = 1, . . . , T, we assume the following:

(H1) the functions ft : RNt,x × RMt → R are continuous and χt : RNt−1,x × RMt ⇒ RNt,x are
measurable, bounded and closed-valued multifunctions.

We are now in a position to define a risk-averse problem for (1) via a multiperiod risk measure. Let
ρ : Z1 × . . .ZT → R be a multiperiod risk measure and let us introduce the risk-averse problem

(35)
inf ρ

(
−f1(x1, ξ1),−

2∑
τ=1

fτ (xτ (ξ[τ ]), ξτ ), . . . ,−
T∑
τ=1

fτ (xτ (ξ[τ ]), ξτ )

)
xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T.
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In the above problem, the optimization is performed over Ft-measurable functions xt, t = 1, . . . , T ,
satisfying the constraints and such that ft(xt(·), ·) ∈ Zt. The sequence of measurable mappings
xt(·), t = 1, . . . , T , is called a policy. The Ft-measurability of xt(·) implies the nonanticipativity of
the policy, i.e., implies that xt is a function of ξ[t]. The policy obtained from (35) will be said to be
risk-averse. A policy is said to be feasible if the constraints xt(ξ[t]) ∈ χt(xt−1(ξ[t−1]), ξt), t = 1, . . . , T,
are satisfied with probability one.

In this section, our objective is to provide a class of form (1) problems and a class of multiperiod
risk measures ρ having the following two properties:

(P1) DP equations can be written for (35).
(P2) The SDDP algorithm applied to problem (35) decomposed by stages converges to an optimal

solution of (35).

We intend to enforce (P2) obtaining DP equations that satisfy conditions given in Philpott and
Guan [PG08]. These conditions imply the following:

(P3) The recourse functions are given as the optimal value of a non-risk-averse stochastic program
(the objective function is an expectation) where the randomness appears on the right-hand
side of the constraints only.

Property (P3) leads us naturally to use the class of extended polyhedral risk measures introduced
in the previous section.

3.2. Extended polyhedral risk measures. Taking for ρ a multiperiod extended polyhedral risk
measure of the form (6), problem (35) can be written as

(36)

inf E[
∑T
t=1 c>t yt]

Atyt ≤ at a.s., t = 1, . . . , T,∑t−1
τ=0 Bt,τyt−τ = ht(−

∑t
τ=1 fτ (xτ , ξτ )) a.s., t = 2, . . . , T,

xt ∈ χt(xt−1, ξt) a.s., t = 1, . . . , T.

Remark 3.1. In (36), the dependence of xt and yt with respect to ξ[t] was suppressed to alleviate
notation. This will in general be done in what follows.

We first check that (P1) and (P3) hold for problem (36) above. Since we want to write DP
equations, we start with the following simple remark.

Remark 3.2. Let us consider the following T-stage optimization problem:

P

{
inf f(x1, . . . , xT )
xt ∈ X(x0, . . . , xt−1), t = 1, . . . , T.

We decompose f as f(x) =
∑T
k=1 fk(x1:k), where fk is the sum of all the functions in the sum

of functions defining f which depend on xk but not on xk+1:T (for a given k, fk is 0 if no such
functions exist). DP equations for P can be written as follows:

Qt(x0:t−1) =

{
inf
xt
ft(x1:t) +Qt+1(x0:t)

xt ∈ X(x0:t−1)

for t = 1, . . . , T , with QT+1 ≡ 0.
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The application of Remark 3.2 to (36) yields the following DP equations: for t = 1, . . . , T ,
Qt(x0:t−1, ξ[t−1], y1:t−1) is given by
(37)

Qt(x0:t−1, ξ[t−1], y1:t−1) = Eξt|ξ[t−1]


infxt,yt c

>
t yt +Qt+1(x0:t, ξ[t], y1:t)

Atyt ≤ at,
(1− δt1)

(∑t−1
τ=0 Bt,τyt−τ − ht(−

∑t
τ=1 fτ (xτ , ξτ ))

)
= 0,

xt ∈ χt(xt−1, ξt)

 ,

where here, and in what follows, QT+1 ≡ 0. Since these DP equations correspond to the stagewise
decomposition of risk-averse problem (36), the recourse functions Qt in (37) are said to be risk-
averse. Compared to the DP equations of the original stochastic program, a new state variable
yt and new constraints for it appear in (37) at time t. They serve for computing the multiperiod
extended polyhedral risk measure.

Let us now take as a special case for ρ the multiperiod risk measure defined by

(38) ρ(z1, . . . , zT ) = −θ1E[zT ] +
T∑
t=2

θtρ
t(zt)

for some nonnegative weights θt, t = 1, . . . , T , summing to one (
∑T
t=1 θt = 1) and for some one-

period coherent extended polyhedral risk measures ρt : Zt → R, t = 2, . . . , T .

Remark 3.3. We easily check that ρ in (38) is a multiperiod (coherent) extended polyhedral risk
measure.

Observe that since ρt is coherent and z1 deterministic, we have ρt(zt − z1) = ρt(zt) + z1, and

ρ(z1, . . . , zT ) in (38) can be expressed as ρ(z1, . . . , zT ) = −z1 − θ1E[zT − z1] +
∑T
t=2 θtρ

t(zt − z1).
This expression reveals that the corresponding objective function in (35) is the sum of the first-stage
(deterministic) cost and of a convex combination of the mean future cost and of risk measures of
future partial costs. With this choice of ρ, problem (35) becomes

(39)
inf f1(x1, ξ1) + θ1E[

T∑
t=2

ft(xt, ξt)] +

T∑
t=2

θtρ
t(−

t∑
k=2

fk(xk, ξk))

xt ∈ χt(xt−1, ξt), t = 1, . . . , T.

Plugging the expression (16) of the risk measure ρt (taking the same for all time steps) into (39),
the latter can be written as

inf
xt,wt,yt

f1(x1, ξ1) +

T∑
t=2

θtc
>
1wt + E[θ1

T∑
t=2

ft(xt, ξt) +

T∑
t=2

θtc
>
2 yt]

B2,1wt +B2,0yt = h(−
∑t
k=2 fk(xk, ξk)), t = 2, . . . , T,

A1wt ≤ a1, A2yt ≤ a2, t = 2, . . . , T,
xt ∈ χt(xt−1, ξt), t = 1, . . . , T.

In turn, the above optimization problem can be expressed as

(40)
inf

x1,w2:T

f1(x1, ξ1) +

T∑
t=2

θtc
>
1wt +Q2(x1, ξ[1], w2, . . . , wT )

A1wt ≤ a1, t = 2, . . . , T, x1 ∈ χ1(x0, ξ1),
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where

(41) Q2(x1, ξ[1], w2:T ) =


inf
xt,yt

E[θ1

T∑
t=2

ft(xt, ξt) +

T∑
t=2

θtc
>
2 yt]

B2,1wt +B2,0yt = h(−
∑t
k=2 fk(xk, ξk)), A2yt ≤ a2, t = 2, . . . , T,

xt ∈ χt(xt−1, ξt), t = 2, . . . , T.

The application of Remark 3.2 to optimization problem (41) yields the following DP equations: for
t = 2, . . . , T , Qt(x1:t−1, ξ[t−1], wt:T ) is given by

(42) Eξt|ξ[t−1]

(
inf
xt,yt

θ1ft(xt, ξt) + θtc
>
2 yt +Qt+1(x1:t, ξ[t], wt+1:T )

B2,1wt +B2,0yt = h(−
∑t
k=2 fk(xk, ξk)), A2yt ≤ a2, xt ∈ χt(xt−1, ξt)

)
.

In DP equations (37) and (42) obtained for, respectively, risk-averse problems (36) and (39), the
state variables memorize the relevant history of the process and of the decisions. For (37) (resp.,
(42)), we can reduce the size of the state vector replacing the history of the decisions x1:t−1 by xt−1

and zt−1 (resp., xt−1 and z̃t−1 with z̃t−1 = zt−1 − z1). Variable z̃t−1 represents the total revenue
(opposite of the cost) from time step 2 until time step t − 1 (i.e., the total income until time step
t − 1 for the time steps where the data are random). Variables z̃t satisfy z̃t = z̃t−1 − ft(xt, ξt) for
t = 2, . . . , T , with z̃1 set equal to 0. With this notation, DP equations (37) for problem (36) become
(43)

Qt(xt−1, ξ[t−1], zt−1, y1:t−1)=Eξt|ξ[t−1]

 infxt,yt,zt c
>
t yt +Qt+1(xt, ξ[t], zt, y1:t)

(1− δt1)
(∑t−1

τ=0 Bt,τyt−τ − ht(zt)
)

= 0, Atyt ≤ at,
zt = zt−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)



for t = 1, . . . , T , with z0 = 0. As for the DP equations (40) and (42), they simplify as follows: in
(40), Q2(x1, ξ[1], w2, . . . , wT ) needs to be replaced by Q2(x1, ξ[1], z̃1, w2, . . . , wT ) and for t = 2, . . . , T ,
we have

(44) Qt(xt−1, ξ[t−1], z̃t−1, wt:T )=Eξt|ξ[t−1]

 inf
xt,z̃t,yt

− δtT θ1z̃t + θtc
>
2 yt +Qt+1(xt, ξ[t], z̃t, wt+1:T )

B2,1wt +B2,0yt = h(z̃t), A2yt ≤ a2,
z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

 .

Remark 3.4. Comparing the non-risk-averse DP equations (3) with the risk-averse ones (43)
or (40) and (44), we see that additional decision and state variables are introduced in the latter
cases. More precisely, at the first time step, in the non-risk-averse case the decision x1 is taken,
while in risk-averse case (43) (resp., (40) and (44)), additional decision variables y1 and z1 (resp.,
(w2, . . . , wT )) are needed. This first-stage problem is deterministic for all models.

For time step t = 2, . . . , T , in risk-averse case (43) (resp., (40) and (44)), the state vector is
augmented with partial cost zt−1 and with the variables (y1, . . . , yt−1) (resp., partial cost z̃t−1 and
the variables (wt, . . . , wT )). For both risk-averse models, additional decisions zt (or z̃t) and yt are
needed for stages t = 2, . . . , T . This is summarized in Table 1.
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First-stage Stages t = 2, . . . ,T

Decision variables
NRA x1 xt
RA1 (x1, z1, y1) (xt, zt, yt)
RA2 (x1, w2, . . . , wT ) (xt, z̃t, yt)

State variables
NRA (x0, ξ[0]) (xt−1, ξ[t−1])
RA1 (x0, ξ[0]) (xt−1, ξ[t−1], zt−1, y1, . . . , yt−1)
RA2 (x0, ξ[0]) (xt−1, ξ[t−1], z̃t−1, wt, . . . , wT )

Table 1. Decision and state variables for the non-risk-averse (NRA) DP equations
(3) as well as for the risk-averse ones (43) (RA1), and (40) and (44) (RA2).

Remark 3.5. Other special cases for the multiperiod risk measure ρ in (35) for which DP equations
can be written are the risk measures from Example 2.18.

Properties (P1) and (P3) thus hold for (36) and hold for (39) when using extended one-period
polyhedral risk measures for ρt. We now concentrate on (P2). So far, all the developments of
this section were valid for a problem of the form (1). To ensure that (P2) holds, we consider the
special case when (1) is a stochastic linear program (SLP). Indeed, the convergence of the SDDP
algorithm and of related sampling-based algorithms is proved in Philpott and Guan [PG08] for SLP.
We observe that if (1) is an SLP, then risk-averse problem (36) (resp., (39)) is an SLP if and only if

(45) ht(z) = zbt + b̃t, for some bt, b̃t ∈ Rnt,2 (resp., h(z) = zb2 + b̃2, for some b2, b̃2 ∈ Rn2,2).

Of interest for applications, we now specialize the above DP equations (44) taking extended poly-
hedral risk measures with h(·) of the kind (45) above. As seen in the previous section, spectral risk
measures with piecewise constant spectra are of this kind. We provide the DP equations obtained
in this case using directly (27).

3.3. Spectral risk measures. Let φ be a piecewise constant risk spectrum satisfying (i), (ii), and
(iii) given in Example 2.16 and let ∆φk = φ(pk)− φ(pk−1), k = 1, . . . , J . If we take for ρt a spectral
risk measure ρφ (the same for all time steps), using (27) we can decompose (39) by stages and
express it under the form

(46)
inf f1(x1, ξ1) +

T∑
t=2

θtc
>
1wt +Q2(x1, ξ[1], z̃1, w2, . . . , wT )

x1 ∈ χ1(x0, ξ1), wt ∈ RJ , t = 2, . . . , T,

with z̃1 = 0, c1 = ∆φ ◦ p, and where for t = 2, . . . , T,

(47) Qt(xt−1, ξ[t−1], z̃t−1, wt:T ) = Eξt|ξ[t−1]

(
inf
xt,z̃t

f̃t(z̃t, wt) +Qt+1(xt, ξ[t], z̃t, wt+1:T )

z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

)
with

f̃t(z̃t, wt) = −(δtT θ1 + φ(1)θt)z̃t − θt ∆φ>(wt − z̃te)+.

When the risk spectrum φ has one jump, we obtain the CVaR.

3.4. Conditional value-at-risk. When taking ρt = CV aRεt and using (28), we can express (39)
under the form

(48)
inf

x1,w2:T

f1(x1, ξ1)−
T∑
t=2

θtwt +Q2(x1, ξ[1], z̃1, w2, . . . , wT )

x1 ∈ χ1(x0, ξ1), wt ∈ R, t = 2, . . . , T,
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with z̃1 = 0, and where for t = 2, . . . , T ,
(49)

Qt(xt−1, ξ[t−1], z̃t−1, wt:T ) = Eξt|ξ[t−1]

 inf
xt,z̃t

− δtT θ1z̃t +
θt
εt

(wt − z̃t)+ +Qt+1(xt, ξ[t], z̃t, wt+1:T )

z̃t = z̃t−1 − ft(xt, ξt), xt ∈ χt(xt−1, ξt)

 .

3.5. Convergence of SDDP in a risk-averse setting. The convergence of the SDDP algorithm
and of related sampling-based algorithms is proved in Philpott and Guan [PG08] for SLP with the
following properties:

(A1) Random data only appear on the right-hand side of the constraints.
(A2) The supports of the distributions of the underlying random vectors are discrete and finite.
(A3) Random vectors are interstage independent or satisfy a certain type of interstage dependence

(see Philpott and Guan [PG08]).
(A4) The feasible set of the linear program is nonempty and bounded in each stage.

In what follows, we consider multistage SLPs of the form (1) where

(50) ft(xt, ξt) = d>t xt and χt(xt−1, ξt) = {xt : xt ≥ 0, Ctxt = ξt −Dtxt−1}.
For these programs, Assumption (A1) holds, and it can be noted that if (A1) holds for (1), then (A1)
holds for risk-averse problems (36) and (39). In the remainder of the paper, we assume (A2) and
(A3). We also assume that (A4) holds for (1), which, in our context, can be expressed as follows:

(A4) For t = 1, . . . , T , for any feasible state xt−1, and for any realization ξit of ξt, the set

χt(xt−1, ξ
i
t) = {xt | xt ≥ 0, Ctxt = ξit −Dtxt−1}

is bounded and nonempty.

To apply the convergence results from Philpott and Guan [PG08] in our risk-averse setting, (A4)
should also hold for risk-averse problems (36) or (39). For (36), (A4) takes the following form:

(A5) {y1 : A1y1 ≤ a1} is bounded and for all t = 2, . . . , T , for any feasible states x1, y1, . . . ,
xt−1, yt−1, and for any sequence of realizations ξi1, . . . , ξ

i
t of ξ1, . . . , ξt, the set {yt : Atyt ≤

at, Bt,0yt = ht(−
∑t
τ=1 fτ (xτ , ξ

i
τ ))−

∑t−1
τ=1Bt,τyt−τ for some xt ∈ χt(xt−1, ξ

i
t)} is bounded

and nonempty.

For (39), remembering Proposition 2.15, a condition implying (A4) is the following:

(A6) For t = 2, . . . , T , the sets S(ρt(0)) are nonempty and bounded, where S(ρt(0)) is de-
fined in (26). {y1 : A1y1 ≤ a1} is bounded and for all t = 2, . . . , T , for any feasible
x1, y1, . . . , xt−1, yt−1, w2:T , and for any sequence of realizations ξi1, . . . , ξ

i
t of ξ1, . . . , ξt, the

set {yt : Atyt ≤ at,∃ xt ∈ χt(xt−1, ξ
i
t), B2,0yt = h(−

∑t
τ=2 fτ (xτ , ξ

i
τ ))−B2,1wt} is bounded

and nonempty.

Indeed, with respect to the non-risk-averse setting, recall that the additional decision variables for
(39) are z̃t (bounded, due to (A4)), yt, and wt. Variables wt, t = 2, . . . , T , are first-stage decision
variables and, due to Proposition 2.15, if S(ρt(0)) is nonempty and bounded, then optimal wt are
bounded. Next, condition (A6) guarantees the boundedness of optimal yt.

However, even if the feasible set at each stage for (36) or (39) is not bounded, we may be able
to show, in some cases, that these feasible sets can be replaced by bounded feasible sets without
changing the problems, i.e., that the solutions are bounded. Such is the case for problems (46)
and (48). Indeed, for these problems, the only additional variables with respect to the non-risk-
averse case are z̃t (bounded, due to (A4)) and first-stage variables w2, . . . , wT . For the spectral risk
measure ρt = ρφ, t = 2, . . . , T , considered in (46), the sets S(ρt(0)) = S(ρφ(0)) = {0}, t = 2, . . . , T ,
are nonempty and bounded. Using Proposition 2.15, optimal values of wt in (46) are bounded. This
result can also be easily proved directly:
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Lemma 3.6. Let assumption (A4) hold, and let φ be a piecewise risk spectrum satisfying (i), (ii),
and (iii) given in Example 2.16. Let w∗2 , . . . , w

∗
T be optimal values of w2, . . . , wT for (46). Then

w∗t (k) is finite for every t = 2, . . . , T , and k = 1, . . . , J .

Proof. Since χt, t = 1, . . . , T , are bounded and ∆φ < 0, we can bound from below the objective

function of (46) by L1(w) = K1+
∑T
t=2 θt(∆φ◦p)>wt and L2(w) = K2+

∑T
t=2 θt(∆φ◦(p−e))>wt for

some constants K1 and K2. Since ∆φ◦p < 0, if one component wt(k) = −∞, then L1(w) = +∞, the
objective function is therefore +∞, and such wt(k) cannot be an optimal value of wt(k). Similarly,
since ∆φ ◦ (p − e) > 0, if one wt(k) = +∞, then L2(w) = +∞, the objective function is +∞, and
such wt(k) cannot be an optimal value of wt(k). �

The following corollary is an immediate consequence of this lemma.

Corollary 3.7. Let assumption (A4) hold. Let w∗2 , . . . , w
∗
T be optimal values of w2, . . . , wT for (48).

Then w∗t is finite for every t = 2, . . . , T .

It follows that we can add (sufficiently large) box constraints on wt in (46) and (48) without
changing the optimal solutions of (46) and (48). Gathering our observations, we come to the
following proposition.

Proposition 3.8. [convergence of SDDP in a risk-averse setting] Consider multistage SLPs of the
form (1) with ft and χt given by (50). Assume that for such multistage programs, Assumptions
(A1), (A2), (A3), and (A4) hold. Consider the risk-averse formulations (46), (47) and (48), (49).
Then an SDDP algorithm applied on these DP equations will converge if the sampling procedures
satisfy the FPSP and BPSP assumptions (see Philpott and Guan [PG08]).

The same convergence result holds for the following two risk-averse formulations:

(1) assuming (A5), for risk-averse program (36) decomposed by stages as (43) with ht(·) given
by (45);

(2) assuming (A6), for risk-averse program (39) decomposed by stages as (40), (44) with h(·)
given by (45).

In the next section, we detail the SDDP algorithm for interstage independent risk-averse problems
of form (35). The developments can be easily adapted to the case when the process affinely depends
on previous values. Our notation follows closely that of Birge and Donohue [BD06].

4. Decomposition algorithms for a class of risk-averse stochastic programs

We consider the risk-averse recourse functions (43) from Section 3 in the case when ft and χt
are given by (50) and ht(·) is given by (45). Recall that risk-averse DP equations (43) satisfy
(P3) (like the non-risk-averse DP equations (3) but with additional state and control variables).
We assume interstage independence and relatively complete recourse for (1). We also assume that
the hypotheses of Proposition 3.8 hold. In this context, relatively complete recourse also holds
for risk-averse problems (43). As a result, the SDDP algorithm [PP91], [Sha11] can be applied to
obtain approximations of the corresponding risk-averse recourse functions. At each iteration, this
algorithm consists of a forward pass followed by a backward pass. The backward pass builds cuts
for the recourse functions (hyperplanes lying below these functions) at some points computed in the
forward pass. If H cuts are built for each recourse function at each iteration, we finish iteration i
with a lower bounding approximation of form

(51) Qit(xt−1, zt−1, y1:t−1) = max
j=0,1,...,iH

[−Ejt−1xt−1 − Zjt−1zt−1 −
t−1∑
τ=1

Y j,τt−1yτ + ejt−1]
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forQt, knowing that the algorithm starts taking forQ0
t a known lower bounding affine approximation

of Qt while QiT+1 ≡ 0. In the above expression, Zjt−1 ∈ R, while Ejt−1 and Y j,τt−1 are row vectors of
appropriate dimensions.

The forward pass of iteration i samples H scenarios (ξk2 , . . . , ξ
k
T ), k = (i − 1)H + 1, . . . , iH,

from the distribution of (ξ2, . . . , ξT ). On scenario (ξk2 , . . . , ξ
k
T ), the decisions (xk1 , . . . , x

k
T , y

k
1 , . . . , y

k
T )

as well as the partial costs (zk1 , . . . , z
k
T ) are computed replacing recourse functions Qt by Qi−1

t for
t = 2, . . . , T + 1. The stopping criteria is discussed in [Sha11].

The cuts are computed from time step T+1 down to time step 2. For time step T+1, sinceQiT+1 =

QT+1 = 0, cuts for QT+1 are obtained taking null values for EkT , Z
k
T , Y

k,τ
T , and ekT for k = (i−1)H+

1, . . . , iH. At t = 2, . . . , T , cuts for Qt are computed at (xkt−1, z
k
t−1, y

k
1:t−1), k = (i−1)H+1, . . . , iH.

More precisely, having at hand the lower bounding approximation Qit+1 of Qt+1, we can bound from

below Qt(xt−1, zt−1, y1:t−1) by Eξt [Qit(xt−1, zt−1, y1:t−1, ξt)] with Qit(xt−1, zt−1, y1:t−1, ξt) given as
the optimal value of the following linear program:

(52)

inf
xt,yt,zt,θ̃t

c>t yt + θ̃t

Atyt ≤ at, xt ≥ 0,∑t−1
τ=0 Bt,τyt−τ − ztbt = b̃t, (a)

zt + d>t xt = zt−1, (b)
Ctxt = ξt −Dtxt−1, (c)
−→
E i
txt +

−→
Z i
tzt + eθ̃t ≥ −

∑t
τ=1

−→
Y i,τ
t yτ +−→e it, (d)

where
−→
Z i
t = (Z0

t , Z
1
t , . . . , Z

iH
t )> and

−→
Y i,τ
t is the matrix whose (j+1)th line is Y j,τt for j = 0, . . . , iH.

We denote by ξjt , j = 1, . . . , qt < +∞, the possible realizations of ξt with p(t, j) = P(ξt =

ξjt ). We also denote by σk,jt , µk,jt , πk,jt , and ρk,jt the (row vectors) optimal Lagrange multipli-
ers associated to constraints (52)-(a), (52)-(b), (52)-(c), and (52)-(d) for the problem defining

Qit(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t ). With this notation, the following theorem provides the cuts computed

for Qt at iteration i.

Theorem 4.1. Let Qt, t = 2, . . . , T + 1, be the risk-averse recourse functions given by (43) with
ht(·) given by (45). In the backward pass of iteration i of the SDDP algorithm, the following cuts

are computed for these recourse functions. For t = T + 1, we set Ekt−1, Z
k
t−1, Y

k,τ
t−1 and ekt−1 to 0

for k = (i − 1)H + 1, . . . , iH and τ = 1, . . . , T . For t = 2, . . . , T , and k = (i − 1)H + 1, . . . , iH,

Ekt−1 =
∑qt
j=1 p(t, j)π

k,j
t Dt and

Zkt−1 = −
qt∑
j=1

p(t, j)µk,jt , Y k,τt−1 =
∑qt
j=1 p(t, j)(σ

k,j
t Bt,t−τ + ρk,jt

−→
Y i,τ
t ), τ = 1, . . . , t− 1.

Next, ekt−1 is given by

qt∑
j=1

p(t, j)

[
Qit(x

k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t )− µ

k,j
t zkt−1 +

t−1∑
τ=1

(σk,jt Bt,t−τ + ρk,jt
−→
Y i,τ
t )ykτ + πk,jt Dtx

k
t−1

]
.

Proof. Since relatively complete recourse and Assumptions (A4) and (A5) hold, the linear program

defining Qit(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t ) has a nonempty feasible set and its optimal value is finite. As a

result, both this primal problem and its dual have the same optimal value. Since a dual solution
is a subgradient of the value function for problem (52), we obtain for Qit(xt−1, zt−1, y1:t−1, ξ

j
t ) the

lower bound

Qit(x
k
t−1, z

k
t−1, y

k
1:t−1, ξ

j
t )−

∑t−1
τ=1 σ

k,j
t Bt,τ (yt−τ − ykt−τ )−

∑t−1
τ=1 ρ

k,j
t

−→
Y i,τ
t (yτ − ykτ )

+µk,jt (zt−1 − zkt−1)− πk,jt Dt(xt−1 − xkt−1).
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Plugging this bound into the relation Qt(xt−1, zt−1, y1:t−1) ≥
qt∑
j=1

p(t, j)Qit(xt−1, zt−1, y1:t−1, ξ
j
t ),

rearranging the terms, and identifying with (51) gives the announced cuts. �

The above cuts can be easily specialized to DP equations (46)-(47) (based on spectral risk mea-
sures) or to (44) with h(·) as in (45).

5. Conclusion

The class of extended polyhedral risk measures was introduced in this paper. Dual representations
of these risk measures were obtained and used to provide conditions for coherence, convexity and
consistency with second order stochastic dominance.

This class allowed us to write risk-averse dynamic programming equations for some risk-averse
problems with risk measures taken from this class. We then detailed a stochastic dual dynamic
programming algorithm for approximating the corresponding risk-averse recourse functions for some
stochastic linear programs. In particular, conditions were given to guarantee convergence. The
methodology can be easily adapted if the recourse functions are approximated using other sampling-
based decomposition algorithms such as AND (Birge and Donohue [BD06]) and DOASA (Philpott
and Guan [PG08]).

A forthcoming work will assess the proposed approach on a mid-term multistage production
management problem Guigues [Gui11].
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